Measurement of the angular and lifetime parameters of the decays $B_d^0 \rightarrow J/\psi K^*$ and $B_s^0 \rightarrow J/\psi \phi$.

We present measurements of the linear polarization amplitudes and the strong relative phases that describe the flavor-untagged decays $B^0 \rightarrow J/\psi K^{*0}$ and $B^0_s \rightarrow J/\psi$ in the transversity basis. We also measure the mean lifetime τ_s of the B^0_s mass eigenstates and the lifetime ratio τ_s/τ_d. The analyses are based on approximately 2.8 fb^{-1} of data recorded with the D0 detector. From our measurements of the angular parameters we conclude that there is no evidence for a deviation from flavor SU(3) symmetry for these decays and that the factorization assumption is not valid for the $B^0_s \rightarrow J/\psi K^{*0}$ decay.
B mesons are fertile ground to study CP violation and search for evidence of new physics. There are elements, in addition to CP violation, involved in the theoretical description of B meson decays, such as flavor SU(3) symmetry, factorization and final-state strong interactions. To understand the role CP violation plays in these decays, it is essential to understand and isolate the effect of each of these elements in the B meson decays.

Factorization states that the decay amplitude of B meson decays can be expressed as the product of two single current matrix elements [1] and this implies that the relative strong phases are 0 (mod π) [2]. A different measured value for the strong phases would indicate the presence of final-state strong interactions. The B° meson can be formed by replacing the s quark with the d quark in the B_d meson. From flavor SU(3) symmetry applied to the B_d-B° system one expects that the theoretical description is similar; in particular the B_d — J/ψK*0 and B° — J/ψφ [3] decays, can be described in the transversity basis [2] by the linear polarization amplitudes, A0, A||, and A^, and the relative strong phases δ1 and δ2. Flavor SU(3) symmetry requires that the amplitudes and phases characterizing these decays should have the same values.

Other observables of these decays are the lifetimes of both mesons, which allow us to compare with theoretical predictions of the lifetime ratio. Phenomenological models predict differences of about 1% [4, 5] between the B_d and B° lifetimes. Previous B meson lifetime measurements [6] are consistent with these predictions.

In this Letter we report the measurements of the parameters that describe the time-dependent angular distributions of the decays B_d — J/ψK*0 and B° — J/ψφ in the transversity basis, where the initial B meson flavor is not determined (“untagged”). We study the B_d and B° mesons to verify the validity of the factorization assumption [2] and to check if flavor SU(3) symmetry [2] holds for these decays. We also report the lifetime ratio τ_d/τ for these mesons and the width difference ΔΓ_s between the light and heavy B° mass eigenstates. The analyses were performed using data collected with the D0 detector [7] in Run II of the Fermilab Tevatron Collider during 2003 — 2007 with an integrated luminosity of approximately 2.8 fb^-1 of pp collisions at a center-of-mass energy of 1.96 TeV. In contrast with the flavor-tagged analysis reported in Ref. [8], in this Letter we report a simultaneous analysis of both the B_d and B° meson decays, carried out in such a way that a straightforward comparison between their angular and lifetime parameters can be performed.

We use the B_d — J/ψφ, J/ψ — μ^+μ^−, φ — K^+K^- selection described in Ref. [9]. The decay B_d — J/ψK*0, J/ψ — μ^+μ^−, K*0 — K^±π^± is reconstructed using similar selection criteria and algorithms as the B° channel because they have the same four-track topology in the final state. The differences are the requirement that the transverse momentum of the pion be greater than 0.7 GeV/c, the invariant mass for the (J/ψ, K*0(892)) pair be in the range 4.93 — 5.61 GeV/c^2, and the selection of the K*0(892) candidates by demanding the two-particle invariant mass between 850 MeV/c^2 and 930 MeV/c^2. Due to lack of charged particle identification, we assign the mass of the pion and kaon to the latter two tracks and use the combination with invariant mass closest to the K*0 mass.

The proper decay length (PDL), defined as in Refs. [10, 11], for a given B_d or B° candidate is determined by measuring the distance traveled by each b-hadron candidate in a plane transverse to the beam direction, and then applying a Lorentz boost correction. In the B_d and B° final selection, we require a PDL uncertainty of less than 60 μm. We find 334199 and 41691 candidates that pass the B_d and B° selection criteria, respectively (see Fig. 1).

