
The Ins and Outs of The Probabilistic Model Checker MRMC

Joost-Pieter Katoen∗, Ivan S. Zapreev†, Ernst Moritz Hahn‡, Holger Hermanns‡, David N. Jansen§

∗
RWTH Aachen University, 52056 Aachen, Germany

†
CWI, 1098 XG Amsterdam, The Netherlands

‡
Saarland University, 66123 Saarbrücken, Germany

§
Radboud Universiteit, 6500 GL Nijmegen, The Netherlands

Abstract

The Markov Reward Model Checker (MRMC) is a

software tool for verifying properties over probabilistic

models. It supports PCTL and CSL model checking, and

their reward extensions. Distinguishing features of MRMC

are its support for computing time- and reward-bounded

reachability probabilities, (property-driven) bisimulation

minimization, and precise on-the-fly steady-state detection.

Recent tool features include time-bounded reachability

analysis for uniform CTMDPs and CSL model checking

by discrete-event simulation. This paper presents the tool’s

current status and its implementation details.

1. Introduction

Quantitative performance and dependability analysis of

computerised systems is gaining considerable importance

in daily life. Ensuring minimum breakdown probabilities

of, for instance, components of steer- and brake-by-wire

systems in cars, is vital to fulfil safety requirement spec-

ifications such as the international standard IEC 61508.

Hence, answering timed reachability questions like: “What

is the worst case risk to hit a safety-critical system state

within 7 days of mission time?” as early as possible in the

system design process is becoming indispensable.

One way to ensure that a system design meets its

safety requirement specification is to create and analyse a

formal model of the envisaged design. Probabilistic model

checking is an automated technique to check whether

M |= ϕ for a (typically) Markovian model M and a

temporal logic formula ϕ. The advance of time in M

can be either continuous or discrete, the choice between

probability distributions may be non-deterministic, and

rewards may be attached to states and/or transitions. Logics

are either linear-time (LTL) in which case the probability

of M satisfying ϕ is computed, or a probabilistic variant

This research was performed as part of the MC=MC project financed by

the Netherlands Organization for Scientific Research (NWO) and the DFG

Research Training Group 623 on Leistungsgarantien für Rechnersysteme.

We thank Maneesh Khattri (Oxford Univ.), Christina Jansen (RWTH

Aachen), and Tim Kemna (Univ. Twente) for their implementation efforts.

of the branching-time logic CTL, such as PCTL and

CSL. This spans a wide range of models and logics, each

requiring tailored and specific model-checking algorithms.

The Markov Reward Model Checker (MRMC) is an

explicit-state verification tool. The core of MRMC is a

numerical solution engine that supports the verification

of continuous- and discrete-time Markov chains (CTMCs

and DTMCs) against PCTL and CSL respectively using

the (by now) standard numerical analysis techniques [18],

[3]. This core is enriched with the support for verifying

reward extensions of CTMCs and DTMCs —so-called

Markov reward models (MRMs)— against appropriate

PCTL and CSL extensions [43], [1], [2], most notably

the verification of time- and reward-bounded reachability

probabilities. This allows for verifying properties such as

“the probability to reach a bad state within d time units

and E units of energy exceeds 0.98”.

MRMC is a command-line tool that has an easy-to-

grasp input format. The input is on the level of an explicit

state space. This facilitates using MRMC as back-end to

modelling tools for various modelling formalisms. It also

makes the tool a potential testbed for rapid experimentation

with novel and improved algorithms, because no special

syntactic structure needs to be respected by the algorithm

designer. This dedication has found an audience: Since its

first appearance in the scientific arena [30], it has been

used several times as a model-checking back-end. Some

example formalisms are stochastic process algebras [50],

[23], Petri nets [14], Statemate [7], and AADL [8].

The intention to provide a testbed for algorithmic

advances has turned out to be a fruitful concept. Over

the past few years, the core engine was extended with

several distinguishing features: (1) To alleviate the state-

space explosion problem, MRMC supports bisimulation

minimization of the input model. The minimization can

be tailored to the formula under consideration to obtain

smaller quotients. Furthermore, (2) MRMC has been ex-

tended with support for CTMDPs, a variant of CTMCs

with non-determinism, that can be regarded as the common

semantic model of many specification formalisms for con-

current stochastic systems. MRMC implements an efficient

algorithm to compute maximal time-bounded reachability

probabilities in uniform CTMDPs [4]. Finally, (3) MRMC

includes a discrete-event simulation engine for simulative

CSL model checking [55]. MRMC is thus the first tool

with simulation-based model checking of full CSL.

MRMC is realised in the C programming language,

which allows the tool to be small and fast due to

compiler-based optimisations and smart memory man-

agement within the implementation. To store the state

space, it uses a slightly modified version of the well-

known compressed-row, compressed-column representa-

tion of probability (rate) matrices that is tailored to

fast matrix-vector multiplication. It supports all major

platforms (Microsoft Windows, Linux and Mac OS X),

is distributed under the GNU General Public License

(GPL) [17], and is available for free download at [37].

This paper gives an overview of the current tool status,

with a particular focus on the recent extensions. We de-

scribe MRMC v1.4.1 as it will be released in August 2009.

Other Probabilistic Model Checkers. In the last years,

model checking probabilistic systems has been an ac-

tive research field. This has resulted in a whole variety

of probabilistic model checkers, such as APMC [21],

FHP-Murphi [40], Liquor [12], PASS [24], PRISM [25],

VESTA [45], and Ymer [51]. Probabilistic model checking

facilities are also present in the stochastic Petri nets tools

GreatSPN [6] the APNN Toolbox [9]. Some of these

tools aim at specific models, logics and model-checking

techniques. For example, FHP-Murphi is tailored to finite

horizon safety properties, APMC uses Monte-Carlo tech-

niques for bounded-model checking of Markov chains, and

PASS exploits predicate abstraction and counterexample

guided refinement for verifying probabilistic programs.

Ymer implements statistical CSL model-checking tech-

niques based on discrete event simulation [46] and sequen-

tial acceptance sampling [53]. It also incorporates simple

acceptance sampling and adopted a numerical engine from

PRISM. VESTA allows to verify CSL (PCTL) proper-

ties on CTMC (DTMC) models. The tool implements

model-checking techniques (based on simple hypothesis

testing [26]) discussed in [53] and [45]. PRISM —the

most popular and advanced tool in the field— allows

for numerical model checking of PCTL and CSL. It also

supports the verification of expected reward measures and

has some facilities for discrete-event simulation. Unlike

MRMC, PRISM is a symbolic model checker using multi-

terminal BDDs for representing Markov models and in

contrast to MRMC supports the verification of discrete-

time MDPs. Finally, we mention SMART as a related

tool which supports the simulative and symbolic numerical

analysis of CTMCs modelled as Petri nets, as well as CTL

model-checking of such models [11]. SMART is using

multi-decision diagrams (MDDs) rather than MTBDDs.

