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ABSTRACT
Both whole word modelling and context modelling have proven 
to improve recognition performance for connected digit strings. 
In this paper we will show that word boundary variation can be 
effectively modelled by applying the Head-Body-Tail (HBT) 
method as proposed by Chou et al in [1] and also applied by 
Gandhi in [2]. Each digit is split into three parts, representing 
the beginning, middle and end of a word. The middle part - the 
body - is assumed to be context-independent, whereas the first 
part - the head - and the last part - the tail - incorporate 
information about the preceding or subsequent digit. The results 
we obtained with HBT-modelling are compared with results 
obtained with whole-word models (WWM’s) [3] and with the 
results obtained with HBT-models reported in [2]. It is shown 
that using HBT models a relative improvement over context- 
independent WWM’s of 28% on string level can be reached.

1. INTRODUCTION
Pronunciation variation is an important issue in speech 
recognition research. Pronunciation does not only depend 
largely on the speaker, but also (within speakers) on the 
direct context of the word. Since automatic speech 
recognisers suffer from this variability, a lot of research 
on recognition of spoken language has aimed at reducing 
the effect of these types of variability on the performance 
of the speech recogniser. Many researchers have 
successfully attempted to model pronunciation variation 
by training context-dependent phonemes (i.e. triphone 
models) and by adding pronunciation variants to the 
lexicon, the language model and/or the train corpus [4]. In 
connected digit recognition whole word models (WWM's) 
are often used. Whole word modelling in this domain is 
feasible, because of the limited size of the lexicon. Using 
whole word models a lot of within word variation is 
already accounted for in the acoustic models. However, a 
lot of pronunciation variation occurs at word boundaries: 
the first and final sounds of words are to a large extent 
dependent on the following and preceding words. In order 
to deal with variation at word boundaries, context 
dependency has to be introduced to the acoustic models. 
Training context-dependent whole word models would 
require an enormous amount of training data, due to the 
large number of models that would have to be trained: for 
each word model at least 10 left-hand contexts and 10 
right-hand contexts need to be modelled, which adds up to 
1,000 word models. In order to make context modelling 
for digit recognition feasible, we made use of the Head- 
Body-Tail (HBT) method which was proposed by Chou et

al in 1994 [1], and successfully applied by Gandhi in 
1998 [2]. In this approach each digit is split up into three 
parts. The middle part of the word - the body - is assumed 
to be context-independent, whereas the first part - the 
head - and the last part - the tail - are dependent of the 
previous and subsequent digit respectively. Thus, for each 
digit 10 heads, 10 tails and one body are trained. This 
way, the total number of models that needs to be trained is 
reduced from 1000 to 210.
In order to create the best performing HBT models for our 
digit recognition task we experimented with different 
model topologies and we varied the number of Gaussian 
densities that were trained for each model. In this paper 
we will present the results of these experiments. We will 
compare the results with results of context-independent 
whole-word models [3]. The results will also be compared 
with the HBT results obtained by Gandhi et al [2].

The paper is further organised as follows. Section 2 
describes the speech material used for training and 
evaluating the models, the topology of the models and the 
language model. It also describes the experiments that we 
conducted. In Section 3 the results are presented, which 
will be discussed in Section 4. Finally, in Section 5 we 
will draw conclusions and discuss future research.

2. METHOD AND MATERIAL

2.1. Train and test material
The speech material that was used to train and evaluate 
the acoustic models consists of connected digit strings, 
spoken in Dutch, selected from three databases:
a. SESP: a speaker verification database consisting of 

connected digit strings, ranging in length from 1 to 
16 digits, with an average length of 7.3. This 
database consists of pin-codes (4 digits) telephone 
numbers (10 digits) and scope card numbers (14 
digits). All utterances were recorded over the 
telephone network in various environments.

b. POLYPHONE digits: this part of the POLYPHONE 
database consists of strictly connected digit strings, 
ranging in length from 1 to 16 digits, with an average 
length of 6. The database was recorded over the fixed 
telephone network.

c. CASIMIR: this database consists of pin-codes (four 
digits) and scope card numbers (14 digits), spoken 
strictly as connected digits. The average length is 7.7.



All data were collected over the telephone network in 
various environments.

