Excitonic behavior in self-assembled InAs/GaAs quantum rings in high magnetic fields

N. A. J. M. Kleemans,1 J. H. Blokland,2 A. G. Taboada,3 H. C. M. van Gemchten,1 M. Bozkurt,1 V. M. Fomin,1,4,5,*V. N. Gladilin,4,5 D. Granados,3 J. M. García,1 P. C. M. Christianen,2 J. C. Maan,2 J. T. Devreese,1,4 and P. M. Koenraad1

1PSN, COBRA, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands
2HFML, IMM, Radboud University Nijmegen, NL-6525 ED Nijmegen, The Netherlands
3CSIC, Instituto de Microelectrónica de Madrid, E-28760 Tres Cantos, Spain
4TFVS, Universiteit Antwerpen, B-2020 Antwerpen, Belgium
5FSM, Universitatea de Stat din Moldova, MDV-2009 Chisinau, Moldova

(Received 6 April 2009; revised manuscript received 21 September 2009; published 16 October 2009)

We investigate the exciton energy level structure of a large ensemble of InAs/GaAs quantum rings by photoluminescence spectroscopy in magnetic fields up to 30 T for different excitation densities. The confinement of an electron and a hole in these type I quantum rings along with the Coulomb interaction suppress the excitonic Aharonov-Bohm effect. We show that the exciton energy levels are nonequidistant and split up in only two levels in magnetic field, reflecting the ringlike geometry. A model, based on realistic parameters of the self-assembled quantum rings, allows us to interpret the essential features of the observed PL spectra in terms of the calculated optical transition probabilities.

DOI: 10.1103/PhysRevB.80.155318 PACS number(s): 73.21.La, 78.67.Hc

The excitonic energy structure of self-assembled quantum dots (QDs) is well studied.1,2 By magnetoluminescence experiments it has been demonstrated that the electronic energy levels in a QD can be described by the Fock-Darwin model for a two-dimensional harmonic oscillator in a magnetic field.3-5 Changing the QDs to ringlike structures modifies the energy spectrum, and gives rise to the Aharonov-Bohm (AB) effect: the oscillatory behavior of charge carriers in a ringlike geometry as a function of the magnetic flux threading the opening of the ring.6-8 If the magnetic field penetrates into the conducting region of the ring, the AB-type oscillations due to the magnetic flux threading the opening coexist with the diamagnetic shift of energy levels and are aperiodic (see, e.g., Refs. 11 and 12).

The optical emission of self-assembled InAs/GaAs quantum rings (QRs) (Refs. 13 and 14) has been studied experimentally without a magnetic field,15 and in magnetic fields not higher than 9 T.16 In general, excitons are neutral excitations, thus on beforehand we do not expect any sensitivity to the magnetic flux. However, since the exciton is a polarizable composite particle, the area between the different trajectories of the electron and the hole determines the phase picked up by the exciton.17 Therefore the possible prominence of the AB effect for excitons strongly depends on their polarization. Calculations of the photoluminescence (PL) spectra of type I GaAs/AlGaAs and several type II QRs showed that a weak inhomogeneous broadening of the AB effect in the PL spectrum might be observed.18,19 Experimentally the optical AB effect has been observed in different ringlike structures.20-22 Recently, the exciton energy spectra for various models of the InAs/GaAs self-assembled QRs were calculated as a function of the applied magnetic field and it was shown that the spectra are very sensitive to the details of the QR shape.23

In this paper we consider the excitonic properties of self-assembled InAs/GaAs QRs in magnetic fields up to 30 T. Using different excitation densities we probe the magnetoporop in the ground and excited states. The essential features in the magnetopd spectra are reproduced in calculations based on a realistic QR model.24-25 We will demonstrate that QRs have nonequidistant energy levels and exhibit a magnetic field induced splitting of the higher excitonic energy levels into two levels, in contrast to the $n+1$ fold degeneracy of the nth excited state of QDs with a harmonic confinement potential. Furthermore, we will show that the confinement of an electron and a hole along with the Coulomb interaction suppress the excitonic AB effect in these QRs.

For the PL studies, a sample containing a single layer of QRs (Refs. 13 and 14) is mounted in a liquid-helium bath cryostat at $T=4.2$ K. The excitation is provided by a Dye laser operating at 2 eV. The excitation power is varied with a Babinet-Soleil compensator in combination with a linear polarizer. A Wollaston prism allows for simultaneous detection of both circular polarizations. The PL signal is dispersed by a single grating spectrometer, and the detection is performed by a liquid-nitrogen-cooled charge-coupled device camera. Static magnetic fields up to 30 T were applied parallel to the growth direction and the PL is detected in the Faraday configuration.

The dependence of the QR emission energy on the excitation density is shown in Fig. 1(a). The ground-state emission energy of the QRs is centered around 1.308 eV, typical for these nanostructures.14 The ground-state emission has an inhomogeneous broadening with a full width at half maximum of 20 meV. With increasing excitation density two additional peaks can be resolved. These peaks have an energy of 39 and 63 meV above the ground-state energy. The wetting layer (WL) emission is centered around 1.438 eV (not shown), which is 67 meV above the highest observed confined-state energy of the QRs.

