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Psychoactive compounds are used to treat psychiatric disorders as well as 

for recreational purposes. The use of psychoactive substances for recreational 

purposes appears to be as old as civilisation, where especially alcohol and tobacco 

have a long standing history of socially accepted and legal recreational use, although 

trends in drug use vary as exemplified by for example (now illegal) opium use. In 

western society ecstasy, cannabis and alcohol are curently one of the most 

commonly used psychoactive substances for recreational purposes. Moreover, 

combined use of such drugs appears to be the rule rather then the exception (Parrott, 

Milani et al. 2007;Winstock, Griffiths et al. 2001).  

Although there are only minor differences between legal and illegal 

psychoactive drugs from a pharmacological point of view, the use of psychoactive 

compounds for recreational purposes is subject to great controversy in Western 

society. Alcohol use for example is a common, legal and socially accepted 

recreational drug while the use of ecstasy is illegal and disapproved by society. Most 

often, addiction and greatly impaired mental and physical health are said to result 

from recreational use of illegal drugs and these arguments are used to support 

restrictive legislation. However, ecstasy use seldomly leads to addiction, while 

alcohol on the other hand has well-known addictive properties (Adinoff 2004). 

Moreover, relatively 'new' addictions such as gambling, internet, pornography and 

gaming underscore the fact that it is not the drug but the behaviour that shapes the 

addiction. Although excessive drug use (whether this concerns ecstasy or alcohol) 

can induce cognitive and physiological impairments, research into the long-term 

effects of drugs such as ecstasy generally show only small effects on cognitive 

function (Gouzoulis-Mayfrank and Daumann 2006a). The long-term physiologic 

effects of ecstasy use are less well investigated, but results suggest that impairment 

of physiologic function generally occurs only when drug exposure is frequent 

(Brody, Krause et al. 1998;Droogmans, Cosyns et al. 2007). Any substance will 

impair health when used carelessly, and as such, the pharmacological cliché that it is 

not the substance persé but the quantity in which it is used applies here as well.  

One must however not assume that drugs are harmless, as these drugs 

typically induce robust acute effects, and small reports in papers as well as case 
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reports exemplify that drug use can be acutely hazardous to health and even lethal 

when used carelessly (Kalantar-Zadeh, Nguyen et al. 2006;Yoda, Crawshaw et al. 

2005). Thus, research regarding the acute psychological as well as physiological 

effects may provide highly relevant information regarding the acute dangers of drug 

use, and as such may provide a rationale for harm reduction in recreational drug 

users and (more) appropriate legislation. Obviously, not using drugs is the easiest 

and most effective way of reducing harm, however, and analogous to cigarettes and 

alcohol, the use of ecstasy is prevalent with estimates of 40.000 current users in the 

Netherlands alone (Trimbos Instituut 2008). A scientific evaluation of the acute 

effects of MDMA, the psychoactive compound of ecstasy, thus appears warranted. 

However, typical recreational ecstasy users are generally mis-classified as these 

persons do not exclusively use ecstasy. Rather, they experiment with an abundance 

of psychoactive compounds and combine these substances, reportedly to alleviate 

some of the less desired effects and potentiate desired effects. Hence the self-

proclaimed term 'psychonauts' (derived from psychoactive and astronaut) is a better 

description. Ecstasy is most frequently combined with alcohol (most probably due to 

availability) and cannabis (anecdotely to alleviate the ecstasy come-down, ie. the 

descending slope of ecstasy effects) (Gouzoulis-Mayfrank and Daumann 2006a). 

Next to this rather pragmatic rational for the current thesis, the powerfull 

acute effects of recreational drugs provide new means to study and understand the 

way the human brain functions. As the neurobiological targets of most recreational 

drugs are known from animal research, this provides a powerfull addition to 

psychopharmacologic research to study the effects of specific manipulations of the 

brain's neurochemistry in humans. The psychopharmacology of cannabis, for 

example, has only recently received extensive attention from the scientific 

community and already has provided many interesting leads regarding for example 

weight loss, pain allevation, and even cancer therapy (Pacher, Batkai et al. 2006). 

Methylphenidate (Ritalin), an amphetamine (streetname speed) analogue is 

registered as a treatment for Attention Deficit Hyperactivity Disorder (ADHD), and 

MDMA (ecstasy) is currently being investigated as a possible therapy for post-

traumatic stress disorder (Sessa and Nutt 2007). Thus, recreational drugs may 
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provide new leads for potential treatments for psychiatric disorders, which also 

warrants further research into the pharmacology of recreationally used substances. 

However, investigating the effects of recreational drugs is prohibited in 

many countries and, in the countries where it is allowed such as the Netherlands, 

extremely difficult to undertake because of restrictive legislation. Although one 

should most definately be very cautious and carefull when undertaking such 

experimental research, 'Regulation must follow science, not dictate it' (M. 

Pirmohamed, NHS). 

 

  

Ecstasy 

 

Ecstasy is the streetname for 3,4-methylenedioxymethamphetamine 

(MDMA). MDMA was first synthesized in 1912 by Merck, and was called 

'Methylsafrylamin'. However, MDMA was not pharmacologically tested until 1927, 

and its effects were not evaluated in humans by Merck (Freudenmann, Oxler et al. 

2006). Later, psychotherapists used MDMA to aid psychotherapy. Although these 

therapists generally reported succesfull use of MDMA, its actions were never 

scientifically evaluated. These therapists did note that ecstasy enabled patiënts to 

discuss issues that they found difficult to confront and to facilitate emotional 

catharsis (Sessa 2007). However, MDMA was prohibited in 1985 in the USA under 

the Controlled Substance Act of 1984, and despite recommendations by its own 

advisory board, it was not permitted to be used in a medical situation anymore. 

Ecstasy gained its wide spread popularity in recreational drug users after its 

prohibition, suggesting that the prohibition facilitated its popularity. Recently, the 

therapeutic potential of MDMA has been attracting renewed attention from scientist 

and therapists, and researchers question its drug classification (Nutt 2006), and 

request to legalise MDMA use for therapeutic purposes (Sessa and Nutt 2007).   

Currently, there are an estimated 40000 current users of ecstasy in the 

Netherlands alone (Trimbos Instituut 2008). Despite the large population at risk 

world-wide, relatively few reports of severe adverse events with ecstasy have 
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emerged, although adverse events with fatal outcome have been reported, 

presumably in individuals who are (genetically) susceptible to ecstasies deletirious 

side effects (Hall and Henry 2006;Hartung, Schofield et al. 2002;Kalantar-Zadeh, 

Nguyen et al. 2006). Ecstasy is most popular in the club scene, most likely due to its 

unique behavorial effects. The behavioural effects of MDMA resemble, but are not 

restricted to, effects of psychostimulants (e.g. amphetamines or ‘speed’) as well as 

hallucinogenics (e.g. lysergic acid or ‘LSD’), although MDMA's most characteristic 

effects are described as an increase in empathy and friendliness, presumably leading 

to streetnames such as 'love-drug'. As these effects were not observed in 

hallucinogens nor in stimulants, MDMA was referred to as an ‘entactogen’, a 

separate drug-class (Nichols and Oberlender 1990;Tancer 2001;Vollenweider, 

Liechti et al. 2002).  