We denote the set of the angular variables defined in the transversity basis, where the decays B_d — J/ψK*0 and B° — J/ψφ are studied, as ω = {φ, θ, ϕ}. The description of these decays in this basis gives us access to the three linear polarization amplitudes at production time, t = 0, |A0(0)|, |A|| |2, and |A^ |2, satisfying |A0|^2 + |A|| |2 + |A^ |2 = 1 [12]; and the CP-conserving strong phases δ1 ≡ arg[A^*A||], and δ2 ≡ arg[A^*A||]. Since only the relative phases of the amplitudes can enter physics observables, we are free to fix the phase of one of them, and we choose to fix δ0 ≡ arg(A0) = 0.

According to the standard model, CP-violation effects in the B° system are very small [13]. In this analysis, we assume CP conservation and express the differential decay rate for the untagged decay B° — J/ψφ as [2]:

\[
d^4P/(dω dt) \propto e^{-ΓL t} \{\mid A0 \mid^2 f1(ω) + Re(\ast A^0 A||) f2(ω) + |A||^2 f3(ω)\} + e^{-ΓH t} |A^| \mid^2 f3(ω),\]

where ΓL(H) ≡ 1/τL(H) is the inverse of the lifetime corresponding to the light (heavy) mass eigenstate. The measured parameters, the width difference ΔΓ_s ≡ Γ_L — Γ_H and the mean lifetime τ_s ≡ 1/Γ = 2/(Γ_L + Γ_H), are given in terms of these inverse lifetimes. The angular functions f_i(ω) are defined in Ref. [2]. In this decay, we have access to the phase δ^ = arg(A^*A||), which is related to δ1 and δ2 by δ^ = δ2 — δ1.

In the B_d system, there is evidence of interference between the P- and S-wave Kπ amplitudes [14], which is taken into account in this analysis. The differential decay rate for the untagged decay B_d — J/ψφK*0 is given by [2, 14]:

\[
d^4P/(dω dt) \propto e^{-Γd t} \{\mid A0 \mid^2 f1(ω) + |A||^2 f2(ω)\}
\]

\[+ |A_\perp|^2 f_2(\omega) - \zeta \text{Im}(A_\perp^* A_\perp) f_4(\omega) \\
+ \text{Re}(A_\perp^* A_\perp) f_5(\omega) + \zeta \text{Im}(A_\perp^* A_\perp) f_6(\omega) \\
+ \sin^2 \lambda \cdot f_7(\omega) \\
+ \frac{1}{2} \sin 2\lambda \left [f_8(\omega) \cos (\delta_\perp - \delta_s) |A_\perp|^2 \\
+ f_9(\omega) \sin (\delta_\perp - \delta_s) |A_\perp| \\
+ f_{10}(\omega) \cos \delta_s \cdot |A_0|| \right] \] ,

(2)

where \(\Gamma_d \equiv 1/\tau_d \) is the inverse of the \(B_d \) lifetime, \(\zeta = +1 (-1) \) for \(K^+(K^-) \); \(\lambda, \delta_s, \) and \(f_\omega(\omega) \) are defined in Refs. [2, 14]. For the \(B_d \), \(\Delta \Gamma_d \) is expected to be zero [13].

An unbinned likelihood fit is performed to extract all the \(B_d \) and \(B_s \) parameters. For the \(j \)th \(B \) meson candidate, the inputs for the fit are the mass \(m_j \), PDL \(\sigma_{t_j} \), PDL uncertainty \(\sigma_{c,ct_j} \), and the angular variables \(\omega_j \). The likelihood function \(L \) for the untagged decays \(B_d \rightarrow J/\psi K^{*0} \) and \(B_s \rightarrow J/\psi \phi \), is defined by

\[L = \prod_{j=1}^{N} \left [f_s^{F_s} + (1 - f_s)^{F_b} \right] , \]

(3)

where \(N \) is the total number of selected events and \(f_s \) is the fraction of signal events in the sample, a free parameter in the fit.