For training 9,753 utterances were selected from the 
SESP and POLYPHONE databases. The training set was 
composed carefully according to the following criteria:
- the Signal-to-Noise ratio (SNR) is larger than 10 dB,
- the clipping rate is equal to 0,
- number of digits per string is not equal to 1 (too 

short), 10 or 141,
Furthermore, the training set was balanced according to 
the number of occurrences per digit, the number of 
occurrences at the start or end of a string and the number 
of digits and utterances per sex.
The test set consists of 10,000 utterances selected 
randomly from the CASIMIR database and from the 
remaining utterances of SESP and POLYPHONE.

2.2. Acoustic models
For each digit one context-independent body model is 
trained, together with 11 context-dependent head models 
and 11 context-dependent tail models: one for each 
preceding or subsequent digit and one for preceding or 
subsequent filled pauses or silence exceeding 250 ms.. 
The latter contexts are modelled because we do not expect 
context dependency to extend over filled pauses and 
silences of this length. In addition to the digit models, one 
noise model consisting of three states was trained for 
different kinds of background noise and filled pauses. 
Since our recogniser has a built-in silence-detector, we 
did not explicitly train a silence model.
In total 231 acoustic models were trained. Each model 
consists of at least three states (the total number of states 
varied in different experiments). The total number of digit 
variants in the lexicon is 1,211.

2.3. Feature extraction
Feature extraction of all 8 kHz-sampled speech files was 
done using a 16 ms. Hamming window with a 10 ms. 
shift. Of each speech sample 14 Mel Frequency Cepstral 
Coefficients (MFCCs) and their first order derivatives 
were calculated, i.e.28 features.

2.4. Language model
Since our recogniser does not support the use of a 
grammar, we used a probabilistic bi-gram language model 
to enforce the correct combinations of heads and tails. It 
is important to note that, with our recogniser, using a 
probabilistic language model means that false 
combinations of heads and tails can only be made 
improbable, not impossible.
The language model was created by summing all possible 
combinations of heads and tails and assigning probability 
scores to these combinations. In our experiments the

distribution of bi-gram probability scores reflects the 
distribution of occurrences in the train corpus.

2.5. Experiments
A number of experiments were carried out to test the 
performance of different HBT models.
First, a base-line experiment (EXP1) was carried out in 
which all heads, bodies and tails consist of three states, 
and, consequently, each digit of nine states. In EXP2 and 
EXP3, the total number of states per digit is duration 
dependent. The number of states in these experiments is 
based on the mean, minimum and maximum duration of 
the digit as observed in the train corpus. The total number 
of states per digit in these experiments ranges from 10 
(/e:n/ ‘one’) to 19 (/ne:x@n/ ‘nine’). In EXP2 only the 
body is duration-dependent, whereas the heads and tails 
for all digits consist of three states. In EXP3 also the 
heads and tails are duration-dependent, here the total 
number of states is distributed evenly over the head, body 
and tail models. All models were trained with both 32 and 
64 Gaussian densities per state. Due to the large number 
of models, especially for the heads and the tails, 64 
Gaussian models are probably undertrained due to 
shortage of training data. Therefore, in EXP4 the number 
of Gaussian densities per state for the bodies is 64, 
whereas for the heads and tails we experimented with 8 
(EXP4.1), 16 (EXP4.2) and 32 (EXP4.3) densities per 
state. The number of states in these experiments is the 
same as in EXP2. The results of all experiments are 
shown in the next section.

3. RESULTS
This section presents the results of the experiments 
described in section 2.5. All results are presented in terms 
of Word Error Rate (WER) and String Error Rate (SER), 
where:
• WER = (# insertions + deletions + substitutions / 

total # words) * 100%
• SER = (# strings containing one or more errors / 

total # strings) * 100%.
In order to determine the optimal number of Gaussian 
densities trained per model, the baseline experiment 
(EXP1) in which all models consist of three states, was 
carried out using 4, 8, 16, 32 and 64 Gaussian models. 
Table 1 shows the results for EXP1.

# Gauss Total # Gauss WER SER
4 2,761 12.34% 48.90%
8 5,481 8.44% 37.02%
16 10,839 7.51% 33.03%
32 21,356 7.31% 32.44%
64 40,930 6.10% 27.73%

Table 1 Performance of the base-line models as a function of 
the number Gaussian densities per model

, „  , , , , , , , , The data in Table 1 show that error rates drop
Both teleph°ne numbers and sc°pe card numbers have a significantly when more Gaussian densities are trained. 

very fixed format.



