Formal Validation of Deadlock Prevention in Networks-on-Chips

Freek Verbeek and Julien Schmaltz
Radboud University Nijmegen
Institute of Computing and Information Sciences
6500 GL Nijmegen, The Netherlands
{f.verbeek,julien}@cs.ru.nl

ABSTRACT
Complex systems-on-chips (SoCs) are built as the assembly of pre-designed parameterized components. The specification and validation of the communication infrastructure becomes a crucial step in the early phase of any SoC design. The Generic Network-on-Chip model (GeNoC) has been recently proposed as a generic specification environment, restricted to safety properties. We report on an initial extension of the GeNoC model with a generic termination condition and a generic property showing the prevention of livelock and deadlock. The latter shows that all messages injected in the network eventually reach their destination for all possible values of network parameters like topology, size of the network, message length or injection time. We illustrate our initial results with the validation of a circuit switching technique.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—verification

General Terms
algorithms, verification

Keywords
liveness, networks-on-chips, formal methods

1. INTRODUCTION
Integration capabilities of chip technologies enable the production of Multi-Processors Systems-on-Chips (MPSoCs) composed of several processing and memory cores, as well as peripherals and I/O devices. The design of such complex systems follows a platform-based approach where a new MPSoC is built as the assembly of pre-designed and parametric components – called Intellectual Properties (IPs) – according to a generic architecture [18]. Communications become a bottleneck. To meet system requirements networks-on-chips (NoCs) emerge as an adequate communication infrastructure [1]. To handle the complexity of modern MPSoCs initial design phases must begin at higher levels of abstraction, while keeping a link with the final Register Transfer Level (RTL) implementation [15].

As communications are becoming dominant to the overall correctness and performance of an MPSoC, their formal validation at their initial design phase will soon become mandatory. The Generic Network-on-Chip (GeNoC) model [14, 2] offers a general environment to reason about high-level and parametric descriptions of NoCs. It has been implemented in the ACL2 logic [13] and applied to several case-studies. GeNoC is a function formalizing the interactions between three essential constituents: interfaces, routing algorithms, and scheduling policies. Each one of them is generic in the sense that it is not given a particular definition but characterized by a set of proof obligations or constraints. GeNoC is proven to satisfy a global correctness theorem, the proof of which depends on the proof obligations only. It can therefore be instantiated for any definition of the constituents which satisfy the proof obligations. Verifying a particular NoC reduces to discharging these instantiated constraints for the NoC constituent. The verification methodology proceeds by (1) giving a concrete definition to each one of the constituents; (2) the corresponding constraints are automatically generated; (3) proving that each concrete definition satisfies the corresponding constraints; (4) it automatically follows that the concrete network satisfies the instantiated global theorem.

In its current version, this global theorem states that every message received at some destination node was actually issued at a valid source node, and followed a valid path to reach its expected destination. We report on work in progress towards an extension of this theorem that would guarantee that eventually all messages reach their destination. The theorem would include an upper bound on the time needed to “evacuate” all these messages and would prevent the network from any deadlock state.

The contributions of this paper are (1) an extension of the definition of GeNoC with a generic termination condition, (2) a generic property showing that all messages injected in the network reach their destination, and (3) the application of this new model and property to prove deadlock prevention of a circuit switching technique.

In the next section, we briefly present the necessary knowledge about the GeNoC model. Section 3 presents our ex-
tended definition, the termination condition, and a generic
deadlock prevention theorem. Section 4 instantiates this new
generic definition with a circuit switched network. We
prove deadlock prevention in Section 4.3. We discuss related
work in Section 5 before concluding the paper in Section 6.

2. THE GENERIC NOC MODEL
The Generic NoC (GeNoC [14, 2]) model represents the
transmission of messages from their source to their desti-
nation on a generic communication architecture with an
arbitrary network characterization (topology and node in-
terfaces), routing algorithm, and switching technique. The
model is composed of a collection of functions together with
their characteristic constraints. The main function is recursive
each recursive call represents one step of simulation.
Such a step defines our time unit.

2.1 The Generic NoC Model
The model considers a set of addresses that can emit or re-
ceive messages. A message m is uniquely identified by a
natural number m.id. To analyze a message, we associate
it with its origin m.org, its current address m.curr, its des-
tination m.dest, its content m.msg, and the execution step
m.time at which it is emitted. An address together with
its content constitute a state element of the global network
state.

Function GeNoC (Fig. 1) takes a list of messages to be sent
at different execution steps and produces the list of messages
that have reached their destination and a list containing
those that are still “en route” or never left their source.

- **Network access control**: Function r4d produces a
 list of traveling messages which are injected in the net-
work and a list of delayed messages.
- **Routing**: The traveling messages are given to func-
tion Routing, which computes routes from the current
to the destination address for each message
- **Scheduling**: Function Scheduling represents the exe-
cution of one network simulation step. Using the routes
produced by function Routing and considering the cur-
rent global state, it moves – or not – a message and up-
dates the global state accordingly. Messages that have
reached their destination constitute the list Arrived,
and the rest constitutes the list EnRoute.
- **Recursion**: Functions r4d, Routing, and Scheduling
are combined together. The lists enroute and delayed
constitute the main argument of a recursive call to
GeNoC. Arrived messages are accumulated after each
recursive call. When function GeNoC terminates, the
list Arrived contains all messages that have completed
their path from their source to their destination; the
list EnRoute contains all messages that have left their
source but have not left the network; Delayed contains
all messages that are still at their origin.

\[^{1}\]The record notation x.y is used to refer to component
named y of x, where x is a tuple or a list of the output
arguments of a function.

