Evidence for the decay $B^0 \rightarrow D^{(*)+}D^{(*)-}$ and a measurement of $\Delta \Gamma_{CP}/\Gamma_s$
H.B. Prosper49, S. Protopopescu73, J. Qian64, A. Quadri22,d, B. Quinn55, A. Rakitine42, M.S. Rangel2, K. Ranjan28,
P.N. Ratoff42, P. Renkel79, P. Rich43, M. Rijssenbeek72, I. Ripp-Baudot10, F. Rizatdinova76, S. Robinson13,
R.F. Rodrigues3, M. Rominsky75, C. Royon18, P. Rubinov50, R. Ruchti55, G. Safronov37, G. Sajot14,
A. Sánchez-Hernández23, M.P. Sanders17, B. Sanghi52, G. Savage50, L. Sawyer50, T. Scanlon43, D. Schalle25,
R.D. Schamberger72, Y. Schelevoy43, H. Schellman53, T. Schliephake26, S. Schlobohm82, C. Schwanenberger44,
A. Schwartzman68, R. Schwienhorst35, J. Sekaric49, H. Severini75, E. Shabalina51, M. Shamin95, V. Shary18,
A.A. Shchukin39, R.K. Shivpuri28, V. Siccardi19, V. Simak10, V. Sirotenko50, P. Skubic75, P. Slattery71,
D. Smirnov55, G.R. Snow67, J. Snow74, S. Snyder73, S. Söldner-Rembold44, L. Sonnenschein17, A. Sopecaz42,
M. Sosebee78, K. Soustruznik6, B. Spurlock79, J. Stark44, V. Stolin77, D.A. Stoyanova39, J. Strandberg64,
S. Strandberg51, M.A. Strang59, E. Strauss72, M. Strauss75, R. Ströhme95, D. Strom53, L. Stutte50,
S. Sumowidagdo49, P. Svoisky35, A. Szajder3, A. Tanasijczuk1, W. Taylor6, B. Tiller25, F. Tissandier13,
M. Titov18, V.V. Tokmenin36, I. Torchiani23, D. Tsybychev72, B. Tuchming18, C. Tully68, P.M. Tuts70, R. Unalan65,
L. Uvarov40, S. Uvarov40, S. Uznuny52, B. Vachon6, P.J. van den Berg34, R. Van Kooten54, W.M. van Leeuwen34,
N. Varela51, E.A. Varnes65, I.A. Vasilyev30, P. Vérard40, L.S. Vertogradov36, M. Verzocchi50, D. Vilanova18,
F. Villeneuve-Seguier43, P. Vint43, P. Vokac10, M. Voutilainen67,g, R. Wagner68, H.D. Wahl49, M.H.L.S. Wang50,
M. Wiesme51, A. White78, D. Wick26, M.R.J. Williams42, G.W. Wilson58, S.J. Wimpenny48, M. Wobisch60,
D.R. Wood33, T.R. Wyatt44, X. Xie77, C. Xu64, S. Yacoob53, R. Yamada55, W.-C. Yang34, Y. Yasuda50,
Y.A. Yatsunenko36, H. Yin7, K. Yip73, H.D. Yoo77, S.W. Youn53, J. Yu78, C. Zeitnitz26, S. Zelitch81, T. Zhao62,
B. Zhou54, J. Zhu72, M. Zielinski71, D. Ziemienska54, A. Ziemienski54,f, L. Zivcovic70, V. Zutshi52, and E.G. Zverev38
(The D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 University of Alberta, Edmonton, Alberta, Canada,
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
9 Center for Particle Physics, Charles University, Prague, Czech Republic
10 Czech Technical University, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 University San Francisco de Quito, Quito, Ecuador
13 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3,
15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16 LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
17 LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
18 CEU, Ifrem, SPP, Saclay, France
19 IPHC, Université Louis Pasteur, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, and Université de Lyon, Lyon, France
21 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22 Physikalisches Institut, Universitét Bonn, Bonn, Germany
23 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
27 Punjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublín, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 SungKyunKwan University, Suwon, Korea
We search for the semi-inclusive process $B_0^0 \rightarrow \bar{D}^*_s \bar{D}^*_s$ using 2.8 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We observe 26.6 ± 8.4 signal events with a significance above background of 3.2 standard deviations yielding a branching ratio of $\mathcal{B}(B_0^0 \rightarrow \bar{D}^*_s \bar{D}^*_s) = 0.035 \pm 0.010$ (stat) ± 0.011 (syst). Under certain theoretical assumptions, these double-charm final states saturate CP-even eigenstates in the B_0^0 decays resulting in a width difference of $\Delta \Gamma_{\text{CP}} / \Gamma_{\text{tot}} = 0.072 \pm 0.021$ (stat) ± 0.022 (syst).