We determine the energy of the ground-state PL by fitting the spectra at low excitation densities by a Gaussian. The observed ground-state emission energy $E(B)$ of an exciton in a QR for relatively small B is approximately given by $E(B)=E_0+\frac{g^2\mu_B B}{2\hbar}+\alpha g\mu_B B^2$.25 Here E_0 is the emission energy at $B=0$, g_exc is the exciton g factor, $\mu_B=5.79\times10^{-5}$ eV/T is the Bohr magneton, and α is the diamag-
As implied by Fig. 1(a), and compare them with the positions. We have carefully assigned the PL peak positions in B. The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The inset shows the diamagnetic shift of the ground state. The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

To investigate the influence of the ringlike geometry on the excitonic behavior in the excited states of the QRs, we measured the magneto-PL of these structures for higher excitation densities located 38 and 63 meV above the ground-state emission energy. The inset shows the diamagnetic shift of the ground state. The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.

The quadratic fit (red line) is used to determine the diamagnetic coefficient \(\alpha_d \). (b) Excited states as a function of \(B \) in \(\sigma^- \) polarization for an excitation density of \(10^5 \) W cm\(^{-2} \). The dashed lines are guides to the eye in order to follow the evolution of the peak positions in \(B \). The arrow indicates the emission energy at which for QDs a third peak is present. As opposed to QDs we observe a minimum in PL intensity.
Excitonic behavior characteristic for ringlike structures manifests itself in the magneto-PL under high excitation conditions. We observe the splitting of the excited states into two states as well as nonequidistant energy level splittings. In contrast to our measurements, experiments on QDs resulted in a magnetic induced splitting of the d state into three states and equidistant energy levels.5,8 This d state corresponds to the second peak in Fig. 1(b), which for QRs has predominantly an $l=2$ character, where l is the orbital angular momentum quantum number. The dashed line in Fig. 2 indicates the position of the third energy level as observed for QDs. However, we observe a minimum in PL intensity at this emission energy [see arrow in Fig. 1(b)], indicating the absence of this third peak.

In the calculations the strongest effect on the oscillator strength is expected for the first-excited state with predominantly an $l=1$ character. This state is not resolved in our measurements due to the inhomogeneous broadening. The oscillator strength of the ground state of the single exciton of our modeled QR does not significantly change with B, as was confirmed in the experiments. In contrast to the AB effect of single electrons in these rings, we do not observe nor expect an excitonic AB effect based on our model. The absence of prominent oscillations in the ground-state energy of the calculated exciton spectra as compared to the case of a noninteracting electron-hole pair is a consequence of the Coulomb interaction. A charge-tunable QR sample will allow for the control of the charged state of the excitons in the QR,15 giving us the ability to study better the influence of the Coulomb interaction on the AB effect in these QRs.

The details of the calculated spectra are very sensitive to the size, shape, and composition of the QR and it is difficult to find a quantitative agreement between the calculated optical transition probabilities and the measured PL spectra.23 The model used does not include many-exciton complexes and charged excitonic states, which influence the optical transition probability spectra. We estimate this will only be a small effect as the exciton binding energy is an order of magnitude larger compared to the exciton-exciton interaction and additional charging energies. In order to calculate the actual PL spectra from the optical transition probability spectra, one needs to take into account a nonequilibrium distribution function for excitons in a strong laser field and use a response theory.30,31

Despite the preliminary character of our

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Calculated optical transition probabilities for a realistic QR in the case of (a) a noninteracting electron-hole pair and (b) an interacting electron-hole pair. The gray scale is logarithmic where black (white) corresponds to the highest (lowest) transition probability. The arrows correspond to the first excitonic AB resonance in the ground state.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4}
\caption{Calculated broadened optical transition probabilities P as a function of the emission energy E for $B=0$ to 30 T in 5 T steps.}
\end{figure}
model, we are able to find a qualitative agreement between the measurements and the calculations and thereby we can explain the essential features in our measurements.

To conclude, we have analyzed the emission energy of a large ensemble of self-assembled InAs/GaAs QRs in high magnetic fields. Our model shows that the confinement of an electron and a hole along with the Coulomb interaction suppress the excitonic AB effect in these nanostructures. The ring character of our nanostructures results in nonequidistant energy level splittings in the exciton diagram and into a magnetic field induced splitting of each excited state into two states. This is in contrast to what has been observed in QD measurements. The optical transition probabilities are calculated within our model, based on the characterization of a realistic QR. Comparing these calculations with our experimental data we find a qualitative agreement, which allows us to identify the different PL peaks and helps to explain the excitonic behavior in magnetic field.

This work is part of the research program of NanoNed and FOM, which are financially supported by the NWO (The Netherlands). This work was supported by the FWO-V (Projects No. G.0435.03 and No. G.0449.04), the WOG (Grant No. WO.035.04N, Belgium), the NANINPHO-QD, MICIN (Grant No. TEC2008-06756-C03-01), the MEC (Consolider-Ingenio 2010 “QOIT,” Grant No. CSD2006-00019, Spain), and the EC SANDIE Network of Excellence (Grant No. NMP4-CT-2004-500101).