Organization of The Paper. Section 2 outlines the sup-

ported models and logical formalisms. Section 3 presents

the input formats accepted by MRMC and, by means of

examples, introduces the tool’s interactive shell. The recent

features of MRMC are thoroughly discussed in Section 4.

This includes: (i) time-bounded reachability for CTMDPs,

(ii) complete support for simulation-based model checking

of CSL, (iii) using (strong) bisimulation minimization prior

to model-checking, and (iv) precise steady-state detection

for time-bounded reachability problems. Section 5 presents

implementation details, such as architectural solutions and

some source code metrics. Section 6 concludes.

2. Probabilistic Verification with MRMC

2.1. Models and Logics

MRMC is aimed at performance and dependability

evaluation and has therefore been focused on verifying

discrete- and continuous-time Markov chains (DTMCs and

CTMCs) and rewards extensions thereof (DMRMs and

CMRMs, repectively). It supports the logics:

model DTMC CTMC DMRM CMRM uCTMDP

logic PCTL CSL PRCTL CSRL time-bounded

reachability

The key ingredient of these logics is the probabilistic

operator, denoted P; the formula P≤ 1
2
(♦Φ) holds in state

s whenever the total probability mass of all paths that

start in s and eventually reach some Φ-state is at most 1
2
.

(Here, it is assumed that Φ characterizes a set of states.)

For DTMCs, the verification of such properties reduces

to solving a system of linear equations with a variable

for each state. For CTMCs, the time until reaching a Φ-

state can be indicated (as parameter of the ♦ modality),

and verification reduces to solving a set of Volterra inte-

gral equations, or, equivalently, to a graph transformation

followed by a standard transient CTMC analysis. These

properties are complemented with long-run properties.

In DMRMs, states are equipped with costs, called

rewards, which are incurred in leaving (or entering) a

state. Key formulae in PRCTL are besides the expected

accumulated reward in Φ-states, e. g., P≤ 1
2
(♦≤c Φ) which

restricts attention to those paths that reach a Φ-state within

a total cost of at most c. In a similar way, CSRL allows

to request reachability within a time- and a reward-bound.

Note that in CMRMs the incurred reward in a state is

proportional to the reward associated to the state and the

state residence time. Finally, MRMC supports a sub-class

of CTMCs with non-determinism, viz. so-called CTMDPs.

Although it does not cover a full logic, it can compute

maximal probabilities for time-bounded reachability.

2.2. StateSpace Representation

Storing a Markov chain may be quite a challenge,

since most real-life models are represented by chains with

millions of states and transitions. Fortunately, most tran-

sition matrices that appear in probabilistic model check-

ing have a very sparse structure, i. e., contain a large

number of zeroes. Therefore using sparse matrices, such

1

null

null

succ

pred

rows

nrows = 3

ncols = 3

1

0.5

col

val

diag = 0.5

back_set 1

val

col

diag = 0.0

back_set 0

0 2

0.25 0.75

col

val

back_set

diag = 1.0

1

1 2 0

1 1

Figure 1: An example of the sparse matrix representation used in MRMC

as a compressed-row (compressed-column) representation

(see [41] for more details), as a data structure for prob-

ability (rate) matrices is advantageous. These structures

allow to avoid the storage of, and computation on, a large

number of zeroes while keeping the manipulations of data

relatively cheap.

For MRMC, as recommended in [48], we have chosen

the compressed-row representation because it assures a

high efficiency of matrix–vector multiplications which are

at the core of numerical model checking. Similar data

structures were implemented in the (by 2004) fastest serial

and parallel explicit Markov chain solver [5].

In our implementation a sparse matrix is represented

by a structure containing a number of rows nrows; the

number of columns ncols; an array that stores the number

of non-zero off-diagonal elements for each row succ; an

array of pointers to the structure representing a matrix row

rows; and an array pred, that contains the number of

non-zero off-diagonal elements for each column. Row and

column indices start at 0. Note that self-loops are not taken

into account by succ nor pred.

The row structure for row i has several fields, namely

the diagonal element diag; an array of non-zero off-

diagonal values val; an array of corresponding column

indexes col; and an array back set, that contains the row

indices of non-zero off-diagonal elements in column i. The

back set array is used for bisimulation minimization and

in the model-checking algorithms of PCTL and CSL.
Example 1: Consider the matrix P:

P =

2

4

0.50 0.50 0.00
0.25 0.00 0.75
0.00 0.00 1.00

3

5

Figure 1 shows the data structures that are allocated for

matrix P in MRMC. The matrix structure (on the left of

the figure) has the number of columns and rows set to 3.

Its succ array contains values 1, 2 and 0 because row zero

has only one non-zero off-diagonal element 0.5, row one

has two elements 0.25 and 0.75, and row two has none.

The pred array contains ones because each column has

one non-zero element (beneath the diagonal).

The array element rows[0] stores the pointer to the

structure representing row 0. This row structure has the fol-

lowing fields: the array col contains one element (column

index 1) because the only non-zero off-diagonal element

of the row is P01. The value of this element is stored in the

corresponding element of the array val. The field diag is

set to 0.5, the diagonal element P00. The array back set

contains the row index 1, because P10 is non-zero.

An advantage of the compressed-row representation is

that it gives an easy access to the matrix rows. The latter is

crucial for the efficiency of matrix–vector multiplications,

which are at the heart of the numerical model checking.

Storing rows separately simplifies the procedure of making

states absorbing. The fact that the matrix diagonal elements

are stored separately from the non-diagonal elements fa-

cilitates optimisations of matrix transformations, such as

computation of an embedded Markov chain.

2.3. Model Checking Markov Chains

The algorithms for PCTL model checking that have

been realized in MRMC are given in [18]. Prior to check-

ing an until-formula, a graph analysis identifies the states

from which the goal state is unreachable to reduce the

number of variables in the linear equation system. MRMC

extends PCTL [18] with a long-run operator, which is

checked by a combination of graph analysis (to find

bottom strongly connected components [BSCCs]), reacha-

bility probabilities (of these BSCCs), and solving a system

of linear equations (one per BSCC). This recipe is very

similar to the treatment of the steady-state operator in CSL.