\(F_s \) is the product of the signal probability distribution functions (PDF) of mass, PDL, and transversity angles, and the angular acceptances, which are determined via Monte Carlo simulations. The mass and PDL signal distributions are modeled for both decays in the same way. The mass distribution is modeled by a Gaussian function with free mean and width. The PDL distribution is described [10] by the convolution of an exponential, whose decay constant is one of the fit parameters with a resolution function represented by two weighted Gaussian functions centered at zero. The widths \(\sigma_{t\omega,ct\omega} \), of each Gaussian with scale factors \(s_i \) (\(i = 1, 2 \)) are free parameters in the fit to allow for a possible misestimate of the PDL uncertainty. The transversity angular distributions are modeled by the corresponding normalized Eqs. (1) and (2). The contribution where the mass of the \(K \) and \(\tau \) are misassigned in our data is estimated by using Monte Carlo studies to be about 13% and is taken into account.

\(F_b \) is the product of the background PDF of the same variables and the angular acceptance as in the signal. We separate the background contributions into two types. The prompt background accounts for directly produced \(J/\psi \) mesons combined with random tracks. Non-prompt background is due to \(J/\psi \) mesons produced by a \(b \) hadron decay combined with tracks that come from either a multibody decay of the same \(b \) hadron or from hadronization. The mass distribution for the background is modeled by two independent normalized negative-slope exponentials, one for the prompt and one for the non-prompt contributions. The PDL distribution for the prompt background is parameterized by the resolution function described above. The PDL distribution for the non-prompt background is modeled by a sum of two exponential components for positive \(\omega \) and one for negative \(\omega \) that account for a mix of heavy flavor meson decays and their possible misreconstruction. The angular distributions for the background components are modeled by a shape similar to that of the signal, but with an independent set of amplitudes and phases.

The results of our measurements are summarized in Table I. Figures 1 and 2 show the mass and the PDL distributions for the \(B_d \) and \(B_s \) candidates, respectively, with the projected results of the fits. The parameters with the strongest correlations are the linear amplitudes for the \(B_d \), and the width difference and the mean lifetime for the \(B_s \).

TABLE I: Summary of measurements for the decays \(B_d \rightarrow J/\psi K^{*0} \) and \(B_s \rightarrow J/\psi \phi \). The uncertainties are only statistical.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(B_d)</th>
<th>(B_s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>A_0</td>
<td>^2)</td>
<td>0.587 ± 0.011</td>
</tr>
<tr>
<td>(</td>
<td>A_1</td>
<td>^2)</td>
<td>0.230 ± 0.013</td>
</tr>
<tr>
<td>(\delta_1)</td>
<td>-0.38 ± 0.06</td>
<td>—</td>
<td>rad</td>
</tr>
<tr>
<td>(\delta_2)</td>
<td>3.21 ± 0.06</td>
<td>—</td>
<td>rad</td>
</tr>
<tr>
<td>(\tau)</td>
<td>1.414 ± 0.018</td>
<td>1.487 ± 0.060</td>
<td>ps</td>
</tr>
<tr>
<td>(\Delta \Gamma_d)</td>
<td>—</td>
<td>0.085^{+0.072}_{-0.058}</td>
<td>ps^{-1}</td>
</tr>
<tr>
<td>(N_{\text{sig}})</td>
<td>11195 ± 167</td>
<td>1926 ± 62</td>
<td>—</td>
</tr>
</tbody>
</table>

Table II summarizes the systematic uncertainties in our measurements for \(B_d \) and \(B_s \) decays. To study the systematic uncertainty due to the model for the mass distributions, we vary the shapes of the mass distributions for background by using two normalized first-order polynomials instead of the nominal two negative exponentials. We estimate the systematic uncertainty due to the resolution on the PDL by using one Gaussian function for the resolution model. The fitting code is tested for the presence of biases by generating 1300 pseudo-experiments for \(B_d \) and 1000 for \(B_s \), each with the same statistics as our data samples. We generated the events following the input and output values are quoted as the systematic uncertainty due to the fitting. The systematic uncertainty for \(\delta_\parallel \) reported for this source is due to an intrinsic ambiguity for this parameter in Eq. (1). The pseudo-experiments produced also cover the other solution for \(\delta_\perp \). The contribution from the detector alignment uncertainty is taken from Ref. [11]. Other potential sources of systematic uncertainties have been investigated and found to give negligible variations in the measured parameters. The systematic uncertainties for the ratio \(\tau_s/\tau_d \) are obtained by finding the ratio of the lifetimes for each systematic variation on Table II and taking the difference between this value and the nominal ratio.
TABLE II: Summary of systematic uncertainties in the measurement of angular and lifetime parameters. The total uncertainties are given combining individual uncertainties in quadrature.