The second column shows, however, that not for all 
models the maximum number of Gaussian densities has 
been trained. Table 1 also shows that the performance of 
the base-line models does not seem very good for the 
CDR task. This is probably due to the fact that an equal 
number of states is used for all models.

In EXP2 and EXP3 the number of states for the acoustic 
models depends on the duration of the digits. In EXP2 
only the body is duration-dependent, in EXP3 this also 
applies to the heads and the tails. Table 2 shows the 
results for 32 and 64 Gaussian models. For ease of 
comparison, the first two rows in Table 2 show the 
performance of the base-line models.

Experiment # Gauss WER SER
EXP1 32 7.31% 32.44%

64 6.10% 27.73%
EXP2 32 3.52% 16.53%

64 3.42% 16.08%
EXP3 32 3.84% 18.05%

64 3.82% 18.02%

Table 2 Performance of duration-dependent models in EXP2 
and EXP3 for 32 and 64 Gaussians

As can be seen in Table 2, the models that take duration 
into account perform significantly better than the base
line models. Also, assigning three states to all heads and 
tails (EXP2) works better than distributing the states 
evenly over head, body and tail (EXP3). In these 
experiments the difference between the 32 Gaussian and 
64 Gaussian models is not significant, which indicates 
that with this amount of training data the maximum 
number of Gaussians that can effectively be trained is 32.

Table 3 shows the results for EXP4. In this experiment, 
the number of Gaussians that was trained for each head 
and tail was reduced to 32 (EXP4.3), 16 (EXP 4.2) and 8 
(EXP4.1), whereas the total number of Gaussians for the 
body models remained 64. The model topology used in 
this experiment is the same as in EXP2, the performance 
of these models (64 Gaussians) is repeated in the first row 
of Table 3.

Experiment Total # Gauss WER SER
EXP2 42,790 3.42% 16.08%
EXP4.1 9,589 3.25% 15.71%
EXP4.2 14,812 3.23% 15.62%
EXP4.3 25,162 3.22% 15.60%

Table 3 Performance of models with different combinations of 
Gaussians

Table 3 shows an improvement for EXP4.1, EXP4.2 and 
EXP4.3, compared to EXP2. This confirms our 
assumption that the 64 Gaussian head and tail models 
were undertrained due to shortage of training data. The 
results also show that not much is gained from moving

from 8 to 16 or 32 splits for the heads and tails. This 
seems to indicate that with the size of our train set, the 
maximum resolution of the models is already reached 
with 8 Gaussians per state.

To put the results into perspective, Table 4 shows the 
results obtained with context-independent WWM’s. These 
models were trained on the train set described in section
2.1, using the same total number of states as in EXP2. 
Table 4 also shows the results of both WWM and HBT 
models obtained by Gandhi.

Experiment WWM HBT % Improvement
A2RT 17.23% 15.60% 9.4%
Gandhi 12.12% 9.04% 25.4%

Table 4 Performance of our models and the CI and HBT 
models of Gandhi (SER)

Table 4 shows that although our HBT models perform 
better than the context independent whole word models, 
the improvement is much smaller than the improvement 
achieved by Gandhi. Possible explanations will be 
discussed in the next section.

4. DISCUSSION
Table 1 in the previous section shows that the 
performance of the HBT models increases when models 
are used with more Gaussian densities per state. The 
reason for this is that those models are able to more 
adequately model the variation. However, training this 
many densities requires a lot of training data. From the 
figures in Table 1 we could conclude that there seems to 
be enough training material to train as much as 64 
Gaussians. However, it may very well be that the gain in 
performance over the 32 Gaussian models is almost only 
due to the body models. Since there are only 10 body 
models, the total number of training samples per models 
is approximately 6,000, whereas for the head and tail 
models only 300 occurrences are available, which might 
be close to the minimum. This idea is supported by the 
data in Table 3: combinations of less Gaussians for the 
head/tails and more for the body result in a small 
improvement of 3% on string level. Furthermore, moving 
from 8 to 16 or 32 Gaussians for the heads and tails does 
not improve the recognition results significantly, which 
also indicates that there is not enough training material to 
perform extra splits on the head/tail models.
Comparing the performance of the HBT models with the 
performance of the context-independent WWM’s, we see 
a relative improvement of 9.4%. Compared with the 
improvements Gandhi observed in his experiments 
(25.4%), our gain in performance thanks to the HBT 
models is rather small. Also, the absolute error rates are 
much higher. There are a number of possible explanations 
for this observation.
First, a very important difference between Gandhi’s 
experiment and ours is that since our recogniser does not 
support the use of a grammar an n-gram language model