MRMC uses the iterative Gauss–Seidel and Gauss–Jacobi

techniques for solving systems of linear equations [48].

The PRCTL algorithms in MRMC are described in [1].

CSL model-checking techniques in MRMC stem from [3]

and for its reward extension CSRL from [2], [13], [20]. For

time- and reward-bounded until formulae we have imple-

mented two algorithms: one based on discretization [49]

and one based on uniformization and path truncation [43].

The algorithms for PRCTL and CSRL support both state

and impulse rewards, i. e., instantaneous rewards on edges.

The algorithm for maximal probabilities for time-bounded

reachability on CTMDPs has been given in [4].

3. MRMC: Look and Feel

The MRMC Input Format. Consider a die with four

faces numbered 1 through 4. The die is biased such that

the outcomes are obtained with probability 0.4, 0.3, 0.2,

and 0.1, respectively. The DMRM in Fig. 2 consists of five

states where state 0 represents the toss and states 1 through

4 the possible outcomes. The state rewards, indicated

as state labels between square brackets, model the gains

obtained. In a game, the die is tossed repeatedly. The dice

game is won if the outcome is 4 (proposition goal) and

the gain, i. e., the accumulated reward is between 5 and

50, and lost once the outcome is 1 (proposition loss).

0

2

1 4

3

0.2

1.0

1.0

0.1

0.4

1.0

0.3

1.0

{loss} {goal}

[4][1]

[2] [3]

Figure 2: A DMRM model of a simple dice game

Table 1 lists the MRMC input files to describe the DMRM.

The file game.tra lists the state transitions with their

probability; the file game.lab contains label declarations

and provides the state-labeling; finally, the file game.rew

contains the state rewards. Possible impulse rewards (not

present in the example) would be provided in a separate

filename.rewi file.

game.tra game.lab game.rew

STATES 5 #DECLARATION 1 1
TRANSITIONS 8 loss goal 2 2
0 1 0.4 #END 3 3
0 2 0.3 1 loss 4 4
0 3 0.2 4 goal
0 4 0.1
1 0 1.0
2 0 1.0
3 0 1.0
4 0 1.0

Table 1: MRMC input files for the dice game

The MRMC Interactive Shell. MRMC is a command

line tool that provides a shell-like environment (a com-

mand prompt) where a user can specify the tool run-time

options such as the use of specific numerical algorithms

or certain run-time parameters, and the properties to be

verified. Upon startup, MRMC accepts several command-

line options, e. g., that specify the model. In order to start

MRMC with the aforementioned input files, the following

command should be issued:

MRMC/bin> ./mrmc dmrm game.tra

game.lab game.rew

Subsequently, MRMC outputs its logo, some general in-

formation about the accepted model (like memory con-

sumption) and the prompt >> signalling that the tool is up

and running, ready to accept user commands. For every

verification problem the tool lists the states satisfying the

given property and, if applicable, the probability of the

required path or state formula. Let’s consider a small

example. Suppose we want to know the answer to: “Is the

probability to win this game within 100 tosses, larger than

0.5?” We can ask MRMC by entering a PRCTL formula:

>> P>0.5[!loss U[0,199][5,50] goal]

where it should be noted that 100 tosses correspond to

199 time steps. MRMC then outputs:

$RESULT: (0.0647999, 0.0000000,

0.0959998, 0.1199998, 0.1199997)

where the probability vector $RESULT indicates the like-

lihood of state i satisfying ¬loss U
[0,199]
[5,50] goal , and

$STATE: { }
The model-checking time is 45 milli

sec(s).

>>

where $STATE is the set of states satisfying the formula.

As for each state the likelihood is ≤ 0.5, it is empty.

4. MRMC Recent Features

4.1. Timed Reachability in CTMDPs

A continuous-time Markov decision process (CTMDP)

extends CTMCs with non-deterministic choices. As for

CTMCs, the model consists of states, and the timed

behaviour is governed by exponential distributions. But

different from CTMCs, each state may feature a number of

non-deterministic decisions of next-step distributions. The

class of CTMDPs is of interest, because it can be viewed

as a common semantic model for various performance and

dependability modelling formalisms including generalized

stochastic Petri nets [10], Markovian stochastic activity

networks [44], and interactive Markov chains [22]. So

far, the analysis of models developed in these and related

formalisms was restricted to the subset that corresponds

to CTMCs, usually referred to as “non-confused”, “well-

defined”, or “well-specified”.

Non-deterministic decisions are decisions we cannot

actually connect a probability distribution with, as it is

unknown or not applicable. Such choices may result from

underspecification of the model, or by leaving out proba-

bilities we do not have enough information about, like user

actions or certain environmental influences. Usually, labels

are used to distinguish the non-deterministic alternatives,

and this is indeed also the case in the model supported

by MRMC. However, MRMC also supports models where

there is internal non-determinism between equally labelled

next steps. In summary, a CTMDP specification consists

of state transitions, corresponding distributions, and a

labelling function that maps transitions to labels.

As we have non-deterministic decisions, we cannot talk

about the probability of a property of the model. Instead,

probabilities result from choosing an instance which re-

solves the non-deterministic decisions, a scheduler. The

tool supports the computation of the maximum probability

with which a set of target states can be reached within

a given time bound. For this it assumes (but does not

check) that the model is uniform, which means that there

is a unique rate E such that for each state and each non-

deterministic alternative, the total outgoing rate of this

alternative is E.

Algorithmic Details. MRMC implements an algorithm

that efficiently calculates time-bounded reachability proba-

bilities in uniform CTMDPs [4]. The schedulers considered

N

...

2

1

left

switch

backbone

right

switch

N

...

2

1 fail repair

workstation 500 h 0.5 h

switch 4000 h 4 h

backbone 5000 h 8 h

Figure 3: FTWC with mean fail and repair times

are history dependent, i. e. they have information about all

previous states visited and transitions taken, but they do

not have information about the exact point of time a state

is entered. To compute the maximum it is enough consider

schedulers which only know the length of the history.

Algorithmically, a greedy backwards algorithm is used to

achieve this, and this is what is integrated in MRMC.