PACS numbers: 13.25.Hw, 12.15.Ff, 11.30.Er, 14.40.Nd

The phenomenon of CP violation is believed to be intimately tied to explaining the matter dominance in the
present day universe [1]. CP violation is expected to occur in the evolution of neutral particles that can mix between different eigenbases. For the B° system, the flavor eigenstates can be decomposed into heavy (H) and light (L) states based on mass or into even and odd states based on CP. The width differences between these eigenstates are defined by \(\Delta \Gamma_s - \Gamma_s^L - \Gamma_s^H \) and \(\Delta \Gamma_s^{CP} = \Gamma_{s,even} - \Gamma_{s,odd} \), respectively.

These two quantities are connected with the possible presence of new physics (NP) by \(\Delta \Gamma_s = \Delta \Gamma_s^{CP} \cos \phi_s \), where \(\phi_s \) is the CP violating mixing phase which constrains models of NP.

In the standard model (SM) a mixing parameter, \(\Gamma_{12} \), determining the size of the width difference between CP eigenstates stems from the decays into final states common to both B and B. Since this quantity is dominated by CKM-favored tree-level decays, it is practically insensitive to NP. Due to the hierarchy of the quark mixing matrix [2], the width difference is governed by the partial widths of \(B^0 \to D_s^{(*)} \) decays into final CP eigenstates through the \(b \to c \bar{c} s \) quark-level transition, such as \(B^0 \to D_s^+ D_s^- \) or \(B_s^0 \to J/\psi \phi \).

Topologically, the former type of decay is a color-allowed spectator, while the latter type is suppressed by the effective color factor. Thus, the semi-inclusive decay modes \(B^0 \to D_s^{(*)} \) are interesting because they give the largest contribution to the difference between the widths of the heavy and light states. The other decay modes are estimated to contribute less than 0.01 to the projected \(-0.15 \) value of \(\Delta \Gamma_s / \Gamma_s [3] \), where \(\Gamma_s = 1/\tau_s = (\Gamma_L + \Gamma_H)/2 \).

In the Shifman-Voloshin (SV) limit [4], given by \(m_b - 2m_c = 0 \) with \(N_c = \infty \) (where \(N_c \) is the number of colors), \(\Delta \Gamma_s^{CP} \) is saturated by \(\Gamma(B^0_s \to D_s^{(*)}) \). Then the width difference can be related to the branching ratio of \(B_s^0 \) mesons to this inclusive double-charm final state based on 1.3 fb\(^{-1} \) [7]. A similar study based on events containing two \(\phi \) mesons has been reported by the ALEPH collaboration at the CERN LEP Collider [8].

This analysis considers the \(B_s^0 \to D_s^{(*)} \) decays into two \(D_s^{(*)} \) mesons. No attempt is made to identify the photon or \(\pi^0 \) emanating from the \(D_s^{(*)} \) decay. We search for one hadronic \(D_s \) decay to \(\pi \pi \) and one semileptonic \(D_s \) decay to \(\phi \mu \nu \), where both \(\phi \) mesons decay to \(K^+K^- \). The branching fraction is extracted by normalizing the \(B_s^0 \to D_s^{(*)} \) decay to \(B_s^0 \to D_s^{(*)} \mu \nu \) decay.

D0 is a general purpose detector [9] consisting of a central tracking system, uranium/liquid-argon calorimeters, and an iron toroid muon spectrometer. The central tracking system allows charged particles to be reconstructed. This system is composed of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) embedded in a 2 T solenoidal magnetic field. Muons are identified and reconstructed with a magnetic spectrometer located outside of the calorimeter. The spectrometer contains magnetized iron toroids and three super-layers of proportional drift tubes along with scintillation trigger counters. Information from the muon and tracking systems is used to form muon triggers. For the events used by this analysis, the muon from the semileptonic \(D_s \) decay satisfies the inclusive single-muon triggers.