was used to enforce the correct combinations of heads and 
tails. As mentioned earlier, in our recogniser, by using a 
probabilistic language model instead of a restrictive 
grammar, combinations can only be made less likely, but 
not impossible. This introduces unnecessary errors: in 
EXP4.3 almost 500 of all recognised pairs of heads and 
tails were incorrect. Incorrect in this case means that 
either the tail does not match the next digit, or the head 
does not match the previous digit. In order to investigate 
the influence of the grammar on the performance of the 
HBT models, we repeated EXP4.3 (which gave the best 
results) using a recogniser that does support the use of a 
grammar. In this grammar we explicitly enforce the 
correct combinations of heads and tails. Since this is a 
strict grammar, no other combinations can occur in the 
recognition result. The grammar does not contain any 
information about the number of digits per string. Feature 
extraction, training procedure and model topology were 
kept similar to our previous experiments. Results (SER) 
of this experiment, using 32 Gaussians for heads and tails 
en 64 for the bodies, are shown in Table 5.

# Gauss LM Grammar % Improvement
EXP4.3 15.60% 12.33% 21.0%

Table 5 Performance of recognisers using a language model 
and using a grammar

Table 5 shows that using a grammar a relative reduction 
of the SER of 21.0% can be achieved. Given the fact that 
all parameters were kept as similar as much as possible, 
this reduction can almost completely be ascribed to the 
use of a grammar. The total relative improvement over the 
context independent WWM's using the grammar is 
28.4%, which is comparable to the improvement achieved 
by Gandhi.
Second, there are a number of differences between the 
acoustic model sets. As mentioned earlier, in section 2.2, 
the model set that we trained consists of 221 head, body 
and tail models. Given the size of our train set, and 
considering the results in Table 3, this might be not 
enough to adequately train this amount of models with 16 
or more Gaussians. The obvious solution would be to add 
more data to the train corpus. Another solution, which has 
also been applied by Gandhi, is to apply tying. Since a 
number of heads and tails are very much alike and behave 
the same in different contexts, these can be joined in one 
model. This reduces the total number of models to be 
trained, and therefore increases the amount of training 
data available per model. Another difference is the way 
noise is modelled. In Gandhi’s experiments, two models 
are used to absorb noise, one representing breath and 
mouth noises and one more general filler model. In our 
method only one model was used for all kinds of filled 
pauses and background noise. In our experiments, using 
the best models, 49% of all insertions are due to noises 
being mistaken as a digit.
Finally, another difference is the way the acoustic models 
were trained. In our experiments the acoustic models are

trained using Maximum Likelihood training (ML). In 
order to use the training material more efficiently, Gandhi 
applied Minimum Classification Error training (MCE). 
MCE reduces the number of mis-classifications made 
during training by applying a special cost function This 
results in more ‘correct’ training data for each model. 
Gandhi showed that, for the WWM’s, using MCE the 
performance of the models increases with 17.4% on string 
level. Since MCE training has also been applied to the 
HBT models, they are likely to perform better.

Further improvement of the HBT models can be achieved 
in a number of ways.
In [3] it is shown that a relative reduction of 20% in SER 
can be achieved by training separate models for male and 
female speech. Since this result was achieved using the 
same total number of Gaussian densities trained, the 
reduction of the number of training data per model is not 
a problem.
Another way to improve the models can be found in the 
training procedure. All models in our experiments have 
been trained on the basis of a linear segmentation of the 
train material, using a silence-speech detector and taking 
into account the number of states of each model. In order 
to improve the segmentation of the speech material, and 
therewith the accuracy of the models, it may be better to 
start the training from a bootstrap segmentation obtained 
using the best performing HBT models.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that, for recognition of 
Dutch digit strings, context can effectively be modelled 
using the Head-Body-Tail approach. Results indicate that 
using a combination of 32 Gaussian models for the heads 
and tails and 64 Gaussian models for the bodies results in 
a string error rate reduction of 9.4% over context 
independent WWM’s. Using a grammar to restrict the 
number of possible combinations of heads and tails 
further reduces the error rate with 21.0%. This way a total 
relative improvement of 28.4% is achieved.
Future research will be aimed at improving the 
performance of the HBT models. A number of ways to 
achieve this were proposed in the discussion.
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