Experimental Results. As an example application, we

show results obtained for a fault-tolerant workstation clus-

ter (FTWC), originally studied in [19]. The general design

of the workstation cluster is shown on the left-hand side of

Fig. 3. It consists of two sub-clusters which are connected

via a backbone. There are N workstations in each sub-

cluster which are connected together in a star-topology

with a switch as central node. The switches provide

additionally the interface to the backbone. Each of the

components in the fault-tolerant workstation cluster can

break down (fail) and then needs to be repaired before

becoming available again. The mean time to failure and

the mean repair time for each component in isolation are

depicted on the right-hand side of Fig. 3. They correspond

to mean durations of exponential distributions. There is

a single repair unit for the entire cluster, not depicted in

the figure, which is only capable of repairing one failed

component at a time. Essentially, this means that when

multiple components are down, they must be handled in

sequence, and there is a non-deterministic decision to be

taken which of the failed components the repair unit is

assigned to first (or next).

To generate the CTMDP representing the overall system

we used the IMC calculus as supported by the CADP

toolset; details are explained in [28]. As in [19] we say

that our system operates in premium quality when at least

N workstations are operational. These workstations have

to be connected to each other via operational switches.

When the number of operational workstations in one sub-

cluster is below N , premium quality can be ensured by an

operational backbone under the condition that there are N

operational workstations in total. We are interested in the

following property: “What is the worst case probability to

hit a state in which premium service is not guaranteed

within t time units?” for which we report results and

statistics in Table 2. The first column depicts the number

of workstations on each side, the next two columns show

the overall memory required and the number of states of

the CTMDP. The remaining columns show the results of

the computation for time bounds ranging from 100h to

50000h. For each N we display the computation time in

the upper part of the row and the computed probability in

the lower part.

N memory states 100 h 1000 h 5000 h 10000 h 50000 h

1 4.12 MB 110
0s 0s 0s 0s 2s time

0.00 0.01 0.04 0.09 0.36 prob.

4 4.26 MB 818
0s 0s 2s 3s 15s time

0.00 0.02 0.09 0.18 0.62 prob.

16 5.25 MB 10130
0s 2s 10s 19s 1m 34s time

0.01 0.08 0.32 0.54 0.98 prob.

64 22.16 MB 151058
6s 38s 3m 6s 5m 41s 28m 0s time

0.03 0.23 0.73 0.93 1.00 prob.

256 288.31 MB 2373650
1m 39s 12m 33s 59m 11s 118m 22s 642m 3s time

0.05 0.43 0.94 1.00 1.00 prob.

Table 2: Statistics for the FTWC analysis

As we can see, the CTMDP algorithm performs well

even for examples with very large state spaces: The model

in the last row has about 2 million states and about 20

million nonzero matrix entries. This holds also for other

examples, see [28].

The inherent non-determinism in the specification has

been ignored in the original model [19] and in subsequent

work, e. g., in the FTWC model used and generated by the

model checker PRISM [42]. There, the non-deterministic

decision of which system to repair if several systems failed

has been modelled using a very fast, but probabilistic deci-

sion, encoded via the use of very high rates (of exponential

distributions) assigned to the decisive transitions. These

high rates are absent in the original problem statement

where the repair unit is assigned non-deterministically.

Remarkably, this modelling trick results in an overesti-

mation of the true probabilities (obtained via the CTMC

engine of MRMC, reconfirmed with PRISM). This is quite

surprising, because the CTMDP algorithm accounts for the

worst-case. Nothing worse is possible in the model, and

we would thus expect, that this probability will be higher

than in any corresponding CTMC model of the system.

This overestimation, which indicates a modelling flaw in

the CTMC approach, can be explained as follows. When

replacing a non-deterministic selection by high rates, cer-

tain paths become possible (though with low probability),

that in a non-deterministic interpretation would be absent,

and thus not contribute to the reachability probability. For

a more detailed explanation of this phenomenon we refer

the interested reader to [28].

4.2. SimulationBased CTMC Model Checking

The numerical analysis algorithms in MRMC have

recently been complemented by simulation-based model-

checking algorithms for CSL. As opposed to the ap-

proaches taken by Ymer [51], [54] and VESTA [45] that

exploit statistical hypothesis testing, MRMC uses classical

discrete-event simulation (DES) techniques for CTMCs.

In essence, we exploit continuous-time terminating simu-

lations for time-bounded until formulae (where the termi-

nation conditions are naturally induced by the formula),

standard regenerative simulation on embedded DTMCs

for steady-state formulae, and terminating simulations on

embedded DTMCs for unbounded until-formulae (where

reaching a certain number of steps acts as terminating

condition; see also below). In the current version, it is

assumed that the structure of the CTMC at hand —in fact,

its BSCCs— is known prior to the simulation, i. e., it is

not a fully on-the-fly simulation engine. In a next version

of MRMC, it is planned to obtain this during state-space

generation from AADL specifications. Full details of the

simulation algorithms are provided in [55, Ch. 6].

Basic Strategy. To check whether e. g., s |= P>b(ϕ),
an estimate p̃ of the probability mass p of all ϕ-paths

starting in s is determined using standard DES techniques.

Let ξ be the user-specified confidence of the result and

δ′ the maximum width of the confidence interval. The

probability of obtaining a correct answer to the model-

checking problem s |= P>b(ϕ) is now guaranteed to be at

least ξ provided δ′ ≤ |b − p̃|.

Confidence Intervals. A slight adaptation of standard

sequential confidence intervals is exploited in which the

sample size and simulation depth can be adapted on

demand. In combination with the Agresti–Coull confidence

intervals for Bernoulli trials, quite accurate results are

obtained. We illustrate this by means of the CPS case

study where we check P≥0.99

(
♦[40,80]serve1

)
where the

proposition servei uniquely identifies a state in which

station i is being served. For N ∈ {6, 9}, where N is

the number of stations, p = 0.9988 and p = 0.9888,

respectively, which is very close to the bound b = 0.999.

This leads (cf. Fig. 4) to a confidence significantly below

the user-defined ξ = 0.95 using Ymer and Ymer P —the

variant of Ymer that uses sequential confidence-interval

approach based on [39]. Although δ′ > |b − p̃|, MRMC

provides more accurate answers as its algorithm first simu-

lates until the confidence interval is tighter than δ′ and then

continues simulation until it reaches the definite answer to

the model-checking problem. This strategy increases the

accuracy because the width of the resulting confidence

interval can be much smaller than δ′. (Note that VESTA

does not support intervals like [40, 80] as time bounds.)