Muons are identified by requiring segments reconstructed in at least two out of the three super-layers in the muon system and associated with a trajectory reconstructed with hits in both the SMT and the CFT. We select muon candidates with transverse momentum \(p_T > 2.0 \) GeV/c and total momentum \(p > 3.0 \) GeV/c.

\(\phi \) mesons are formed from two opposite sign charged particles with \(p_T > 0.7 \) GeV/c in the event assuming a kaon mass hypothesis. We require at least one kaon to have an impact parameter clearly separated from the pp interaction point (primary vertex) with at least a minimum 4 standard deviations significance. The two-kaon systems satisfying \(p_T(KK) > 2.0 \) GeV/c and 1.010 < \(m(KK) < 1.030 \) GeV/c\(^2 \) are selected as \(\phi \) candidates.

The hadronic \(D_s \) meson is reconstructed by combining the \(\phi \) candidate with a third track with \(p_T > 0.5 \) GeV/c which is assigned the pion mass. The pion is required to have charge opposite to that of the muon. The three particles must form a well reconstructed vertex displaced from the primary vertex to be greater than 0.9. For the signal decay chain of a pseudoscalar to a vector plus pseudoscalar, followed by the decay of the vector to two pseudoscalars, \(\cos \theta_\phi \) is distributed quadratically, where \(\theta_\phi \) is the decay angle of a kaon in the \(\phi \) rest frame with respect to the direction of the \(D_s \) meson, and hence a constraint \(| \cos \theta_\phi | > 0.3 \) is imposed.

The \(B_s^0 \to D_s^{(*)} \phi \mu \nu \) decay vertex is reconstructed based on the momentum and direction of the reconstructed vertex plus pseudoscalar, followed by the decay of the vector to two pseudoscalars, \(\cos \theta_\phi \) is distributed quadratically, where \(\theta_\phi \) is the decay angle of a kaon in the \(\phi \) rest frame with respect to the direction of the \(D_s \) meson, and hence a constraint \(| \cos \theta_\phi | > 0.3 \) is imposed.

The \(B_s^0 \to D_s^{(*)} \phi \mu \nu \) decay vertex is reconstructed based on the momentum and direction of the reconstructed vertex plus pseudoscalar, followed by the decay of the vector to two pseudoscalars, \(\cos \theta_\phi \) is distributed quadratically, where \(\theta_\phi \) is the decay angle of a kaon in the \(\phi \) rest frame with respect to the direction of the \(D_s \) meson, and hence a constraint \(| \cos \theta_\phi | > 0.3 \) is imposed.
hadronic D_s candidate and its intersection with the track of an oppositely charged muon. This vertex is required to be located between the primary vertex and the D_s vertex, whereby the individual B_s and D_s vertex displacements are consistent with a $pp \rightarrow B_s \rightarrow D_s$ decay chain. The invariant mass of the B_s^0 candidate is required to be less than 5.2 GeV/c2. We require the daughter particles of the B_s^0 meson to be well isolated from other tracks. Background is further suppressed using a likelihood ratio technique [11] that combines information from the invariant masses and momenta of the reconstructed particles, vertex quality, and the ϕ helicity angle.

The $\phi\pi$ invariant mass distribution for $B_s^0 \rightarrow D_s^{(*)}\mu\nu$ candidates is shown in Fig. 1. Maxima corresponding to the $D_s \rightarrow \phi\pi$ decay and the $D_s \rightarrow \phi\pi$ decay are clearly observed. The D_s signal originates from $\sim 90\%$ semileptonic B_s^0 decays and $\sim 10\%$ decays of the type $B \rightarrow D_s^0 D_s^0$ followed by semileptonic D_s^0 decay. These fractions are determined from Monte Carlo (MC) simulation using the known or estimated branching fractions from the PDG [12] or EvtGen [13]. Approximately 2% of the events are due to direct charm production $pp \rightarrow DD_s$ determined by using full simulation and reconstruction of DD_s^* candidates. The overall sample composition is verified using studies of the B lifetime and mixing parameters [14, 15].