MDMA is typically ingested orally and rapidly absorbed. Within 30 

minutes MDMA is detectable in the blood. Plasma levels peak at 1-2 hr after drug 

administration, and maximum behavioural and subjective effects occur around 1-2 

hr and have declined by 4 hr in spite of persisting plasma levels (de la Torre, Farre et 

al. 2004;Green, Mechan et al. 2003). MDMA's mechanism of action involves 

interference with the transporters of the monoamine neurotransmitters. These pre-

synaptically located transporters remove the neurotransmitter from the synapse 

enabling recycling of these neurotransmitters. MDMA is relatively selective for 

serotonin (5-HT), but also releases dopamine and noradrenaline (Liechti and 

Vollenweider 2001). MDMA enters presynaptic serotonin nerve cells mainly by 

means of the presynaptic serotonin transporter (SERT), and releases the intra-

cellular 5-HT into the synapse by reversal of the SERT direction. MDMA also 

releases 5-HT from its intracellular storage vesicles via interference with the 

vesicular transporter (VMAT-2) similar to its actions on the SERT. Vesicular 5-HT 

release leads to high cytoplasmic 5-HT levels, which can be transported into the 

synapse by the 'reversed' SERT or even ‘leak’ out of the cell, thus increasing 

synaptic 5-HT levels (Mlinar and Corradetti 2003).  

The characteristic psychological effects of MDMA (augmented social 

interaction, friendliness and empathy towards others) have been shown to be caused 
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by the enhanced serotonin neurotransmission (Thompson, Callaghan et al. 2007). In 

humans, pre-treatment with the 5-HT reuptake inhibitor citalopram, which 

effectively blocks SERT, attenuated the typical psychological effects of MDMA in 

healthy volunteers (Liechti and Vollenweider 2001). Physiologically, MDMA shows 

typical stimulant effects with increases of heart rate, blood pressure, and body 

temperature (Dumont and Verkes 2006;Vollenweider, Liechti et al. 2002). MDMA's 

stimulant effects are induced by increased dopamine and/or noradrenaline 

availability (Colado, O'Shea et al. 2004;Mills, Banks et al. 2003). 

 

 

Alcohol 

 

Drinks containing ethanol, commonly referred to as alcohol, are regularly 

used in social settings. With over 4 million current users in the Netherlands, it is by 

far the most common drug to be used recreationally, even exceeding tobacco use 

(estimated number of current users 3.7 million). However, compared to ecstasy and 

cannabis, it is by far the most harmful, with 12.013 hospitalisations in the last year 

and 1.742 fatalities (only tobacco is more harmful with an estimated 19.366 

fatalities) in the Netherlands (Trimbos Instituut 2008).  

A single dose of oral alcohol will show a rapid increase with maximal 

plasma concentrations around 45-60 minutes and a steady decline afterwards. The 

dynamic effects of alcohol generally are congruent with its kinetic time profile. As 

alcohol is a sedative drug it generally impairs cognitive function, but it also can 

disinhibit behavior. Ethanol has many physiological effects, with complex but 

relatively small effects on heart rate, and typically lowers peripheral vascular 

resistance which facilitates heat dissipation. In unfavorable surroundings, this may 

induce hypothermia (Pohorecky and Brick 1988). Ethanol's mechanism of action is 

allosteric modulation of many transmembrane receptors, but functionally it acts 

foremost as a CNS depressant, depressing both excitatory and inhibitory 

postsynaptic potentials by potentiating the action of GABA at the GABAa receptor 

(Suzdak, Schwartz et al. 1988).  
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Cannabis 

 

Cannabis is the product of dried flowertops of the cannabis sativa plant. 

There are currently an estimated 363.000 cannabis users in the Netherlands 

(Trimbos Instituut 2008). THC, the major psychoactive compound in cannabis, is an 

agonist for the CB1 and CB2 receptors of the endocannabinoïd system (ECS). The 

ECS is an atypical neurotransmitter system as the path of information transmission 

is reversed compared to 'typical' neurotransmission: Endocannabinoids (such as 

anandamide) are synthesized on-demand post-synaptically and diffuse back to the 

pre-synaptic axon terminal, where the CB1 receptor is located. CB1 activation in turn 

depresses the pre-synaptic membrane potential thus functionally silencing synaptic 

neurotransmission, ie. facilitating synaptic negative feedback. The CB1 receptor is 

abundantly expressed in the central nervous system whereas the CB2 receptor is 

expressed predominantly in the peripheral parts of the body (Ameri 1999). Probably 

due to the lack of CB1 receptors in the brain stem areas supporting vital functions, 

there are few hopitalisations due to cannabis use (54 in the Netherlands in 2006, 

including hospitalisation for addiction (Trimbos Instituut 2008)) and cannabis 

intoxication rarely induces serious adverse events. However, THC is a potent 

stimulant of heart rate and reduces vascular resistance (Sidney 2002), which may 

induce transiënt collapse due to cardiovascular disfunction (Ghuran and Nolan 

2000). Typical desired psychological drug effects of THC are relaxation, but also 

mild hallucinogenic effects. At high concentrations, THC can induce anxiety (Block, 

Erwin et al. 1998).   

THC, a highly lipophilic compound, is rapidly distributed from the blood 

into fatty tissue (among which the CNS), and after inhalation peak plasma 

concentration are reached within minutes and show a rapid decline, although 

cognitive and subjective effects peak around 15 to 60 minutes and last for several 

hours (Curran, Brignell et al. 2002;Strougo, Zuurman et al. 2008). 
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This thesis 

 

This thesis aimed to assess the acute effects of MDMA and ethanol or 

THC, two frequently used recreational drug combinations, on cognitive perfomance, 

subjective experience and physiological function. As MDMA, a psychostimulant, on 

the one hand, and ethanol or THC, both sedatives, on the other hand have quite 

distinct effect profiles, the effects of drug combinations were expected to differ from 

single drug effects.  

Both studies recruited sixteen healthy volunteers, regular users of ecstasy 

and alcohol or THC, and used a four-way, double blind, randomized, crossover, and 

placebo controlled design. MDMA (or matched placebo) was given orally as a 

capsule in a single dose of 100 mg, a relevant dose in the range of normal single 

recreational dosages (Tanner-Smith 2006).  