- **Termination**: To make sure that GeNoC terminates,
 we associate a finite number of attempts to every node.
 At every recursive call of GeNoC, every node with
 a pending message consumes one attempt (function
 ConsumeAttempts(att)). The association list att stores
 the attempts. Function SumOfAttempts(att) computes
 the sum of the remaining attempts for all the nodes and
 is used as the decreasing measure of parameter att.
 Function GeNoC halts if all attempts have been con-
sumed.

A pseudo-code for function GeNoC is given below. Function
GeNoC takes as parameters the list of messages to be sent
(mlst), the structure of the network, reduced to the set of
its nodes (NS), a finite number of attempts (att). Function
GeNoC also takes as input the list of arrived messages (arr,
originally empty), the current state of the network (ntkst),
and the current time (time). If no attempt is left, GeNoC
stops and returns a pair composed of the arrived (arr),
and the delayed (mlst) messages. Otherwise, every recursive call
processes a list of messages, where some are waiting at their
source, and some are traveling in the network. For each
traveling message produced by functions r4d and Routing,
function Scheduling computes the list of the arrived mes-
sages (arr'), the list of messages that are still traveling in
the network (mlst'), the remaining attempts (att'), and a new
state (ntkst'). The recursive call processes the travel-
ing messages together with the messages delayed by r4d
(D). Time is incremented by 1.

```
| GeNoC (mlst, NS, att, arr, ntkst, time) =
| if SumOfAttempts(att)=0
| then list(arr, mlst) ;; mlst = en route + delayed
| else let (TR D) = R4D(mlst,time)
| in let (mlst' arr' att' ntkst') =
| Scheduling(Routing( TR, NS), att, ntkst)
| in GeNoC (union(mlst', D), NS, att',
| union(arr, arr'), ntkst', time+1)
```

2.2 Functional correctness
The functional correctness of GeNoC is expressed as a the-
orem stating that all arrived messages can be matched to a
unique message of the input list mlst. In other words, if a
message has arrived at a node d it was actually emitted at
a valid source node s with the same content and d was the
expected destination.

Theorem 1. \(\forall r \in Arr, \exists ! m \in mlst : \)
\[r.id = m.id \land r.msg = m.msg \land r.dest = m.dest \]

The proof of this property only depends on the proof obli-
gations associated to each function of GeNoC. We focus on
functions Routing and Scheduling. The main proof obliga-
tions associated to these functions are the following:

- **Routing**: given a current address c and a destination
 address d, function Routing computes a route such that
 its first element is c, the last element is d, and all
elements belong to the set of valid addresses.

129
3. EXTENDED MODEL

3.1 New definitions

Function $GeNoC$ is divided in a top level function (named $GeNoC$) which formats inputs arguments for a core recursive function (named $GeNoC_1$). We first describe function $GeNoC_1$ (see Fig. 2).

Function $GeNoC_1$ takes as arguments a list of messages, the set of nodes, the measure argument, an accumulator for arrived messages, the simulation step, and the network state. It returns a list of arrived messages and the list containing the en route and delayed messages. Predicates $legal\text{-}measure$ and $scheduling\text{-}assumptions$ (lines 11 and 14) are concerned with termination, which is explained in Section 3.2 below. Function $r4d$ determines the set of messages that can be in the network at the current time (line 8). These messages can either be injected in the network or are already traveling in the network. Function $Routing$ computes routes for these messages (line 10), and function $Scheduling$ determines which of them can make a hop or have reached their destination (line 17).

Function $GeNoC$ is given below. It takes as arguments a list of pending communications ($mlst$) and two parameters. The first one is used to generate the set of valid nodes (NS). The second one is used to generate the state of the network ($ntkst$). Function $GeNoC$ returns two lists: a list of results (the arrived messages) and a list of en route messages.

Function $GeNoC$ first check that parameters $p1$ and $p2$ are well-formed. If this is not the case, it returns two empty lists. Otherwise it calls function $GeNoC_1$ after building the initial values for its input arguments. Finally, function $GeNoC_1$ returns the lists of arrived and en route messages.

```lisp
(defun GeNoC (mlst p1 p2)
  (if (ValidStateParams p1 p2)
      (let* ((NS (NodeSetGenerator p1))
             (st (StateGenerator p1 p2))
             (ntkst (GenInitState trs st))
             (v (routing mlst NS))
             (meas (InitMeas v NS ntkst)))
        (mv-let (arrived enroute)
                 ((GeNoC1 mlst NS meas
                           nil nil '0 ntkst)
                  (mv (computeresults arrived enroute)))
                 (mv nil nil)))
```

This new definition of $GeNoC$ is proven to satisfy the same
Figure 2: New definition of $GeNoC_t$

3.2 Termination

Function $GeNoC_t$ (see Fig. 2) terminates in three different ways: there is no message left to be processed (lines 2–4) , the measure has reached an exit value (lines 11–13), or the network is in a deadlock state (lines 23–25). We consider the second case.