For the second ϕ candidate, we search for an additional pair of oppositely charged particles in the event imposing the same criteria as for the first ϕ meson. The two kaon tracks are combined with the muon track to produce a common vertex for the semileptonic D_s candidate. We require the D_s candidate to originate from a common vertex to the hadronic D_s candidate to complete the $B_s^0 \rightarrow D_s^{(*)}\phi\mu$ decay. This approach is justified since the average transverse decay length of the D_s meson relative to the B_s^0 meson decay vertex is ~ 1.0 mm with an uncertainty of ~ 0.6 mm. By applying the same selection criteria as in the normalization $B_s^0 \rightarrow D_s^{(*)}\mu\nu$ decay sample, many detector related systematic effects cancel.

The invariant mass of the B_s^0 candidate is required to lie between 4.30 and 5.20 GeV/c2. Correlated production of this double-charm decay, where both D_s mesons originate from the same parent B_s^0 meson, is then determined by examining the two-dimensional distribution of $m(\phi\pi)$ from hadronic D_s candidates versus $m(KK)$ from semileptonic D_s candidates. We perform a maximum likelihood fit to this distribution with four components: the correlated D_sD_s component is modeled as the product of signal terms in both dimensions, the uncorrelated components are modeled as the product of the signal term in one dimension and the background term in the other dimension, and the background correlation is modeled as the combination of the background terms in both dimensions. Signal and background models are expected to be identical with those for the $B_s^0 \rightarrow D_s^{(*)}\mu\nu$ sample, from which the parameters of the signal models are determined. Projections of the two-dimensional likelihood fit onto both axes are displayed in Fig. 2. The fit returns a yield of 31.0 ± 9.4 correlated events.

Three possible sources of background are considered in the correlated sample. Direct charm production from pp is estimated based on the fraction of prompt charm measured directly in the inclusive $D_s^{(*)}\mu\nu$ sample, $(10.3 \pm 2.5)\%$, along with the decay fraction of the second charm quark to a D_s meson and the reconstruction efficiency for this decay. Due to a shorter decay length of the charm quark, the lifetime requirement reduces its contribution significantly leading to an estimate of $(1.9 \pm 0.5)\%$.

The second background source arises from the semileptonic $B_s^0 \rightarrow D_s^{(*)}\phi\mu$ decay. This can be extracted by studying the $m(\phi\mu)$ spectrum. In this variable, $B_s^0 \rightarrow D_s^{(*)}D_s^{(*)}$ events tend towards lower values, while $B_s^0 \rightarrow D_s^{(*)}\phi\mu$ events tend towards higher values.

The third source consists of $B^{\pm,0} \rightarrow D_s^{(*)}D_s^{(*)}KX$ events. This background can be extracted by studying the visible mass of all reconstructed daughter particles, $m(D_s\phi\mu)$. The mass tends to have higher values.
for $B_s^0 \to D_s^{(*)} D_s^{(*)}$ than for $B^{\pm 0} \to D_s^{(*)} D_s^{(*)} K X$.

These backgrounds are estimated with MC samples by repeating the fit in three separate regions chosen so that mainly one source contributes to each region in the $m(D_s \phi) - m(D_s \phi)$ plane. The separate components, the signal and the two latter backgrounds, are then extracted based on the expected distribution over the three regions of the three components. We find a signal yield of 26.6±8.4 events originating from the $B_s^0 \to D_s^{(*)} D_s^{(*)}$ process after subtracting the correlated background events.

The signal is normalized to the total $B_s^0 \to D_s^{(*)} \mu \nu$ yield taking into account the composition of the sample as discussed earlier. The reconstruction efficiency ratio between the two samples is estimated from MC to be 0.082 ± 0.015. This small value results from the softer muon momentum spectrum in charm decays as compared to bottom decays. The systematic uncertainty in the ratio contains uncertainties from the modeling of the B_s^0 momentum spectrum, the decay form factors and sample composition, and the trigger and reconstruction efficiencies. Our efficiency model is verified by comparing the expected and measured D_s yield and the relative $B_s^0 \to D_s^{(*)} D_s^{(*)}$ to $B_s^0 \to D_s^{(*)} \mu \nu$ yields as a function of muon p_T.