Ethanol (or glucose 5% as its placebo) was administered continuously by 

IV infusion of a 10% ethanol in 5% glucose solution for three hours. The alcohol 

clamp was targeted at 0.60/00, the equivalent of approximately 2-3 alcoholic 

beverages. This promillage is just above the legal limit for traffic participation in 

many Western countries and commonly used in social settings, as it is considered to 

be a safe and relatively moderate dose, despite significant CNS effects (Amatsaleh, 

Schoemaker et al. 2006). An intravenous administration route was chosen to ensure 

standardization of the rate and bioequivalence of ethanol administration, an 

important prerequisite for predictable pharmacokinetics of ethanol. 

THC (4, 6 and 6 mg at 90-minute intervals) or placebo were administered 

by inhalation using a Volcano® vaporizer (Storz-Bickel GmbH, Tüttlingen, 

Germany), a validated method of intrapulmonary THC administration (Abrams, 

Vizoso et al. 2007;Hazekamp, Ruhaak et al. 2006). The inhalation schedule was 

predicted to cause THC plasma concentrations and effects roughly corresponding to 

the use of one marijuana cigarette (Zuurman, Roy et al. 2008).  
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Abstract 

 

This review of the literature aims to identify the acute effects of MDMA 

(“ecstasy”) in healthy volunteers. The wide range of relevant but methodologically 

diverse tests was first grouped into clusters to allow an evaluation of tests that would 

otherwise have been excluded due to their low frequency of utilisation. The 

following three types of tests were evaluated: (1) Functional tests quantifying 

executive, attention, visual, motor, visuomotor and auditory functions, (2) 

Phenomenological tests assessing personal, subjective experiences, and (3) 

Physiological measures reflecting neurophysiological, endocrine and physiological 

parameters. 

MDMA showed robust effects on most of the phenomenological and 

physiological tests. Functional tests were scarce, preventing any meaningful 

conclusions to be drawn from their evaluation other than that these tests should be 

incorporated into future acute-effect studies.  

A striking dose-response relationship appeared for cardiovascular effects. 

At doses below 1.0 mg/kg MDMA no change was observed relative to placebo 

while above this dose all studies reported significant increases. Furthermore, pupil 

size, plasma cortisol and plasma prolactin levels proved responsive to MDMA 

administration. The reported subjective effects of MDMA matched the entactogenic 

profile.  

Although interest in the action of MDMA is considerable, the existing 

knowledge about the cognitive effects of MDMA in humans is still rather limited 

and further research into the drug’s effects is recommended, also in view of potential 

therapeutic uses of the drug. 
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Introduction 

 

In Western societies a considerable percentage of young people expose 

themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) under 

less then ideal circumstances (Gross, Barrett et al. 2002;Parrott 2001;Schifano, Di 

Furia et al. 1998). The potential hazards associated with this prevalent recreational 

use of the drug make in-depth knowledge about the acute effects of MDMA 

indispensable. Since trials to assess the therapeutic potential of MDMA are 

underway, a thorough understanding of the acute actions of MDMA has also 

become essential to assure drug safety. 

MDMA is rapidly absorbed following oral administration, is detectable in 

the blood within 30 minutes, reaches its T-max in 1-2 hours and has a half life of 

about 6-8 hours (Green, Mechan et al. 2003). The psychoactive effects last for 

approximately 2-4 hours in spite of persisting blood levels and in concordance with 

the persisting MDMA levels objective impairment of mental functioning lasts longer 

than the subjective effects (Lamers, Ramaekers et al. 2003). The pharmacokinetics 

and metabolism of MDMA are described in more detail elsewhere (de la Torre, 

Farre et al. 2000a;Green, Mechan et al. 2003). 

MDMA enters presynaptic serotonin nerve cells mainly by means of the 

presynaptic serotonin transporter (SERT), and releases the intra-cellular 5-HT 

storage into the synapse by reversal of the SERT. Depletion of 5-HT from its 

intracellular vesicles due to interference with the vesicular transporter (VMAT-2) 

has also been reported (Mlinar and Corradetti 2003). Vesicular depletion leads to 

high cytoplasmic 5-HT levels, which can be transported into the synapse by the 

SERT or even ‘leak’ out of the cell, thus increasing synaptic 5-HT levels. The 

characteristic psychological effects of MDMA (augmented social interaction, 

friendliness and empathy towards others) are thought to be caused by the enhanced 

serotonin neurotransmission. In concordance with this, pre-treatment with the 5-HT 

reuptake inhibitor citalopram, which effectively blocks SERT, was found to 

markedly but not completely attenuate the psychological effects of MDMA in 

healthy volunteers (Liechti and Vollenweider 2000a).  
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As the characteristic effects of the drug are not observed in strict 

hallucinogens nor in stimulants, MDMA is referred to as an ‘entactogen’ (Nichols 

and Oberlender 1990;Parrott 2001;Ramaekers, Lamers et al. 2002;Tancer and 

Johanson 2000;Vollenweider, Liechti et al. 2002). It also has arousing effects 

presumably induced by dopamine and/or noradrenaline release (Colado, O'Shea et 

al. 2004;Liechti and Vollenweider 2000;Liechti and Vollenweider 2001;Mills, 

Rusyniak et al. 2004).  

Several studies have shown MDMA to be neurotoxic in rats and primates 

(Jones, Duvauchelle et al. 2005;Ricaurte, Yuan et al. 2000). The process of 

neurodegeneration is exacerbated by high ambient temperatures and mainly occurs 

in fine serotonergic axons (Sanchez, O'Shea et al. 2004). This effect was explained 

in a report in which increased temperature was found to raise the ratio of 

dopamine/serotonin uptake by SERT in vitro (Saldana and Barker 2004). Dopamine 

degradation in the 5-HT terminal and the subsequent formation of radical oxygen 

species (ROS) thus might play a causal role in the drug’s neurotoxicity (Colado, 

O'Shea et al. 2004;Escobedo, O'Shea et al. 2005), in addition to its own metabolism 

that also leads to ROS formation (Colado, O'Shea et al. 2004;Johnson, O'Callaghan 

et al. 2004;Jones, Duvauchelle et al. 2005). Although neurotoxicity has clearly been 

demonstrated in animals, and some studies have suggested neurodegeneration in 

humans (Reneman, Booij et al. 2001a;Reneman, Booij et al. 2001b), functional 

impairment has not been convincingly linked to the actions of MDMA (Curran 

2000).  