The decreasing measure declared for function $GeNoC_t$ is $(acl2\text{-}count\ measure)$. Parameter $measure$ represents an upper bound to the evacuation time, i.e., the number of steps that are necessary to inject and evacuate all messages in the input list $mlst$. For example, if one instantiates function $Scheduling$ such that at each step at least one message arrives at its destination, then, $measure$ could be the number of messages on the network.

Predicate $legal\text{-}measure$ defines the halting condition for parameter $measure$. Function $Scheduling$ is responsible for producing a measure that is decreasing as long as predicate $legal\text{-}measure$ holds. In general, this is not always possible. If no progress can be made (e.g., if all buffers of the network are full), then no correct representation of the evacuation time can be decreased. Predicate $scheduling\text{-}assumptions$ solves this issue. It must be instantiated in such a way that if it holds, function $Scheduling$ must be able to make progress and to provide a decreased measure. If this predicate does not hold, a deadlock state is reached. An example instantiation is given in section 4.1.

A new proof obligation is added. It states that if the scheduling assumptions hold and if the current measure is legal, the scheduler must be able to provide a new measure that is smaller than the current one.

(defun $GeNoC_t$ (mlst ns measure arr time ntkst)
 (declare (xargs :measure (acl2\text{-}count measure)))
 (if (endp mlst)
 ;; no more messages to process
 (mv arr nil) ;; return lists arrived and en route
 (mv-let (delayed departing)
 ;; determine which messages are ready
 (read mlst nil nil time)
 ;; determine set of routes for all departing messages
 (let ((v (routing departing ns)))
 (cond ((not (legal measure measure v ns ntkst))
 ;; an illegal measure is supplied, terminate
 (mv arr mlst))
 ((scheduling-assumptions v ns ntkst)
 ;; progress is possible, call scheduler
 (mv-let (newarr newenroute newmeasure newntkst)
 (scheduling v ns ntkst)
 (GeNoC_t (append delayed newenroute)
 ;; recursion on delayed and en route
 ns newmeasure ;; update measure
 (append newarr arr) ;; accumulate arrived messages
 (1+ time) newntkst)))
 ;; otherwise terminate because of deadlock situation
 (mv arr mlst))))))
)

3.3 Deadlock prevention

The main proof obligation of $Scheduling$ states that the intersection of $Arrived$ and $EnRoute$ is empty. This implies that messages either never left their source, are en route in the network, or have reached their destination.

If $EnRoute$ is not empty, $GeNoC_t$ either terminated because the provided measure was not legal, or because the scheduling assumptions were not true. If we can prove that (1) the scheduling-assumptions are always true, and (2) the measure provided by function $Scheduling$ is always legal, then the only way for $GeNoC_t$ to terminate is when the input list is empty. If the input list is empty, $EnRoute$ is empty as well. Each injected message has reached its destination. No deadlock has occurred.
A typical form of a deadlock prevention theorem is:

```
(defthm deadlock-free-genoc
  (implies 'property on network state'
    (equal
      (mv-nth 1 (GeNoC messages p1 p2))
      nil)))
```

This is a very general theorem. No assumption is made on the topology, and the size of the network, message length and injection time are left uninterpreted.

The theorem suggests the following proof methodology. Define a property \(p \) such that (1) \(p \) implies the scheduling-assumptions (line 14 in Fig. 2), and (2) \(p \) is inductive for GeNoC, i.e., if it holds initially, it holds after each recursion step. Such a property \(p \) together with a proof that the measure provided by Scheduling is always legal is sufficient to prove the deadlock prevention theorem.

4. CIRCUIT SWITCHING TECHNIQUE

Switching techniques determine how messages travel through a network. A switching technique is concerned with one or more types of resources, such as buffer space or channel bandwidth. Switching entails among others allocating resources to messages, determining where to send messages based on the sets of routes provided by the routing algorithm and resolving contention [3]. Contention occurs when two messages need the same resources. A message is blocked if it requires an unavailable resource. We consider switching techniques where no messages are dropped. If for some reason a message is blocked, it must be stored at its current position.

Circuit switching (CS) tries to establish a connection between the origin \(o \) and the destination \(d \) of a message before actually sending it. An established connection is called a circuit, which is also the type of resources CS deals with. A route is CS-possible if a circuit can be established for that route, i.e., if all nodes of the route have available space to store the message. Figure 3 gives an example of how two messages can traverse through a network with CS. Initially, both routes are CS-possible. However, only one circuit can be established at a time, since the routes intersect. Thus, one message is blocked until completion of the other.

A circuit is established by propagating a request from \(o \) to \(d \). Each node of the route receives a request to deny messages of any node other than \(o \). A node that acknowledges this request is called booked. A node will always acknowledge a request, unless it is booked or for some reason unavailable. This means that once the entire route is booked, a message can be sent with guaranteed throughput. After completion of all communications the source node sends a "torn-down" packet to release the circuit. A route is CS-possible if all its nodes are not booked and have an empty buffer.