The penalty for this increased accuracy is an increase in

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18

C
o

n
fi
d

e
n

c
e

,
p

ro
b

a
b

ili
ty

N

MRMC
Ymer

Ymer P

Figure 4: Confidence levels for P≥0.99

`

♦[40,80] serve1

´

the sample size, i. e., the number of states that are visited

during the simulation (cf. Fig. 5), and, accordingly, yields

larger model-checking times. Despite the larger number

of required states than Ymer P, MRMC is about a factor

8 times faster. Ymer needs less states for larger N since

b − p̃ becomes larger in that case, and thus Ymer can

decide the validity of the formula with less samples.

Our experiments with other cases showed that for (time-

 10000

 100000

 1e+06

 1e+07

 1e+08

 2 4 6 8 10 12 14 16 18

N
u

m
b

e
r

o
f

re
q

u
ir
e

d
 o

b
s
e

rv
a

ti
o

n
s

N

MRMC
Ymer

Ymer P

Figure 5: # observations for checking P≥0.99

`

♦[40,80] serve1

´

bounded) until formulae the peak-memory consumption

(VSZ) of MRMC is linearly proportional to the model size.

Simple Reachability Properties. For unbounded condi-

tional reachability properties, MRMC uses two indepen-

dent samples so as to ensure the correct confidence level.

In contrast to VESTA that uses a so-called “stopping”

probability to guess whether from a state a goal state is

never reached, MRMC uses the CTMC’s graph structure to

rule out states that lie in BSCCs. Then the simulation boils

down to estimating the stationary probabilities to be in a

goal state, which can be estimated by the state probabilities

of transient states. This yields a drastic reduction of the

needed number of simulated states, cf. Fig. 6. In fact, we

simulate until the N -th epoch, increasing it along with

increasing the sample size M (alternating the increase of

M and N). The confidence intervals are formed from the

confidence interval for the probability to be in a good

absorbing state (i. e., a goal state) and the probabilities to

be in a good absorbing or transient state, at epoch N .

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

N
u

m
b

e
r

o
f

re
q

u
ir
e

d
 o

b
s
e

rv
a

ti
o

n
s

N

MRMC
VESTA

Figure 6: Sample sizes for checking P≤0.03 (¬full1 U full2)

Checking Steady-State Formulae. For steady-state for-

mulae, the probability estimate p̃ is based on combining

estimates of stationary probabilities in the BSCCs and

estimates for the simple reachability probabilities of these

BSCCs. The latter ones are obtained by regeneration-

based simulation of the embedded DTMC as originally

proposed in [27]. This approach is justified by the fact

that only the exit rates of the CTMC are of relevance for

obtaining a point estimate and confidence interval. For

real function f on the state space and α = E[f(X)]
where X is the random variable describing the CTMC

in equilibrium, the point estimate for α is obtained by

simply dividing the expected accumulated value of f along

all regeneration cycles by the expected duration of such

cycles. In order to select a regeneration point, MRMC

offers two possibilities: a deterministic choice, or the use

of a simple heuristic where it is chosen as the most

recurring state in a test run preceding the verification.

Experiments have shown that for ergodic Markov chains,

model checking results could be obtained in a matter of

seconds using the heuristic, whereas a fixed choice of

regeneration point did not yield results within 15 minutes.

MRMC also offers the choice between dynamic (D) and

constant (C) sample-sizes increase. The latter allows to

improve tool’s performance on smaller models, cf. Fig. 7.

Neither Ymer nor VESTA provide support for steady-

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
o

m
p

u
ta

ti
o

n
 t

im
e

,
m

ill
i
s
e

c
(s

)

N

MRMCC
MRMCD

Figure 7: Model-checking times for S>0.19 (busy1) (time)

state properties. Our experiments revealed that the memory

consumption for simulating steady-state formulae is much

higher (about a factor 5) than for until-formula due to

the storage of samples. In addition, computing confidence

intervals requires much more effort as estimates are condi-

tional probabilities. For efficiency reasons, we exclude the

computation of confidence intervals for BSCCs that are

almost surely (non-)reachable. A more extensive empirical

evaluation of MRMC’s simulation engine can be found

in [32].

4.3. Bisimulation Minimization

Bisimulation minimization is a (by now) standard

method to reduce the size of a Markov chain while

preserving interesting properties such as the validity of full

CSL. Basically, states that exhibit the same probabilistic

behaviour are defined to be equivalent, and one takes the

quotient under this equivalence relation. The appealing

feature of this abstraction technique is that it is fully

automated. MRMC offers bisimulation minimization for

PCTL, CSL, PRCTL and CSRL models (in the latter two

cases without impulse rewards).

Algorithmic Details. MRMC implements the time-optimal

partition refinement algorithm of [16]. The main step in

partition refinement is splitting. Let Π be a partition of

the state space S. A splitter for some tentative equivalence

class B ∈ Π is a set of states Sp ∈ Π such that the

probability to enter Sp is not the same for each state in

B. As long as splitters exist, the algorithm splits B into

subclasses such that each subclass consists of states s with

identical P(s, Sp). This step is repeated until a fixpoint is

reached. The final partition is the coarsest bisimulation that

respects the initial state space partition.

Even smaller quotients can be obtained when tailor-

ing the initial partition to the CSL/PCTL formula to be

checked. Whereas ordinary bisimulation groups states with

equal atomic propositions, property-driven bisimulation

starts with a partition that only preserves the immediate

subformulas of the property at hand (3–4 subsets).

Data Structures. The worst-case time complexity of

this algorithm is O(|P| log|S|) if one uses splay trees

to store the subclasses. A splay tree is a self-balancing

binary search tree with the additional property that recently

accessed elements are quick to access again [47]. One

basically has to sort a multiset, i. e., a set where the

same transition probability P(s, Sp) may appear more

than once [38], and splay trees serve to implement such

a sort algorithm. With a general sort algorithm, the time

complexity raises to O(|P| log2|S|). In [15], it is suggested

that red–black trees for sorting may be more efficient

in practice, but our experiments have shown that this is

not the case in general. This may be due to the much

more complex implementation of the data structure and

operations on it. MRMC therefore uses an efficient imple-

mentation of splay trees developed by Sleator. We recently

experimented with other sort algorithms: heapsort and

quicksort can be adapted to multisets. (Our implementation

of) heapsort is approximately as fast as splay trees, and

with quicksort we could accelerate the average runtime of

MRMC by a factor of 1.3–2.5 for larger models.