Many retrospective studies have been performed to identify functional 

impairment associated with the recreational use of ecstasy or ‘XTC’. Although the 

results are inconsistent or even contradictory, memory is most frequently reported to 

be affected by MDMA (Daumann, Fischermann et al. 2004;Verbaten 2003;Verkes, 

Gijsman et al. 2001). The most consistent predictor of cognitive impairment appears 

to be the number of tablets per occasion, i.e. the stacking of XTC pills to prolong the 

drug’s effects (Mccann, Szabo et al. 2005). This complies with the data on acute 

effects, where systemic metabolisation leading to the formation of ROS is necessary 

for neurotoxicity to develop (Colado, O'Shea et al. 2004). The stacking of pills is 
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likely to exhaust antioxidant resources, thereby increasing toxicity, causing 

subsequent axonal degeneration. This hypothesis is strengthened by the finding that 

co-administration of drugs that lower the hyperthermic response and/or provide 

radical trapping with MDMA tend to decrease this nerve damage while the 

entactogenic MDMA effects remain unaltered (Escobedo, O'Shea et al. 2005). 

Prospective studies investigating the effects of an illegal and potentially 

neurotoxic drug may be rejected or amended on the grounds of ethical issues, but the 

interpretation of retrospective studies into MDMA-induced functional impairments 

is hampered by methodological difficulties making conclusions questionable. The 

main confounding factor is that MDMA users are generally multidrug users, either 

consciously or due to the impurity of the XTC pills. As a result, any functional 

impairment cannot be strictly attributed to MDMA use since it might partly be 

associated with the concurrent substance or even to the multidrug use itself. A 

second confounder is that due to their design retrospective studies rely on self-

reported drug use. As discussed above, as the drug use might affect memory and 

may not be restricted to MDMA alone, and because the contents of the XTC tablets 

used is variable, the data and conclusions drawn are inherently controversial. And 

finally, pre-existing group differences are possible and remain unknown. For an in-

depth discussion of this latter topic we refer to Curran et al. (Curran 2000).  

 With the present study we aimed to create a profile of the acute effects of 

MDMA in humans by verifying or dismissing current assumptions about these 

effects by means of a comprehensive review of the available literature. For inclusion 

in this review studies needed to meet stringent criteria and the effects reported were 

compared to the results of the other studies to substantiate the validity of the 

conclusions.  
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Materials and methods 

 

Structured evaluation of the literature  

We performed a literature search via PubMed using the following 

keywords: MDMA OR ecstasy OR XTC OR 3,4-methylenedioxymethamphetamine, 

and human OR volunteer. This yielded a total of 1446 articles, which were 

subsequently manually scanned for:  

a. Administration of MDMA in healthy volunteers 

b. A placebo-controlled design 

c. Measurement of acute-effect parameters 

d. Administration of a known and verified dose  

e. Being an original investigation. 

Only articles that met all the abovementioned criteria were included and their 

references were also scanned for relevant articles. The test results mentioned in the 

selected articles were all recorded onto a datasheet, together with dose information 

and number of participants. 

 

Grouping of individual test results 

A structured procedure (de Visser, van der Post et al. 2001;de Visser, van 

der Post et al. 2003;Dumont, de Visser et al. 2005) was adopted to obtain an 

overview of the responses of tests or test variants to MDMA involving a progressive 

evaluation of all selected tests. The results from tests that were used only once or by 

one research group could not be generalised, and were therefore not analysed 

individually. Tests that could be regarded as variants from a basic form were 

grouped. Subsequently, clusters of tests were grouped further based on their 

predominant domain (see Table 1). The effects on these domains were also reviewed 

whenever relevant. The three categories we identified were: 

1. “Functional” tests; tests of neuropsychological function; i.e. executive 

function, attention, visual/visuomotor & auditory function and motor 

function. 
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2. “Phenomenological” tests; tests that attempt to quantify personal 

experiences; i.e. subjective measurements. 

3. “Physiological” measures; tests that measure physiological parameters; i.e. 

neurophysiological, endocrine and other physiological measures. 

 

Because even for comparable methods a large diversity of test parameters 

was found, we were unable to quantitatively record the individual test results. 

Instead, if a test yielded a statistically significant difference from placebo or baseline 

this was scored as + when the effect indicated an improvement or increase; if the 

effect was not significant it was classified as =  or as - when it significantly 

demonstrated an impairment or decrease. Whether a difference from placebo was 

scored as improvement (+) or impairment (-) depended on the psychosocial 

desirability of the response (i.e. an increase in reaction-time scores was interpreted 

as an impairment). Although, of course, statistical significance is not only 

determined by the variance and the size of the effect but also by factors like group 

size, these factors could not be taken into account as the results were too variable for 

a formal meta-analysis. Nonetheless, our semi-quantitative review did allow an 

evaluation of the applicability of a test as an effect measure in typical acute-drug-

effects studies with limited numbers of participants. No efforts were made to further 

quantify the level of statistical significance. 

 

Test criteria 

Not all tests are equally valuable. Ideally, a test should meet the following 

criteria to be considered to be representing the effect of the drug of interest:  

a. Be sensitive to a specific effect of the drug of interest 

b. Show a clear and consistent response across studies 

c. Reflect a clear dose-response relationship 

d. Demonstrate a plausible association between the effect and the 

pharmacology of the drug of interest 

However, only the first criterion is a prerequisite, with the other criteria 

strengthening the justification for the choice of a particular test. 
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Consistency of responses 

As mentioned above, the response of a test to a drug can be either positive 

(increased compared to placebo) or negative (decreased compared to placebo), or it 

can show no change. A useful test is expected to show a consistent response to a 

drug within a certain dose range. A test is not considered useful if the outcome is as 

often positive as it is negative, i.e. showing large variations around baseline 

outcomes, or if a large proportion of studies fails to show significant effects. Tests 

were therefore arbitrarily considered to produce a consistent response when results 

were significant and reflecting a similar outcome (either positive or negative) in at 

least 20% of the reviewed studies. Accordingly, test results were judged as 

inconsistent when fewer than 20% of the tests showed statistically significant 

results, or when the directions of the responses were variable (i.e. when more than 

20% decreased and more than 20% increased). This arbitrary cut-off value only 

eliminated tests that hardly ever responded to the drug and could therefore not be 

considered to be useful tests for this drug.  
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Results 

 

Of the total, 29 articles were found to meet all criteria, yielding 150 

separate tests that were subdivided into 39 clusters and eight domains (see Table 1). 

On average, each study included ten subjects (range: 2-16). The average age was 

24.7 years, with ages ranging from 18 to 40 years. One of every four participants 

was female and all participants had completed some form of secondary education. 

Reported demographics were relatively uniform across studies, with a notable 

exception of the group of Vollenweider who included MDMA naïve participants 

whereas most studies had required previous MDMA use.  