We consider an abstract version of CS which computes a set of possible routes that do not intersect and schedules them all at once, i.e., in one scheduling step. If a message is scheduled, it is propagated through its circuit and arrives at its destination in the same step. This means that any scheduled message is removed from the network.

We consider a two-dimensional mesh, for which function Routing is instantiated with xy-routing. A message is routed along the X-axis before moving along the Y-axis. Our instance of function \(r4d \) injects all messages at the initial simulation step. All nodes have \(\text{num-of-buffers} \) buffers. Each buffer can store one packet of any size.

Example 1. Consider Fig. 4. Initially, the scheduler gets a message list with three messages (1, 2, 3). The routes of messages 1 and 2 are both possible and do not intersect, therefore they are both scheduled. Message 3 cannot be scheduled since its route intersects with message 1. It is thus scheduled in the next scheduling step.

![Figure 3: The arrows show the routing of the messages in these nodes.](image)

Figure 4: Example of CS.

Our instance of GeNoC, for CS is given by function simple-genoc (Fig. 5). Theorems in the next sections are proved for this instantiated function. We made as few instantiation-specific assumptions as possible. All such assumptions are mentioned explicitly.

4.1 Instantiation of the generic measure

Argument “measure” is defined as a list where each element corresponds to the length of the route of a message. The decreasing measure declared for function ct-scheduler is the sum of the elements of this list. Our instance of function sum-of-lst, which is not spelled out for brevity.

Function get-route returns the route computed by function routing. Function RouteLengths builds the measure argument as follows:

```
(defun RouteLengths (mlst)
  (if (endp mlst) nil
      (cons (len (get-route (car mlst)))
            (RouteLengths (cdr mlst)))))
```

Function ct-legal-measure returns true only if the measure is the sum of the list of route lengths. Since it instantiates the generic function legal-measure (section 3.2), it takes the same parameters.

```
(defun ct-legal-measure (meas mlst ntkst)
  (equal meas
    (sum-of-lst (RouteLengths mlst))))
```
We define an ordering over such lists. Function \texttt{elts-\textless\textasciitilde\textgreater} recognizes two lists \(x\) and \(y\) such that all elements of \(x\) are pairwise less or equal to the elements of \(y\).

\begin{verbatim}
(defun elts-\textless\textasciitilde\textgreater{} (x y)
 (if (endp x) (endp y)
 (and (natp (car x)) (natp (car y))
 (\textless{} (car x) (car y))
 (elts-\textless\textasciitilde\textgreater{} (cdr x) (cdr y))))
\end{verbatim}

We prove that if two lists \(x\) and \(y\) are \texttt{elts-\textless\textasciitilde\textgreater} and the first element of \(x\) is strictly less than the first element of \(y\), the sum of the elements of \(x\) is strictly less than the sum of the elements of \(y\):

\begin{verbatim}
(defthm smaller-car-implies-smaller-sum
 (implies (and (< (car x) (car y))
 (elts-\textless\textasciitilde\textgreater{} x y))
 (< (sum-of-lst x) (sum-of-lst y))))
\end{verbatim}

We now prove that the new measure – i.e., the new list of route lengths – is never increased by function \texttt{Scheduling}:

\begin{verbatim}
(defthm scheduled-routes-\textless\textasciitilde\textgreater{}-original
 (let ((new (mv-nth 2 (ct-scheduler mlst
 ER Arr meas prev ntkst)))
 (old (RouteLengths mlst)))
 (elts-\textless\textasciitilde\textgreater{} new old))))
\end{verbatim}

The instance of \texttt{scheduling-assumptions} for CS checks that there must exist a CS-possible route in the current state. Predicate \texttt{no-good-routes} is defined, which returns \texttt{t} if and only if there is no CS-possible route in \(mlst\). This is done by checking that for all messages in \(mlst\) there exists a node in the route that is full, which implies no circuit can be established. Predicate \texttt{ct-scheduling-assumptions} is then defined as \(\texttt{(not (no-good-routes mlst ntkst))}\).

If a route is possible for the first message – i.e., if the scheduling assumptions are satisfied – function \texttt{Scheduling} is proven to reduce the length of the route of this message.

\begin{verbatim}
(defthm good-route-implies-smaller-routes
 (let ((new (mv-nth 2 (ct-scheduler mlst
 ER Arr meas prev ntkst)))
 (old (RouteLengths mlst)))
 (implies '(car mlst)
 has possible route'
 (< (car new) (car old))))
\end{verbatim}

Finally, ACL2 can prove the proof obligation for termination automatically:

\begin{verbatim}
(defthm good-route-implies-smaller-measure
 (let ((new (mv-nth 2 (ct-scheduler mlst
 ER Arr meas prev ntkst)))
 (implies (scheduling-assumptions
 mlst ns ntkst)
 (< (sum-of-lst new)
 (sum-of-lst
 (RouteLengths mlst)))))
\end{verbatim}

\subsection{4.2 Instantiation of scheduler}

In our model of circuit switching, a message can be scheduled if its route does not intersect with the routes of the currently scheduled messages and if it is CS-possible.