Experimental Results. Traditional bisimulation minimiza-

tion often leads to drastic (up to exponential) decreases

in state-space size, but mostly comes at a time penalty,

i. e., CTL and LTL model checking of the original model

is faster than first minimizing and verifying the quo-

tient. However, the time-complexity of probabilistic model

checking is such that it often is advantageous to calculate

the bisimulation quotient first. Extensive experiments with

a wide range of benchmark case studies —with and

without state rewards— has shown the practical usability

of bisimulation minimization; for full details see [29].

We often obtain significant state-space reductions, and

in most cases a speed-up is achieved. For DTMCs and

CTMCs, the total runtime is reduced by a factor 2–10,

with extremes of up to 60 (for the CPS with N = 15

stations and an unbounded-until formula). Randomized

mutual exclusion (RME) could be checked about 3 times

faster without bisimulation minimization. (Using quicksort

instead of splay trees did not improve the runtime very

much here.) Because checking models with rewards is

rather time-consuming, astronomical savings are achieved

there. The time reduction strongly depends on the number

of transitions in the Markov chain, its structure, as well as

on the convergence rate of numerical computations.1

Property-driven bisimulation pays off in even more

cases: e. g., in the RME case study, it is 1–1.7 times faster

than verifying the original model. For property-driven

bisimulation on models without rewards, the speedup

comes with almost no memory penalty: the peak memory

use may be increased by up to 8%, although typically it is

reduced or remains unchanged; for ordinary bisimulation

some experiments showed an increase of peak memory up

to 50%. In experiments with MRMs, we experienced a

21–46% reduction in peak memory use.

Experiments with the P2P case study showed that bisim-

ulation minimization leads to a significantly stronger state-

space reduction than symmetry reduction [33]. Symmetry

reduction is —as expected— much faster than bisimulation

minimization as it operates on a syntatic level, but this is a

somewhat unfair comparison as the symmetries were indi-

cated manually. These results suggest that it is affordable

to first apply a (fast) symmetry reduction, followed by a

bisimulation quotienting on the obtained reduced system.

4.4. OnTheFly SteadyState Detection

Since verification of time-bounded reachability proper-

ties of CTMCs reduces to transient analysis, it is common

practice to use —especially for large time spans— on-

the-fly steady-state detection, cf. [35], [52]. The idea

behind this technique is to save expensive iteration steps

by detecting that the CTMC has reached its equilibrium

before the end of the time bound. Most probabilistic model

checkers adopt this technique as is, thus suffering from

a possible premature steady-state detection, e. g., when

the CTMC moves at a very slow rate. This is because

for transient analysis there are no sufficient and verifiable

convergence criteria, cf. [48]. MRMC is the only tool that

incorporates precise steady-state detection, cf. [31]. This

technique is based on the fact that, when checking for

time-bounded reachability, the original CTMC is made

absorbing. Its state space is then split into transient states

that are neutral, and absorbing states that either satisfy or

violate the property. Then, the convergence is determined

by the probability mass still residing in the transient states.

1. The experiments were performed using MRMC v1.2 released in
November 2006; since then the bisimulation engine has not changed.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8

P
ro

b
a
b
ili

ty
 (

lo
g
-s

c
a
le

)

OD

ETMCC
Prism (abs)
Prism (rel)

MRMC, SSD On
UltraSAN

Figure 8: Premature steady-state detection

Let us consider the verification of a variant of the

centralized medium access protocol of the IEEE 802.11

standard, for which Massink et. al. reported the prema-

ture steady-state detection in [36]. As in that work, we

determine the probability that a message originating from

the access point is not received by at least one station

within the duration of the time-critical phase, i. e., t = 2.4

seconds. This time span is extremely large, compared to the

duration of each protocol’s operation. Figure 8 indicates

that the results of MRMC v1.4.1, coincide with the (exact)

values computed by UltraSAN [44], whereas PRISM v3.2

(absolute and relative criteria), and E ⊢MC2 v1.0 suffer

from premature steady-state detection. The parameter OD

on the x-axis stands for the omission degree of the protocol

and denotes the maximal number of consecutive losses of

the same message. This parameter determines the size of

the state space. Note that, the protocol’s model and its

parameters were adopted from [36], the tools’ options are

as in Section 3.5 of [55].

To summarize, the steady-state detection of MRMC

is precise and does not change the model-check time

complexity. For runtime, it requires to store and compute

one extra probability vector. The verification times, prior to

steady-state, (roughly) double. If the equilibrium is reached

at time t′, the steady-state detection will reduce verification

times for the properties with time spans t ≥ 2 · t′.

5. MRMC Architecture and Implementation

An overview of the tool architecture of MRMC is given

in Fig. 9. Its main components are:

Options analyzer: is responsible for parsing the command-

line options of MRMC. It invokes reading of the input

files and sets the run-time parameters of the tool, such

as the logic and the use of (property-driven) bisimulation

minimization.

Runtime settings: stores the run-time settings of MRMC,

e. g., the error bounds, the maximum number of iterations

for the numerical methods.

Input-file reader: is responsible for reading the .tra,

Internal−data storage:
Sparse matrices, etc.

C
o

m
m

an
d

−
p

ro
m

p
t in

terp
reter

Options analyzer

Runtime settings

MRMC Input−file reader

.lab file

AP labeling

N
u

m
erical en

g
in

es:
F

o
x
−

G
lyn

n
,

G
a
u

ss−
S

eid
el,

G
a

u
ss−

J
a

co
b

i
en

g
in

e
m

in
im

izatio
n

B
isim

u
latio

n

.rew/.rewi files

Rewards

Yes/No

Commands

PRCTL

PCTL

CSRL

CSL

D
M

R
M

D
T

M
C

P
C

T
L

P
R

C
T

L

C
M

R
M

C
T

M
C

.tra file

CTMC DTMC
Options

State probabilities

Common model checking

S
im

u
latio

n
 E

n
g

in
eC

S
R

L

C
S

L

C
T

M
D

P

.ctmdp file

CTMDP

Figure 9: Tool architecture of MRMC

.lab, .rew and .rewi files that specify the input model.

Internal data storage: contains implementations of data

structures used in MRMC, such as: sparse matrix, a bit

set, structures for storing state labels, and splay trees used

in bisimulation minimization.

Command-prompt interpreter: is based on yacc and

lex, and is responsible for: interpreting the MRMC shell

commands (such as setting error bounds, desired numerical

methods) and formulas, controlling the bottom-up recur-

sive descent over the formula, and printing the results.

Common model checking: contains a set of generally-used

algorithms applied in model checking, e. g., procedures for

searching BSCCs, and steers the model checking.