 

Test name Cluster 
Executive domain 

Tower of London(Lamers, Ramaekers et al. 2003) Planning 
Word fluency(Lamers, Ramaekers et al. 2003) Language 

Attention 
DSST(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002) DSST 
Stroop test - % errors(Vollenweider, Gamma et al. 1998), Stroop test – reaction time(Vollenweider, Gamma et 

al. 1998) 
Selective 
attention 

Continuous Perfomance Task(Gamma, Buck et al. 2000) Continuous 
performance 

DAT – tracking error(Lamers, Ramaekers et al. 2003), DAT reaction time(Lamers, Ramaekers et al. 2003), 
MCRT – initiation time(Lamers, Ramaekers et al. 2003), OMEDA- divided attention error(Lamers, 

Ramaekers et al. 2003) 

Divided 
attention 

Visual, visuomotor and auditory domain 
OMEDA- time to contact error(Lamers, Ramaekers et al. 2003) Movement 

estimation 
Signal detection task(Lamers, Ramaekers et al. 2003) Visual 

search 
Motor domain 

MCRT – movement time(Lamers, Ramaekers et al. 2003), Critical tracking(Lamers, Ramaekers et al. 2003) Motor 
control 

Vienna apparatus-reaction time(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002)  Reaction 
time 

Subjective domain 
VAS closeness to others(Harris, Baggott et al. 2002), EWL emotional excitability - 
sensitivity(Liechti, Baumann et al. 2000), VAS social(Tancer and Johanson 2003), POMS friendly(Cami, Farre et al. 

2000;Lamers, Ramaekers et al. 2003;Tancer and Johanson 2003;Tancer 2004), VAS friendly(Harris, Baggott et al. 2002;Tancer and 

Johanson 2003) 

Social 
interaction 

 
Table 1. Overview of all reported tests and measurements (with the source studies between brackets), 
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Test name Cluster 

Subjective domain 
VAS alert(Tancer and Johanson 2003), POMS arousal(Cami, Farre et al. 2000;Tancer and Johanson 2003;Tancer 2004), 
EWL mood questionnaire- activity(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 

2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Vollenweider, Gamma et al. 1998), SDEQ autonomic 
arousal(Harris, Baggott et al. 2002), SDEQ cognitive improvement(Harris, Baggott et al. 2002), VAS 
stimulated(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002;Tancer and Johanson 2003;Tancer 

2004), ARCI A(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002;Tancer and Johanson 

2003;Tancer 2004), ARCI BG(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002;Tancer and 

Johanson 2003;Tancer 2004), VAS performance(Cami, Farre et al. 2000), VAS concentration(Cami, Farre et al. 

2000), POMS vigor(Cami, Farre et al. 2000;Lamers, Ramaekers et al. 2003;Tancer and Johanson 2003;Tancer 2004) 

Arousal 

EWL well-being- heightened mood(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 

2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Vollenweider, Gamma et al. 1998), SDEQ mood 
euphoria(Harris, Baggott et al. 2002c), VAS active(Cami, Farre et al. 2000), VAS passive(Cami, Farre et al. 2000), 
ARCI MBG(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002;Tancer and Johanson 

2003;Tancer 2004) 

Euphoria 

OAV Oceanic Boundlessness(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 2000;Liechti, 

Saur et al. 2000;Liechti and Vollenweider 2000;Vollenweider, Gamma et al. 1998), EWL well-being-self-
confidence(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 2000;Liechti, Saur et al. 2000;Liechti and 

Vollenweider 2000;Vollenweider, Gamma et al. 1998), VAS confident(Harris, Baggott et al. 2002;Tancer and Johanson 2003), 
VAS fear(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS miserable(Tancer 

and Johanson 2003), POMS elation(Cami, Farre et al. 2000;Tancer 2004), VAS calm(Cami, Farre et al. 2000), VAS 
contentedness(Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), SDEQ relaxation(Harris, Baggott et al. 

2002), EWL emotional excitability(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 

2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Vollenweider, Gamma et al. 1998), POMS positive mood(Cami, 

Farre et al. 2000;Tancer and Johanson 2003), PANSS (positive and negative syndrome scale)(Harris, Baggott et 

al. 2002) 

Mood 

VAS self conscience(Tancer and Johanson 2003), EWL anxiety – thoughtfulness- 
contemplativeness(Liechti, Baumann et al. 2000), VAS insightful(Harris, Baggott et al. 2002), EWL – 
extroversion(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 2000;Liechti, Saur et al. 2000;Liechti and 

Vollenweider 2000;Vollenweider, Gamma et al. 1998) 

Extroversion 

EWL anxiety – depressiveness(Liechti, Baumann et al. 2000), POMS depression(Cami, Farre et al. 

2000;Lamers, Ramaekers et al. 2003;Tancer and Johanson 2003), VAS down(Tancer and Johanson 2003), VAS 
depression or sadness(Cami, Farre et al. 2000), VAS sadness(Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et 

al. 2002) 

Depression 

EWL – inactivation – dazed state(Liechti, Baumann et al. 2000),  POMS confusion(Cami, Farre et al. 

2000;Tancer 2004), VAS confusion(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 

2002;Tancer and Johanson 2003) 

Confusion 

EWL – inactivation – tiredness(Liechti, Baumann et al. 2000), POMS fatigue(Cami, Farre et al. 2000;Lamers, 

Ramaekers et al. 2003;Tancer and Johanson 2003), VAS tired(Tancer and Johanson 2003), VAS sedated(Tancer and 

Johanson 2003;Tancer 2004), EWL – inactivation(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 

2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Vollenweider, Gamma et al. 1998), SDEQ cognitive 
impairment(Harris, Baggott et al. 2002), VAS drowsiness(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-

Lopez, Farre et al. 2002), ARCI PCAG(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 

2002;Tancer and Johanson 2003;Tancer 2004) 

Sedation 

VAS irritable(Tancer and Johanson 2003), VAS on edge(Tancer and Johanson 2003), POMS anger(Cami, Farre et 

al. 2000;Lamers, Ramaekers et al. 2003;Tancer and Johanson 2003), EWL emotional excitability – aggression-
anger(Liechti, Baumann et al. 2000) 

Aggression 

Table 1. Overview of all reported tests and measurements (with the source studies between brackets), 
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Test name Cluster 
Subjective domain 

ARCI LSD(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002;Tancer and Johanson 

2003;Tancer 2004), EWL anxiety – apprehension anxiety(Liechti, Baumann et al. 2000), State-Trait 
Anxiety Inventory (STAI) (Liechti, Saur et al. 2000;Liechti and Vollenweider 2000), POMS anxiety(Cami, Farre et 

al. 2000;Lamers, Ramaekers et al. 2003;Tancer and Johanson 2003;Tancer 2004), OAV Anxious Ego Dissolution(Frei, 

Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 

2000;Vollenweider, Gamma et al. 1998), EWL anxiety(Gamma, Buck et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 

2000a;Vollenweider, Gamma et al. 1998), VAS nervous(Cami, Farre et al. 2000), VAS anxious(Tancer and Johanson 

2003;Tancer 2004), SDEQ tension(Harris, Baggott et al. 2002) 

Anxiety 

SDEQ ambivalence(Harris, Baggott et al. 2002), HRS somaestasia(Tancer and Johanson 2003;Tancer 2004), HRS 
affect(Tancer and Johanson 2003;Tancer 2004), HRS perception(Tancer and Johanson 2003;Tancer 2004), HRS 
cognition(Tancer and Johanson 2003;Tancer 2004), HRS intensity(Tancer and Johanson 2003;Tancer 2004), OAV 
Visionary restructuralisation(Frei, Gamma et al. 2001;Gamma, Buck et al. 2000;Liechti, Baumann et al. 2000;Liechti, Saur 

et al. 2000;Liechti and Vollenweider 2000a;Vollenweider, Gamma et al. 1998), VAS different surrounding(Farre, de la 

Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS changes in colors(Cami, Farre et al. 2000;Farre, de la Torre et al. 