Function \texttt{test_prev_routes} takes as parameters a route \(r\?) and a set of routes \texttt{prev}. It returns \texttt{r?} if it does not intersect with any route in \texttt{prev}. Otherwise it returns \texttt{nil}.
Function \texttt{ct-test_routes} takes as parameters a message \(m\) and the network state \(ntkst\). It returns the route \(r\) of \(m\) if and only if \(r\) is CS-possible, i.e., if all nodes of the route have an empty buffer. Otherwise it returns \texttt{nil}.

Function \texttt{ct-scheduler} combines these functions. It keeps track of all scheduled routes in \(prev\). It first tries to find a CS-possible route (line 8). If it has found a possible route, it checks whether the route intersects with any route of \(prev\) (line 11). If the route does not intersect, the message is scheduled which in effect means that it is removed from the network (line 19) and added to \(EnRoute\) (line 22). Otherwise, it is delayed and added to \(EnRoute\) (line 23).

Function \texttt{ct-scheduling} is simply defined as follows:

\[
(\text{ct-scheduling } mlst \texttt{ EnRoute } \texttt{ Arrived } \texttt{ measure } prev \texttt{ ntkst})
\]

\[
(\text{if (endp mlst)}
\begin{align*}
& (\text{mv} (\text{rev EnRoute}) (\text{rev Arrived}) \\
& (\text{rev measure}) \texttt{ ntkst}) \\
& (\text{let ((m (car mlst)))}) \\
& (\text{mv-let (newntkst r?)}) \\
& ;; \text{access data link layer} \\
& (\text{ct-test_routes ntkst m}) \\
& (\text{if (and (r?)} \\
& (\text{test_prev_routes r? prev)))}) \\
& ;; \text{if there is a possible route, then remove } v \text{ and add it to } prev \\
& (\text{ct-scheduler cdr mlst}) \\
& \texttt{EnRoute} \\
& (\text{cons m Arrived}) \\
& (\text{cons 0 measure}) \\
& (\text{cons r? prev}) \\
& (\text{replace\-in\-node (OrgV m) \\
& (FrmV m) nil newntkst})) \\
& ;; \text{otherwise the transaction is delayed} \\
& (\text{ct-scheduler cdr mlst}) \\
& (\text{cons m EnRoute}) \\
& \texttt{Arrived} \\
& (\text{cons (len (get\-route \\
& (car TrLst))) measure}) \\
& prev \\
& \texttt{newntkst})))))
\]

\subsection{4.3 Deadlock prevention theorem}

Function \texttt{cs-deadlockfree} below considers a list of messages (\texttt{mlst}) and an initial network state (\texttt{ntkst}). It returns \texttt{t} if and only if it is possible to process all messages of \texttt{mlst}, i.e., if no deadlock is possible. Parameter \(\alpha\) represents the number of messages that have been analyzed. It initially equals 0. If it gets larger than the length of list \texttt{mlst}, the recursion stops. Otherwise, we check that the \(\alpha\)’th message and the next one are cs-deadlock free.

\[
(\text{defun cs-deadlockfree (n mlst ntkst)}
\begin{align*}
& (\text{if (and (not (in\-range n mlst))}) \\
& (\text{t}) \\
& (\text{and (deadlockfree} m \\
& (nth n mlst) nil mlst ntkst)) \\
& (\text{cs-deadlockfree}) \\
& (1+ n) \texttt{ mlst ntkst))))))
\]

The mutually recursive functions \texttt{deadlockfree} and \texttt{\(\forall\)-deadlockfree} define the CS deadlock free condition. Function \texttt{deadlockfree} takes as arguments a message to be analyzed (\(m\)), an accumulator of messages that have already been analyzed (\texttt{m-acc}, initially empty), a list of messages \texttt{mlst}, and the network state (\texttt{ntkst}). If first gets the route \(r\) (function \texttt{get\-route}) of the message (line 2). Then, it extracts from \texttt{mlst} the list of messages, the routes of which intersect with route \(r\). If message \(m\) has already been analyzed, a cycle is detected and the network is not free from deadlock (line 6). If the buffers of route \(r\) have available space, then a circuit can be created for \(m\). Hence, at least one message can make progress. There is no deadlock. Note that in order to check whether a route is possible we only need to check the \texttt{cdr} of the route (lines 4 and 7). Indeed, a route is possible, even if the current node is full. If the nodes of route \(r\) have no available space, function \texttt{\(\forall\)-deadlockfree} uses function \texttt{deadlockfree} to check that all messages that are blocking message \(m\) are free from deadlock. Message \(m\) is accumulated in \texttt{m-acc}.

\[
(\text{mutual-recursion}
\begin{align*}
& (\text{defun deadlockfree} m \texttt{ (m m-acc mlst ntkst)}
\begin{align*}
& (\text{let* ((r (get\-route m))}) \\
& (\text{mlst'}) \\
& (\text{get\-mlst\-route (cdr r) mlst})) \\
& (\text{cond}
\begin{align*}
& ((\text{member-equal m m-acc}) \texttt{ nil}) \\
& ((\text{has\-empty\-buffers (cdr r) ntkst}) \\
& \texttt{ t}) \\
& \texttt{ t}
\end{align*}
\end{align*}
\texttt{ (\forall\text{-deadlockfree} mlst' m-acc mlst ntkst)})})
\]

\[
(\text{defun \(\forall\)-deadlockfree m mlst' m-acc mlst ntkst})
\begin{align*}
& (\text{if (endp mlst')} \texttt{ t}) \\
& (\text{and (deadlockfree} m \\
& \texttt{ (car mlst') m-acc mlst ntkst}) \\
& (\forall\text{-deadlockfree} m \\
& \texttt{ (cdr mlst') m-acc mlst ntkst))))
\]

\textbf{Example 2.} Consider the examples in Fig. 6(a). When function \texttt{deadlockfree} is called for message 1, it first checks whether message 1 has a possible route. This is not the case, since its destination node is full. It therefore adds message 1 to \texttt{m-acc} and checks whether messages 2 is deadlockfree. Since message 2 has a possible route, it is deadlockfree and thus message 1 is deadlockfree as well.