Bisimulation engine: provides lumping algorithms.

Numerical engines: implementations of numerical meth-

ods for computing Poisson probabilities and iterative meth-

ods for solving systems of linear equations.

Simulation engine: DES-based CTMC model checking.

According to CCCC (v3.1.4) [34], MRMC v1.4.1 con-

tains about 12,000 non-blank, non-comment lines of source

code, and around 15,500 lines of comments. Its McCabe’s

cyclomatic complexity (the number of linearly independent

routes through the control flow graph) is 2,354. Note

that values exceeding 50 are considered to indicate very

complex programs. MRMC is constantly tested by an

automated test-suite [37]. The latter includes most of the

case studies discussed in this paper.

6. Conclusions

This paper presented the current status of the model

checker MRMC, a tool for the automated verification

of Markov reward models. The main contributions of

this paper are: a first report on the internals of MRMC,

and a more extensive description of the recently added

features such as checking time-bounded reachability prop-

erties in (uniform) CTMDPs, simulation-based CTMC

model checking, bisimulation minimization, and on-the-fly

steady-state detection.

The main strength of MRMC is its easy use as a

back-end component. It is being used as back-end of the

performance modeling tools GreatSPN v2.0 [10], the PEPA

Workbench [50], and in a tool chain STATEMATE [7].

PRISM also has an output facility to generate MRMC input

files. Currently, it is used together with the model checker

NuSMV in the ESA-project COMPASS [8].

References

[1] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-
time rewards model-checked,” in Formal Modeling and
Analysis of Timed Systems (FORMATS), ser. LNCS, vol.
2791. Berlin: Springer, 2003, pp. 88–104.

[2] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “On
the logical characterisation of performability properties,”
in Automata, Languages, and Programming (ICALP), ser.
LNCS, no. 1853. Berlin: Springer, 2000, pp. 780–792.

[3] ——, “Model-checking algorithms for continuous-time
Markov chains,” IEEE Trans. Software Eng., vol. 29, no. 6,
pp. 524–541, 2003.

[4] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort,
“Efficient computation of time-bounded reachability prob-
abilities in uniform continuous-time Markov decision pro-
cesses,” Theor. Comp. Sc., vol. 345, no. 1, pp. 2–26, 2005.

[5] A. Bell, “Distributed evaluation of stochastic Petri nets,”
Ph.D. dissertation, RWTH Aachen Univ., Germany, 2004.

[6] S. Bernardi, S. Donatelli, and A. Horváth, “Compositional-
ity in the GreatSPN tool and its application to the modelling
of industrial applications,” in Practical Use of High-level
Petri Nets, no. PB–547. Univ. of Aarhus, Dept. Computer
Science, 2000, pp. 127–146.

[7] E. Böde, M. Herbstritt, H. Hermanns, S. Johr,
T. Peikenkamp, R. Pulungan, R. Wimmer, and B. Becker,
“Compositional performability evaluation for STATEMATE,”
in Quantitative Evaluation of Systems (QEST). Los
Alamitos, CA: IEEE CS, 2006, pp. 167–178.

[8] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen,
T. Noll, and M. Roveri, “The COMPASS approach: Correct-
ness, modelling and performability of aerospace systems,”
in Computer Safety, Reliability and Security: 28th int’l
conf., SAFECOMP, ser. LNCS, 2009 (to appear).

[9] P. Buchholz, M. Fischer, P. Kemper, and C. Tepper, “Model
checking of CTMCs and discrete event simulation inte-
grated in the APNN-toolbox,” in Measurement, Modelling,
and Evaluation of Computer-Comm. Systems, vol. 781.
Fachbereich Informatik, Univ. Dortmund, 2003, pp. 30–33.

[10] D. Cerotti, D. D’Aprile, S. Donatelli, and J. Sproston,
“Verifying stochastic well-formed nets with CSL model-
checking tools,” in Application of Concurrency to System
Design (ACSD). Los Alamitos, CA: IEEE CS, 2006, pp.
143–152.

[11] G. Ciardo, R. L. J. III, A. S. Miner, and R. I. Siminiceanu,
“Logic and stochastic modeling with SMART,” Perfor-
mance Evaluation, vol. 63, no. 6, pp. 578–608, 2006.

[12] F. Ciesinski and C. Baier, “LiQuor: A tool for qualitative
and quantitative linear time analysis of reactive systems,” in
Quantitative Evaluation of Systems (QEST). Los Alamitos,
CA: IEEE CS, 2006, pp. 131–132.

[13] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan, “Model
checking Markov reward models with impulse rewards,” in
2005 Int’l Conf. Dependable Systems and Networks. Los
Alamitos, CA: IEEE CS, 2005, pp. 722–731.

[14] D. D’Aprile, S. Donatelli, and J. Sproston, “CSL model
checking for the GreatSPN tool,” in Computer and Infor-
mation Sciences, ISCIS 2004, ser. LNCS, vol. 3280. Berlin:
Springer, 2004, pp. 543–553.

[15] S. Derisavi, “Solution of Large Markov Models using
Lumping Techniques and Symbolic Data Structures,” Ph.D.
dissertation, Univ. of Illinois, Urbana-Champaign, 2005.

[16] S. Derisavi, H. Hermanns, and W. H. Sanders, “Optimal
state-space lumping in Markov chains,” Information Pro-
cessing Letters, vol. 87, no. 6, pp. 309–315, 2003.

[17] “GNU: GPL,” http://www.gnu.org/copyleft/gpl.html.

[18] H. Hansson and B. Jonsson, “A logic for reasoning about
time and reliability,” Formal Aspects of Computing, vol. 6,
no. 5, pp. 512–535, 1994.

[19] B. Haverkort, H. Hermanns, and J.-P. Katoen, “On the use
of model checking techniques for dependability evaluation,”
in The 19th IEEE Symp. Reliable Distributed Systems. Los
Alamitos, CA: IEEE CS, 2000, pp. 228–237.

[20] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and
C. Baier, “Model checking performability properties,” in
Int’l Conf. Dependable Systems and Networks. Los Alami-
tos, CA: IEEE CS, 2002, pp. 103–112.

[21] T. Herault, R. Lassaigne, and S. Peyronnet, “APMC 3.0:
Approximate verification of discrete and continuous time
Markov chains,” in Quantitative Evaluation of Systems
(QEST). Los Alamitos: IEEE CS, 2006, pp. 129–130.