2004;Hernandez-Lopez, Farre et al. 2002), VAS changes in shapes(Cami, Farre et al. 2000;Farre, de la Torre et al. 

2004;Hernandez-Lopez, Farre et al. 2002), VAS changes in lights(Cami, Farre et al. 2000;Farre, de la Torre et al. 

2004;Hernandez-Lopez, Farre et al. 2002), VAS changes in hearing(Cami, Farre et al. 2000;Farre, de la Torre et al. 

2004;Hernandez-Lopez, Farre et al. 2002), SDEQ LSD(Harris, Baggott et al. 2002),VAS hallucinations-
auditory(Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS hallucinations-visual(Farre, de la 

Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS hallucinations- seeing lights or spots(Cami, Farre et 

al. 2000), VAS hallucinations- hearing sound or voices(Cami, Farre et al. 2000), VAS 
hallucinations- seeing animals, things, insects, or people(Cami, Farre et al. 2000), VAS different, 
changed, or unreal body feeling(Cami, Farre et al. 2000), VAS different or unreal 
surroundings(Cami, Farre et al. 2000), VAS changes in distances(Cami, Farre et al. 2000;Farre, de la Torre et al. 

2004;Hernandez-Lopez, Farre et al. 2002) 

Halluci-
nation 

VAS high(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Harris, Baggott et al. 2002;Hernandez-Lopez, Farre et al. 2002;Tancer 

and Johanson 2003;Tancer 2004), VAS hungery(Tancer and Johanson 2003;Tancer 2004), VAS drunken(Cami, Farre et 

al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS diziness(Cami, Farre et al. 2000;Farre, de la Torre 

et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS any effect(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Harris, 

Baggott et al. 2002;Hernandez-Lopez, Farre et al. 2002) 

Drug effect 

VAS bad drug effect(Tancer and Johanson 2003), VAS good drug effect(Cami, Farre et al. 2000;Tancer and 

Johanson 2003), Drug liking questionaire(Tancer and Johanson 2003), VAS drug liking(Harris, Baggott et al. 

2002), VAS good effects(Farre, de la Torre et al. 2004;Harris, Baggott et al. 2002;Hernandez-Lopez, Farre et al. 2002), VAS 
liking(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002), VAS bad effects(Cami, Farre 

et al. 2000;Farre, de la Torre et al. 2004;Harris, Baggott et al. 2002;Hernandez-Lopez, Farre et al. 2002) 

Drug liking 

Neurophysiological domain 
EEG(Frei, Gamma et al. 2001), LORETA(Frei, Gamma et al. 2001) EEG 
Prepulse inhibition-acoustic startle(Liechti, Geyer et al. 2001;Vollenweider, Remensberger et al. 1999) Inhibition 
rCBF change(Gamma, Buck et al. 2000) Cerebral 

blood flow 
Maddox wing(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Hernandez-Lopez, Farre et al. 2002) Extraocular 

muscle 
tension 
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Test name Cluster 

Endocrine domain 
ACTH(Grob, Poland et al. 1995) ACTH 
DHEA(Harris, Baggott et al. 2002) DHEA 
GH(Mas, Farre et al. 1999) GH 
LH(Harris, Baggott et al. 2002) LH 
Progesterone(Harris, Baggott et al. 2002) Progesterone 
FSH(Harris, Baggott et al. 2002) FSH 
Estradiol(Harris, Baggott et al. 2002) Estradiol 
Prolactin(Grob, Poland et al. 1995;Harris, Baggott et al. 2002;Mas, Farre et al. 1999;Pacifici, Pichini et al. 2004) Prolactin 
ADH(Forsling, Fallon et al. 2001) ADH 
Cortisol(Farre, de la Torre et al. 2004;Forsling, Fallon et al. 2001;Harris, Baggott et al. 2002;Lamers, Ramaekers et al. 2003;Mas, Farre 

et al. 1999;Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 1999;Pacifici, Zuccaro et al. 2001;Tancer and Johanson 2003) 
Cortisol 

Physiological domain 
IL-1β(Pacifici, Zuccaro et al. 2001), IL-4(Pacifici, Zuccaro et al. 2001), IL-6(Pacifici, Zuccaro et al. 2001), TNFα(Pacifici, 

Zuccaro et al. 2001), IFNγ(Pacifici, Zuccaro et al. 2001) 
IL-2(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 2001), IL-10(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 2001), 
TGF-β1(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 2001), CD3(Pacifici, Zuccaro et al. 1999) , CD19(Pacifici, Pichini 

et al. 2004;Pacifici, Zuccaro et al. 1999;Pacifici, Zuccaro et al. 2001), NK cells(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 

1999;Pacifici, Zuccaro et al. 2001) , CD8(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 1999;Pacifici, Zuccaro et al. 2001) , 
CD4/CD8 ratio(Pacifici, Pichini et al. 2004;Pacifici, Zuccaro et al. 1999;Pacifici, Zuccaro et al. 2001), CD4(Pacifici, Pichini et 

al. 2004;Pacifici, Zuccaro et al. 1999;Pacifici, Zuccaro et al. 2001) 

Immune 
function 

[Na+](Forsling, Fallon et al. 2001) Ions 
Respiratory Rate(Harris, Baggott et al. 2002) Respiratory 

rate 
Osmolality(Forsling, Fallon et al. 2001) Osmolality 
Temperature(Farre, de la Torre et al. 2004;Grob, Poland et al. 1995;Harris, Baggott et al. 2002;Lamers, Ramaekers et al. 

2003;Liechti, Baumann et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Mas, Farre et al. 1999;Tancer and Johanson 

2003;Vollenweider, Gamma et al. 1998) 

Temperature 

Pupil-diameter(Farre, de la Torre et al. 2004;Harris, Baggott et al. 2002;Lamers, Ramaekers et al. 2003;Mas, Farre et al. 1999) Pupil-
diameter 

Systolic Blood Pressure(Farre, de la Torre et al. 2004;Gamma, Buck et al. 2000;Grob, Poland et al. 1995;Harris, Baggott et al. 