| Source | $|A_0|^2$ | $|A_1|^2$ | δ_1 (rad) | δ_2 (rad) | τ_d (ps) | $|A_0|^2$ | $|A_1|^2$ | δ_1 (rad) | $\Delta \Gamma_s$ (ps$^{-1}$) | τ_s (ps) | τ_s/τ_d |
|--------------------|----------|----------|------------------|------------------|---------------|----------|----------|------------------|-----------------|---------------|----------------|
| Mass background | — | 0.024 | 0.09 | 0.05 | 0.030 | 0.004 | 0.002 | 0.02 | — | 0.021 | 0.009 |
| PDL resolution | 0.013 | 0.008 | 0.02 | 0.03 | 0.013 | 0.005 | 0.003 | — | — | 0.016 | 0.012 |
| Fitting code | 0.001 | — | — | — | — | 0.004 | 0.014 | 0.26 | 0.001 | 0.008 | 0.003 |
| Alignment | — | — | — | — | — | — | — | — | — | — | — |
| Total | 0.013 | 0.025 | 0.09 | 0.06 | 0.034 | 0.006 | 0.014 | 0.26 | 0.001 | 0.028 | 0.015 |

In conclusion, we have measured the angular and lifetime parameters for the time-dependent angular untagged decays $B^0_d \rightarrow J/\psi K^{*0}$ and $B^0_s \rightarrow J/\psi \phi$, the lifetime ratio of both B mesons, and the width difference $\Delta \Gamma_s$ for the B^0_s meson. From the measured lifetime parameters τ_s and τ_d we obtain the ratio $\tau_s/\tau_d = 1.052 \pm 0.061$ (stat) ± 0.015 (syst) which is consistent with the theoretical prediction [5] and previous measurements [6]. The measurement of the width difference $\Delta \Gamma_s = 0.085^{+0.072}_{-0.076}$ (stat) ± 0.006 (syst) ps$^{-1}$ is consistent with the theoretical prediction [5, 13] and with the value reported in Refs. [6, 16]. D0 also has a measurement of $\Delta \Gamma_s$ in a flavor-tagged analysis of $B^0_s \rightarrow J/\psi \phi$ in Ref. [8].

Our measurements for the linear polarization amplitudes for the B^0_d, taking into account the interference between the $K \pi$ S-wave and P-wave, are $|A_0|^2 = 0.587 \pm 0.011$ (stat) ± 0.013 (syst) and $|A_1|^2 = 0.290 \pm 0.013$ (stat) ± 0.025 (syst); and for B^0_s, $|A_0|^2 = 0.555 \pm 0.027$ (stat) ± 0.006 (syst), and $|A_1|^2 = 0.244 \pm 0.032$ (stat) ± 0.014 (syst) are consistent and competitive with those reported in the literature [6, 14, 15]. Our measurement of the strong phases δ_1 and δ_2 indicates the presence of final-state interactions for the decay $B^0_d \rightarrow J/\psi K^{*0}$ [2] since $\delta_1 = -0.38 \pm 0.06$ (stat) ± 0.09 (syst) rad is 3.5σ away from zero, where σ is the total uncertainty. From the comparison of the measured amplitudes and strong phases [17] for both decays we conclude that they are consistent with being equal for B^0_d and B^0_s and hence...
there is no evidence for a deviation from flavor SU(3) symmetry. In our sample we find that the $K\pi$ S-wave intensity, as described in Ref. [14], is $(4.0 \pm 1.0)\%$

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from Rutgers University, Piscataway, NJ, USA.
[d] Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Centro de Investigacion en Computacion - IPN, Mexico City, Mexico.
[f] Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
[g] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[h] Visitor from Universität Bern, Bern, Switzerland.
[i] Visitor from Universität Zürich, Zürich, Switzerland.
[j] Deceased.

[3] Unless explicitly stated, the appearance of a specific charge state will also imply its charge conjugate throughout the paper.
[12] Throughout the paper, if not explicit dependence on time is stated, we denote $A_i(0) \equiv A_i$ for $i = \{0, ||, \perp\}$.
[17] Using the relation between these phases we obtain

\[\delta_1, \delta_2 = 3.59 \pm 0.06 \pm 0.09 \text{ rad.} \]