[22] H. Hermanns, Interactive Markov Chains: The Quest for
Quantified Quality, ser. LNCS. Berlin: Springer, 2002,
vol. 2428.

[23] H. Hermanns and S. Johr, “Uniformity by construction
in the analysis of nondeterministic stochastic systems,” in
Dependable Systems and Networks (DSN). Los Alamitos,
CA: IEEE CS, 2007, pp. 718–728.

[24] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic CE-
GAR,” in Computer Aided Verification (CAV), ser. LNCS,
vol. 5123. Berlin: Springer, 2008, pp. 162–175.

[25] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker,
“PRISM: A tool for automatic verification of probabilistic
systems,” in Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. LNCS, vol. 3920. Berlin:
Springer, 2006, pp. 441–444.

[26] R. V. Hogg and A. T. Craig, Introduction to Math. Statistics,
4th ed. New York, NY: MacMillan, 1978.

[27] A. Hordijk, D. L. Iglehart, and R. A. Schassberger, “Dis-
crete time methods for simulating continuous time Markov
chains,” Adv. in Appl. Prob., vol. 8, pp. 772–788, 1976.

[28] S. Johr, “Model Checking Compositional Markov Systems,”
Ph.D. dissertation, Univ. des Saarlandes, Germany, 2007.

[29] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen,
“Bisimulation minimisation mostly speeds up probabilistic
model checking,” in Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), ser. LNCS, vol.
4424. Berlin: Springer, 2007, pp. 87–101.

[30] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov re-
ward model checker,” in Quantitative Evaluation of Systems
(QEST). Los Alamitos, CA: IEEE CS, 2005, pp. 243–244.

[31] J.-P. Katoen and I. S. Zapreev, “Safe on-the-fly steady-state
detection for time-bounded reachability,” in Quantitative
Evaluation of Systems (QEST). Los Alamitos, CA: IEEE
CS, 2006, pp. 301–310.

[32] ——, “Simulation-based CTMC model checking: An em-
pirical evaluation,” in Quantitative Evaluation of Systems
(QEST). Los Alamitos, CA: IEEE CS, 2009.

[33] M. Kwiatkowska, G. Norman, and D. Parker, “Symmetry
reduction for probabilistic model checking,” in Computer
Aided Verification (CAV), ser. LNCS, vol. 4114. Berlin:
Springer, 2006, pp. 234–248.

[34] T. Littlefair, “CCCC web page,” http://cccc.sourceforge.net/.

[35] M. Malhotra, J. K. Muppala, and K. S. Trivedi, “Stiffness-
tolerant methods for transient analysis of stiff Markov
chains,” Microelectronics and Reliability, vol. 34, no. 11,
pp. 1825–1841, 1994.

[36] M. Massink, J.-P. Katoen, and D. Latella, “Model checking
dependability attributes of wireless group communication,”
in Dependable Systems and Networks (DSN). Los Alami-
tos, CA: IEEE CS, 2004, pp. 711–720.

[37] “MRMC: Downloads,” http://www.mrmc-tool.org/.

[38] I. Munro and P. M. Spira, “Sorting and searching in
multisets,” SIAM J. Computing, vol. 5, no. 1, pp. 1–8, 1976.

[39] A. Nadas, “An extension of a theorem of Chow and Robbins
on sequential confidence intervals for the mean,” Annals of
Math. Statistics, vol. 40, no. 2, pp. 667–671, 1969.

[40] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V.
Zilli, “Finite horizon analysis of Markov chains with the
Murphi verifier,” Software Tools for Technology Transfer,
vol. 8, no. 4–5, pp. 397–409, 2006.

[41] S. Pissanetzky, Sparse Matrix Technology. London, UK:
Academic Press, 1984.

[42] “Prism: Workstation cluster example,”
http://www.prismmodelchecker.org/casestudies/clust

http://www.http://www.prismmodelchecker.org/casestudi
prismmodelchecker.org/casestudies/cluster.php.

[43] M. A. Qureshi and W. H. Sanders, “A new methodology
for calculating distributions of reward accumulated during
a finite interval,” in Fault-Tolerant Computing (FTCS). Los
Alamitos, CA: IEEE CS, 1996, pp. 116–125.

[44] W. H. Sanders, W. D. Obal, M. A. Qureshi, and F. K.
Widjanarko, “The UltraSAN modeling environment.” Per-
formance Evaluation, vol. 24, no. 1-2, pp. 89–115, 1995.

[45] K. Sen, M. Viswanathan, and G. Agha, “On statistical
model checking of stochastic systems,” in Computer Aided
Verification (CAV), ser. LNCS, vol. 3576. Berlin: Springer,
2005, pp. 266–280.

[46] G. S. Shedler, Regenerative Stochastic Simulation. Boston,
MA: Academic Press, 1993.

[47] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search
trees,” J. ACM, vol. 32, no. 3, pp. 652–686, 1985.

[48] W. J. Stewart, Introduction to the Numerical Solution of
Markov Chains. Princeton, NJ: Princeton Univ. Pr., 1994.

[49] H. C. Tijms and R. Veldman, “A fast algorithm for the
transient reward distribution in continuous-time Markov
chains,” OR Letters, vol. 26, no. 4, pp. 155–158, 2000.

[50] M. Tribastone and S. Gilmore, “A new generation PEPA
workbench,” in Process Algebra and Stochastically Timed
Activities (PASTA). http://pastaworkshop.org/2006/, 2006.

[51] H. L. S. Younes, “Ymer: A statistical model checker,” in
Computer Aided Verification (CAV), ser. LNCS, vol. 3576.
Berlin: Springer, 2005, pp. 429–433.

[52] H. L. S. Younes, M. Kwiatkowska, G. Norman, and
D. Parker, “Numerical vs. statistical probabilistic model
checking,” Software Tools for Technology Transfer, vol. 8,
no. 3, pp. 216–228, 2006.

[53] H. L. S. Younes and R. G. Simmons, “Probabilistic verifica-
tion of discrete event systems using acceptance sampling,”
in Computer Aided Verification (CAV), ser. LNCS, vol.
2404. Berlin: Springer, 2002, pp. 223–235.

[54] ——, “Statistical probabilistic model checking with a focus
on time-bounded properties,” Information and Computation,
vol. 204, no. 9, pp. 1368–1409, 2006.

[55] I. S. Zapreev, “Model Checking Markov Chains: Techniques
and Tools,” Ph.D. dissertation, Univ. of Twente, 2008.