In the situation depicted in Fig. 6(b), messages 1 and 2 are not deadlockfree. If \texttt{deadlockfree} is called for message 1 it
will accumulate message 1 in `m-acc` and call `deadlockfree_m` for message 2. To check deadlockfreedom of message 2 we must check deadlockfreedom of message 1. This message was accumulated in `m-acc` and therefore message 2 will be considered not deadlockfree. Thus message 1 is considered not deadlockfree as well.

Note that function `deadlockfree` checks for deadlockfreedom and not for a deadlockstate, which is a weaker property. The situation in Fig. 6(b) is not in a CS-deadlockstate, since message 3 can set up a circuit and arrive at its destination. Function `deadlockfree` still returns `nil` for this situation, because it is not deadlockfree.

![Figure 6: Example of CS deadlockfreedom. Each node has one buffer.](image)

The following lists are the measures for resp. `cs-deadlockfree_m` and `V-cs-deadlockfree_m`. Lexicographical ordering is used.

```
(list (if (member m mlst) 0 1)  
(diff-size m-acc mlst) 0 0)  
(list (if (subsetp mlst trlst) 0 1)  
(diff-size v-acc trlst) 1  
(len mlst)))
```

The main decreasing measure is computed by `diff-size`. It is the number of elements that are in `mlst` but not in `m-acc`. A special case is when `m` is not in `mlst`, in which case this measure does not decrease. It is not logical to call `cs-deadlockfree_m` if `m` is not in `mlst`. Nevertheless, we still need to prove termination for this case, which only occurs on the first call, since `get-mlst-route` returns messages from `mlst`. This is why the first element of the measure is 1 if `m` is not in `mlst` and 0 otherwise. Similarly, for a logical call of `V-cs-deadlockfree_m`, `mlst'` is a subset of `mlst`, but we need to prove termination if this is not the case as well. After the first call the first element decreases to 0 and remains 0. The second element is the main decreasing measure: the difference between `m-acc` and `mlst`. This decreases on each call of `V-cs-deadlockfree_m` in `deadlockfree_m` and remains equal on each call of `deadlockfree_m` in `V-deadlockfree_m`. The third element is 0 for `deadlockfree_m`, and 1 for `V-deadlockfree_m`. The last element is the self decreasing measure: for `deadlockfree_m` this is constant since it is not self-recursive. For `V-deadlockfree_m` this is the length of `mlst`, since this decreases on each self-call.

We now prove our deadlock prevention theorem, which is an instance of the generic construct given in section 3.3.

```
(defthm en-route-empty  
(implies  
(and (cs-deadlockfree 0 mlst ntkst)  
(ct-legal-measure measure mlst ns ntkst))  
(endp (mv-nth 1 (simple-genoc_t mlst ns measure nil nil time ntkst)))))
```

The proof follows the methodology from section 3.3. We prove that predicate `cs-deadlockfree` (1) implies the scheduling assumptions, i.e., implies at least one possible route, and (2) is inductive for `GeNoC`, i.e., if it holds initially, it holds after one recursion step. We then prove that the measure provided by function `Scheduling` is always legal. From this follows the theorem above.

The first step consists in proving the theorem below. We assume that there are messages to be sent (line 3) and that each node has `*num-of-buffers*` buffers (line 4). Furthermore, we assume that the network state relates to the list of messages, i.e., there is no message on the network that is not in `mlst`. Under these assumptions, predicate `cs-deadlockfree` is proven to imply a possible route.

```
(defthm deadlockfree-=>-route-possible  
(implies (and (consp mlst)  
(buffersize ntkst *num-of-buffers*)  
(ntkst-relates-mlst ntkst mlst)  
(cs-deadlockfree 0 mlst ntkst))  
(not (no-good-routes mlst ntkst))))
```

The second theorem states that `cs-deadlockfree` is preserved after each recursive call of `GeNoC`. Its proof consists of proving that if a state is cs-deadlockfree, after a cycle of routing and scheduling the resulting state is still cs-deadlockfree.

The theorem is given below. Let `out` be the output of function `scheduler` (line 2). The new network state `newntkst` and new list of messages `newmlst` are extracted from `out`. The new list of messages is routed again (line 5). We prove that if the original state `ntkst` and the list of messages `mlst` are cs-deadlock-free, so are the new state and list of messages.