2002;Lamers, Ramaekers et al. 2003;Lester, Baggott et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Liechti and 

Vollenweider 2000;Mas, Farre et al. 1999;Tancer and Johanson 2003;Tancer 2004;Vollenweider, Gamma et al. 1998), Diastolic 
Blood Pressure(Farre, de la Torre et al. 2004;Gamma, Buck et al. 2000;Grob, Poland et al. 1995;Harris, Baggott et al. 2002;Lamers, 

Ramaekers et al. 2003;Lester, Baggott et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Mas, Farre et al. 1999;Tancer and 

Johanson 2003;Tancer 2004;Vollenweider, Gamma et al. 1998), Heart Rate(Farre, de la Torre et al. 2004;Harris, Baggott et al. 

2002;Lamers, Ramaekers et al. 2003;Lester, Baggott et al. 2000;Liechti, Saur et al. 2000;Liechti and Vollenweider 2000;Mas, Farre et al. 

1999;Tancer and Johanson 2003;Tancer 2004) 

Cardiovascul
ar 
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Results are presented as overall domain scores whenever appropriate, 

subdivided into cluster scores. Separate (i.e. non-grouped) tests that were performed 

more then four times and by more than one research group are reported per cluster. 

All the tests that were evaluated are listed in Table 2 together with their 

corresponding domains and clusters. The effects reflect significant MDMA-induced 

increases (+) or decreases (-) compared to placebo. The most striking result was the 

finding that, relative to the other groups, the group of neuropsychological tests 

yielded very few results. In the next paragraphs the various test results are discussed 

per domain and cluster. 

 

Cognitive effects 

The domains Executive function and Visual, visuomotor and auditory 

function both yielded only two test results and were therefore not further evaluated. 

None of the eleven tests in the Attention domain had generated a significant 

response. No studies were found that had employed tests assessing Memory. Of the 

six tests measuring Motor function, two showed significant improvement. 
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Domain Cluster Test Response 
(%) 

Dose 
range 
effect 
(mg/kg) 

Dose 
range no 
effect 
(mg/kg) 

n 

Executive 2 
Attention  =  1.0-1.7 11 
Memory 0 
Visual, visuomotor & auditory 2 
Motor 33 1.1  1.1-1.7 6 
Subjective 

 36 1.1-2.0 0.5-2.1 14 Social 
interaction POMS friendly 29 1.0-1.1 1.1-2.1 7 

 38 1.1-2.1 0.5-2.1 58 
POMS arousal =  1.1-2.1 5 
POMS vigor =  1.0-2.1 7 
ARCI A 88 1.1-2.1 1.6 8 
ARCI BG 38 1.3-2.0 1.1-2.1 8 

Arousal 

VAS stimulated 100 1.1-2.1  8 
 88 0.5-2.1 1.1-1.6 16 Euphoria 
ARCI MBG 75 1.3-2.1 1.1-1.6 8 
 62 0.5-2.0 0.5-2.1 42 Mood 
POMS elation 60 1.1-1.7 1.6-2.1 5 

Extroversion  70 1.5-1.7 0.5-2.0 10 
Depression  =  1.0-2.0 10 

 58 1.0-2.1 1.1-2.0 12 
POMS confusion 40 1.7-2.1 1.1-2.1 5 

Confusion 

VAS confusion 40 1.3-1.7 1.0-2.0 5 
 = 1.5-2.0 0.5-2.1 32 Sedation 
ARCI PCAG =  1.1-2.1 8 

Aggression  =  1.0-2.0 7 
 67 0.5-2.1 1.1-2.0 36 
ARCI LSD 100 1.1-2.1  8 

Anxiety 

POMS anxiety 57 1.0-2.1 1.1 7 
Hallucination  46 1.1-2.1 0.5-1.6 57 

 53 1.1-2.1 0.5-2.1 30 
VAS any effect 84 1.1-1.7 0.5 6 

Drug effect 

VAS high 90 1.1-2.1 0.5 10 
 57 1.1-2.0 0.5-2.0 21 
VAS good effect 84 1.1-1.7 0.5 6 

 

Drug liking 

VAS bad effect 16 1.5 0.5-1.7 6 
Neurophysiological 89 1.3-1.7 1.1 9 

 
Cortisol Cortisol 92 0.5-2.0 0.5 12 

Endocrine 
 

Prolactin Prolactin 56 0.75-1.5 0.25-1.0 9 
 
Temperature Temperature 21 1.0-1.5 0.25-1.7 14 
Pupil diameter Pupil diameter 83 1.0-1.5 0.5 6 

 69 1.0-2.1 0.25-1.0 61 
Heart rate 68 1.0-2.1 0.25-1.0 19 
Systolic blood 
pressure 

71 1.0-2.1 0.25-1.0 21 

Physiological 

Cardiovascular 

Diastolic blood 
pressure 

71 1.0-2.1 0.25-1.0 21 

Table 2. Domain, cluster and dose-related test responses (in percentages) for all tests analysed. Legend: 
Response (%)= percentage of results that showed an increase relative to placebo; Dose range effect 
(mg/kg) = Dose range for responsive results; Dose range no effect (mg/kg)= Dose range for non-
responsive results; n = total number of reported test results. 
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Subjective effects 

A large majority of the studies we reviewed included some type of 

subjective test. For the subjective assessments, individual scales were grouped into 

the following 13 scale clusters: social interaction, arousal, euphoria, mood, 

extroversion, depression, confusion, sedation, aggression, anxiety, hallucination, 

drug effect, and drug liking. The overall subjective effects are depicted in Figure 1.  

 

In the scale cluster 

Social interaction, reflecting 

the entactogenic effects of 

MDMA, five of the 14 test 

results proved to be elevated. 

 POMS Friendly was 

evaluated separately; two out 

of seven scores showed 

increase. 

In the cluster 

Arousal, comprising scales 

measuring arousing, activating effects, a total of 58 outcomes were analysed of 

which 22 were increased.  

 POMS Vigor did not show a response.  

 ARCI A was increased in seven of the eight test results.  

 ARCI BG was reported eight times, of which three test results were 

increased. 

 VAS Stimulated was increased in all eight test results. 

 POMS Arousal did not show a response. 

For the scale cluster Euphoria 16 test results were reported of which 14 

showed an increase. 

 ARCI MBG was increased in six out of eight test results.  

Figure 1. The subjective mood rating scales (clustered) with 
their reported increases (in percentages) after MDMA 
administration relative to placebo. 
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The scale cluster Mood comprised a large group of subjective mood scales. 

MDMA induced robust effects here: 26 of the total of 42 test results were increased. 

Negative mood scales (fear, miserable) did not respond.  

 POMS Elation was increased in two out of five test results. 

Scores for the scale cluster Extroversion were increased in seven of ten test 

results.  

The scale cluster Depression did not show a response. 

Seven of the 12 test results in the cluster Confusion were increased.  

 POMS Confusion was increased in two out of five test results. 