Using all the above inputs, the branching ratio is measured as

$$B(B_s^0 \to D_s^{(*)} D_s^{(*)}) = 0.035 \pm 0.010 \text{(stat)} \pm 0.008 \text{(exp syst)} \pm 0.007 \text{(ext)},$$

where the “ext” uncertainty arises from the external input branching ratios taken from the PDG [12]. This uncertainty contributes ~45% to the total systematic uncertainty (exp syst + ext), which leaves room for further improvements in the result. The experimental systematic uncertainty accounts for the rest of the total systematic uncertainty, containing a 37% component from the reconstruction efficiency ratio, 11% from the background estimation, and 4% from the fitting procedure. All other uncertainties are < 1%.

The probability that the total background would fluctuate to the measured event yield or higher is evaluated to be 1.2×10^{-3} through pseudo-experiments including systematic uncertainties. This corresponds to a significance of 3.2 standard deviations.

Information on the mixing-induced CP asymmetry in the B_s^0 system can be extracted from the branching fraction measurement through Eq. (1). Since the CP structure of the decay is presently not accessible either in theory or experiment, several scenarios for different x_f values can be considered. In the heavy quark hypothesis [3] along with the SV limit, the CP-odd component of the decay vanishes, leaving the inclusive final state to be CP-even, i.e. $x_f = 0$, with a theoretical uncertainty of ~5% [16]. This scenario is illustrated in Fig. 3, presenting the constraint in the $\Delta \Gamma_s - \phi_s$ plane from this measurement assuming the relation $\Delta \Gamma_s = \Delta \Gamma_s^{CP} \cos \phi_s$. Confidence-level (C.L.) contours from the flavor-tagged decay $B_s^0 \to J/\psi \phi$ at D0 [17] are superimposed. We take the mean lifetime of B_s^0 meson from Ref. [12].

Furthermore, within the SM framework, the mass eigenstates coincide with the CP eigenstates and the expression used in the previous studies [7, 8] is recovered. Our measurement gives

$$\frac{\Delta \Gamma_s^{CP}}{\Gamma_s} \approx -\frac{2B(B_s^0 \to D_s^{(*)} D_s^{(*)})}{1 - B(B_s^0 \to D_s^{(*)} D_s^{(*)})} = 0.072 \pm 0.021 \text{(stat)} \pm 0.022 \text{(syst)}.$$

This result is consistent with the SM prediction [18] as well as with the current world average value [16]. Therefore, if the CP structure of the final state can be disentangled and the theoretical errors can be controlled, this approach can provide a powerful constraint on mixing and CP violation in the B_s^0 system.

In summary, we performed a study of B_s^0 decays into the semi-inclusive double-charm final state using an integrated luminosity of 2.8 fb$^{-1}$ at the D0 experiment. We see evidence of this process and measure the branching ratio as $B(B_s^0 \to D_s^{(*)} D_s^{(*)}) = 0.035 \pm 0.010 \text{(stat)} \pm 0.011 \text{(syst)}$. Based on this measurement and under certain theoretical assumptions, mixing and CP violation information in the B_s^0 meson system are extracted. This is the first single measurement that demonstrates a non-zero width difference in the B_s^0 system at greater than 3σ significance. In particular, in the absence of NP, the fractional width difference is derived as $\Delta \Gamma_s^{CP}/\Gamma_s = 0.072 \pm 0.021 \text{(stat)} \pm 0.022 \text{(syst)}$.
We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from Rutgers University, Piscataway, NJ, USA.
[c] Visitor from The University of Liverpool, Liverpool, UK.
[d] Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Centro de Investigacion en Computacion - IPN, Mexico City, Mexico.
[f] Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
[g] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[h] Visitor from Universität Bern, Bern, Switzerland.
[i] Visitor from Universität Zürich, Zürich, Switzerland.
[j] Deceased.

[17] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 241801 (2008). This measurement establishes \(\Delta \Gamma > 0 \) with a significance of 2.4 standard deviations.