Two assumptions are needed: the network state relates to the list of messages (as explained above), and the routing algorithm will not increase the length of the routes. In our case routes are computed by xy-routing, which is deterministic and minimal. It satisfies the latter assumption.

```
(defthm genoc-preserves-deadlockfreedom  
(let* ((out (ct-scheduling mlst ns ntkst))  
(newntkst (mv-nth 3 out))  
(newmlst (xy-routing  
(mv-nth 0 out))))  
(implies (and (ntkst-relates-mlst ntkst mlst)  
(mlst-created-by-xy-routing mlst)  
(deadlockfree 0 mlst ntkst))  
(deadlockfree 0 newmlst newntkst)))))
```

As it would result in many complex proofs, we do not attempt to prove the theorem directly. Rather, we prove a more general intermediate lemma. This lemma is based on the notion of two "equally full" network states, formalized by predicate `<=-full` below. Network state `ntkst1` is `<=-full`
to network state \(\text{ntkst}_2 \) if (a) \(\text{ntkst}_1 \) is empty, or (b) if the first port of \(\text{ntkst}_1 \) and \(\text{ntkst}_2 \) have both available space and their remaining ports are \(\leq \text{full} \).

\[
(\text{defun } \leq \text{full} \ (\text{ntkst}_1 \ \text{ntkst}_2) \\
(\text{if } (\text{endp} \ \text{ntkst}_1) \ t \\
(\text{let } ((\text{recur } (\leq \text{full} \ (\text{cdr} \ \text{ntkst}_1)) \\
(\text{cdr} \ \text{ntkst}_2))) \\
(\text{if } (\text{has-empty-buffer} \ (\text{car} \ \text{ntkst}_2)) \\
(\text{and} \text{ recur} \\
(\text{has-empty-buffer} \ (\text{car} \ \text{ntkst}_1))) \\
\text{recur))))))))
\]

We now prove our intermediate lemma. Assume a network state \(\text{ntkst}_1 \) and a list \(m_1 \) of messages. Assume a network state \(\text{ntkst}_2 \) and a list \(m_2 \) of messages, such that \(m_2 \) is a sublist of \(m_1 \) and \(\text{ntkst}_2 \) is \(\leq \text{full} \) than \(\text{ntkst}_1 \). We now prove that if \(\text{deadlockfree}_m \) holds for \(m_1 \) and \(\text{ntkst}_1 \), it holds for \(m_2 \) and \(\text{ntkst}_2 \).

\[
(\text{defthm abstraction-preserve-deadlockfree}_m \\
(\text{implies} \\
(\text{and} \ (\text{subsetp} \ \text{newmlst} \ \text{mlst}) \\
(\text{equal} \ (\text{getcoordinates} \ \text{ntkst}) \\
(\text{getcoordinates} \ \text{newntkst}))) \\
(\leq \text{full} \ \text{newntkst} \ \text{ntkst}) \\
(\text{deadlockfree}_m \ v \ m \ \text{acc} \ \text{newmlst} \ \text{ntkst}) \\
(\text{deadlockfree}_m \ m \ m \ \text{acc} \ \text{newmlst} \ \text{newntkst}) \\
))
\]

We now prove that the list of delayed and en route messages produced by function \(\text{ct-scheduler} \) is a sublist of its first input argument, and that the new state produced by this function is \(\leq \text{full} \) than the current one.

\[
(\text{defthm scheduled-is-\leq \text{full}-and-subsetp} \\
(\text{let*} (\text{out } (\text{ct-scheduler} \ \text{mlst} \\
\text{ER Arr meas prev ntkst})) \\
(\text{newntkst } (\text{mv-nth 3 out})) \\
(\text{newmlst } (\text{mv-nth 0 out}))) \\
(\text{and} (\leq \text{full} \ \text{newntkst} \ \text{ntkst}) \\
(\text{subsetp} \ \text{newmlst} \ \text{mlst})))))
\]

Finally, using the intermediate lemma and the theorem above, we can easily conclude that \(\text{deadlockfree}_m \) is inductive for \(\text{GeNoC} \).

\[
(\text{defthm scheduler-preservation-} \\
(\text{deadlockfreedom} \\
(\text{let*} (\text{out } (\text{ct-scheduler} \ \text{mlst} \\
\text{ER Arr meas prev ntkst})) \\
(\text{newntkst } (\text{mv-nth 3 out})) \\
(\text{newmlst } (\text{mv-nth 0 out}))) \\
(\text{implies} \ (\text{deadlockfree}_0 \ \text{mlst} \ \text{ntkst}) \\
(\text{deadlockfree}_0 \ \text{newmlst} \ \text{newntkst})))
\]

We needed 17 theorems to prove that the abstraction preserves deadlockfreedom, but only 4 theorems to prove that the output of the scheduler is a concrete version of the abstraction. If we would prove this theorem for another scheduling policy, the main part of the proof can be re-used.

4.4 Evacuate!

\(\text{GeNoC} \) computes two lists: \(\text{EnRoute} \) and \(\text{Arrived} \). Up to this point we proved that \(\text{EnRoute} \) is empty. Since our injection method injects all messages in the network at the initial simulation step, we can prove that if \(\text{EnRoute} \) is empty, \(\text{Arrived} \) is equal to the original list of messages (see Fig. 7).

To prove it we have defined a notion of equivalence for lists of messages, based on the fact that all messages have unique identifiers. Lists \(m_1 \) and \(m_2 \) are called \(\text{mlst-equal} \) if the set of ids of \(m_1 \) is a subset of the set of the ids of \(m_2 \), and the other way around. By proving that \(\text{mlst-equal} \) is an equivalence relation and by proving the following congruences, the degree of automation of ACL2 in proving our theorems significantly increased.

\[
(\text{dequiv mlst-equal}) \\
(\text{defcong mlst-equal mlst-equal} \\
(\text{cons } x \ m) \ 2) \\
(\text{defcong mlst-equal mlst-equal} \\
(\text{append } m_1 \ m_2) \ 1) \\
(\text{defcong mlst-equal mlst-equal} \\
(\text{append } m_1 \ m_2) \ 2) \\
(\text{defcong mlst-equal iff} \ \\
(\text{member-v } x \ m) \ 2)
\]

5. RELATED WORK

Deadlocks can be classified as structural or high-level. Structural deadlocks are often introduced by the routing algorithm. This kind of deadlock has been extensively studied in the context of computer networks [4, 5, 6, 7]. A resource (channels or buffers) dependency graph is constructed using the routing function of the entire network. An acyclic graph is a necessary and sufficient condition for deadlock prevention. This condition is proved under several assumptions. One of them is that when a message reaches its destination, it can always be consumed. This assumption is in practice not satisfied. If a node is really full and cannot process its local input queues, the network might become overloaded and no progress might be possible. Moreover, dependencies between requests and acknowledgment packets may be introduced, creating high-level deadlocks. To prevent such deadlock, data flow analysis is used [11]. Another solution is to include these dependencies in the graphs [16], or to have separate buffers for different types of messages [9, 8].

These techniques need the construction of a graph, and therefore cannot – in contrast to our approach – be applied to parametric models. Moreover, we allow for the unified analysis of the two kinds of deadlocks and their interactions.

6. CONCLUSION

We have presented an extension of the \(\text{GeNoC} \) model to support the proof that messages injected in a network eventually reach their destination. This has been achieved by defining a generic termination condition – inspired from "clock functions" [12] – and a new proof obligation sufficient to discharge this condition. We also define a general deadlock prevention theorem and instantiated it for a circuit switching technique. In all our proofs, we made no assumption on the topology, the length of messages, or their injection time.

Table 1 gives an overview of the files needed to define and prove the theorems mentioned in this paper. The size of the
functions 193
Theorems 24

These different examples, we will extract sufficient conditions which would only use state elements local to a node. From nation. This restricts our proof to either (non-)minimal non-properties seems like good candidates for new proof obligations . Our ultimate goal is to prove that hardware implementations of NoCs are free from deadlock. In another submission [17], we developed a generic implementation model à la GeNoC. We are currently working on the proof of a formal relation between this GeNoC implementation model and the GeNoC specification model presented in this paper.

The proof that all messages reach their destination is a formulation of the more general "evacuation problem" (e.g., [10]). An interesting challenge would be to formalize using our extended GeNoC model the proof of time bounds obtained in such publications.

Acknowledgments
This research is supported by NWO/EW project Formal Validation of Deadlock Avoidance Mechanisms (FVDAM) under grant no. 612.064.811.

7. REFERENCES

Table 1: Overview of files

<table>
<thead>
<tr>
<th>Contents</th>
<th>Size</th>
<th>Functions</th>
<th>Theorems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network state</td>
<td>193</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Injection method</td>
<td>35</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>XY Routing</td>
<td>510</td>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td>Circuit scheduling</td>
<td>518</td>
<td>29</td>
<td>56</td>
</tr>
<tr>
<td>GeNoC CS</td>
<td>1,196</td>
<td>24</td>
<td>95</td>
</tr>
</tbody>
</table>

Figure 7: Evacuation theorem

(defthm enroute-empty->arrived-full
 (implies (and (true-listp mlst)
 (endp (mv-nth 1 (simple-genoc mlst ns meas nil nil time ntkst))))
 (trlst-equal (mv-nth 0 (simple-genoc mlst ns meas nil nil time ntkst))
 mlst))

files is the number of lines. The first four files define the instantiations of the constituents of GeNoC. The last file contains both the definition of function GeNoC, the deadlock-related proofs and the proof of correctness.

Our deadlock prevention theorem has been proved for one instance of function GeNoC. Our model of circuit switching uses the global network state. In most concrete implementations, this would not be possible. We are currently developing proofs for packet and wormhole switching techniques, as well as a more realistic version of circuit switching which would only use state elements local to a node. From these different examples, we will extract sufficient conditions to prove deadlock prevention for the generic definition. Already in our example, assumptions on the routing algorithm are required. We assume that the route length of a message does not increase if a message makes a hop towards its destination. This restricts our proof to either (non-)minimal non-adaptive or minimal adaptive routing algorithms. Also in proving that all messages reach their destination, we needed the fact that the union of lists Arrived and EnRoute produced from the application of function Scheduling to a mlst list of messages somehow equals list mlst. These two properties seems like good candidates for new proof obligations.

Acknowledgments
This research is supported by NWO/EW project Formal Validation of Deadlock Avoidance Mechanisms (FVDAM) under grant no. 612.064.811.