 VAS Confusion was also increased in two out of five test results. 

The scale cluster Sedation did not show show a response. 

 One of seven ARCI PCAG scores was decreased.  

The scale cluster Aggression did not show a response. 

The scale cluster Anxiety showed increases in 24 of the 36 test results.  

 ARCI LSD was reported eight times and all test results were increased.  

 POMS Anxiety showed increase in four of seven test results.  

The scale cluster Hallucination showed an effect profile similar to that of 

Anxiety scores with 35 of 66 test results being increased after MDMA. Note that the 

dose range inducing elevated values (1.1-2.1 mg/kg) was slightly higher than the 

range in the tests that failed to show an effect (0.5-1.6 mg/kg). 

In the scale cluster Drug effect, reflecting side-effects attributed to the drug, 

16 out of 30 test results were increased. 

 VAS Any effect was increased in five out of six test results, the 

unresponsive dose being 0.5 mg/kg. 

 VAS High showed no change in one test result (dose; 0.5 mg/kg) out of a 

total of ten, all other test results were increased. 

The scale cluster Drug liking was increased in eight of the 15 test results. 

Most unresponsive test results were observed for negative drug-liking scales, most 

clearly illustrated by the two separately evaluated VAS scales: 

 VAS Good effects was increased in five of six test results. 

 VAS Bad effects was increased in only one of six test results. 
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Neurophysiological measurements 

Neurophysiological measures were both few and diverse, although all but 

one test showed a significant response. No specific measure was reported often 

enough to justify a separate evaluation.  

 

Endocrine measurements 

The most frequently assessed hormones were cortisol and prolactin. 

Cortisol levels were increased in eleven of the twelve studies. The one study that 

failed to show a significant increase used the lower MDMA dose of 0.5 mg/kg. In 

five of the nine studies prolactin levels were elevated with the unresponsive results 

on average being associated with a lower dose.  

 

Physiological effects 

Temperature was increased in three of 14 test results and Pupil diameter 

was measured six times and increased in all studies using a dose range of 1.0-1.5 

mg/kg; the one test using a dose of 0.5 mg/kg failed to demonstrate an effect.  

The cluster Cardiovascular 

effects comprised 61 test results of 

which 18 did not show any change 

(dose range 0.25-1.0 mg/kg). Of the 

six trials that used 1.0 mg/kg, three 

reported increases. Studies 

administering a dose of 1.0-2.1 

mg/kg MDMA all reported increase.  

This remarkable dose-

response association was also seen in 

the separately analysed tests within 

this group, whose outcomes are 

depicted in Figure 2. Systolic blood pressure was reported 21 times with a dose 

range of 0.25-1.0 mg/kg (n=6) failing to induce a change whereas all tests using a 

dose range of 1.0 to 2.1 mg/kg (n=15), were increased. The results reported for 
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Figure 2. Dose-response relationship for the 
MDMA-induced cardiovascular effects (in 
percentages) relative to placebo. SBP= systolic 
blood pressure; DBP= diastolic blood pressure; 
HR= heart rate; %= percentage of studies 
reporting an increase  
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Diastolic blood pressure were identical to the values reported for systolic pressure. 

Finally, of the total of 19 heart-rate measurements six showed no change, all within 

the dose range 0.25-1.0 mg/kg. The remaining 13 tests using doses between 1.0 to 

2.1 mg/kg yielded increases.  
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Discussion 

 

To our knowledge this review comprises all placebo-controlled studies 

published to date that administered MDMA to healthy humans. The tests reported in 

the selected studies were reviewed, and the dose-related results were recorded in a 

database. Most studies that were discarded did not measure acute effects in humans, 

while a small percentage of the remaining studies performed the research in a 

“naturalistic” setting thus not conforming to our selection criteria.  

The majority of the tests were performed infrequently, and, rather than 

rejecting tests on the basis of their limited application - by which we would have 

ignored possibly valuable information - we opted for an evaluation of tests grouped 

according to the effect or function they measured. Arguably, as a result of 

methodological or other differences, such group appraisals may compromise the 

comparative value of or even devaluate the effects reported. Any manipulation of 

data might obscure information: tests that in fact represent the ‘ideal’ measure (i.e. 

represent an MDMA effect) could be masked by other non-responsive tests in the 

same group. However, rejection of these tests on the basis of limited experience 

would have ignored possibly valuable information. Our evaluation effectively 

yielded three categories of tests measuring functional, phenomenological or 

physiological aspects. Next a summary and the implications of our findings will be 

discussed for the various domains of each category. 

The studies that performed clinical research into the acute effects of 

MDMA in healthy volunteers almost without exception employed subjective and 

physiological tests, but assessments of neuropsychological functioning were not as 

frequent. Most surprising was the complete lack of studies reporting on memory 

even though retrospective studies into the long-term effects of MDMA most 

consistently indicate this area to be affected (Verbaten 2003;Verkes, Gijsman et al. 

2001). The domains ‘executive’ and ‘visual, visuomotor and auditory’ also suffered 

from a low number of reported results, which prohibited their evaluation (see Table 

2). The domain ‘attention’ comprised eleven results but showed no change, while 

the ‘motor’ domain, with a total of six results, showed modest increase. The limited 
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number of tests in these domains clearly hinders any meaningful conclusion to be 

drawn from their evaluation, although this category is in potential most valuable. 

Although several research groups have performed detailed work on MDMA 

effects, with Vollenweider et al. (Vollenweider, Liechti et al. 2002) extensively 

researching acute MDMA effects, De la Torre et al. (Pacifici, Zuccaro et al. 2000) 

focussing on immune function and Lamers et al. (Lamers, Ramaekers et al. 2003) on 

driving-related behaviour, we feel that reproduction and extension of their work is 

warranted to allow the results obtained by these research groups to be generalised.  

 In contrast to the functional studies, our search yielded an abundance of 

phenomenological data (see Fig. 1). The entactogenic profile of MDMA was 

represented in that, relative to placebo, increases were reported for the pleasurable 

subjective effects, as reflected by the scale clusters ‘euphoria’, ‘extroversion’ and 

‘social interaction’ scores, whereas the scores for the negative clusters ‘aggression’, 

‘sedation’ and ‘depression’ failed to show change.  

Most neurophysiological measurements that were evaluated responded to 

MDMA administration, but none of the tests were performed often enough to 

warrant separate evaluation. However, since neurophysiological assessments are 

designed to detect changes in physiological parameters of the CNS rather than to 

measure a specific cognitive function, these tests will respond to almost any 

psychoactive drug, not just MDMA. 

Endocrine effects were limited to the evaluation of plasma cortisol and 

prolactin measurements. Results were as may be expected from a primary serotonin-

releasing agent: the increase in cortisol levels was more robust than that of prolactin. 

Of the physiological effects that were evaluated, only temperature showed a 

very weak effect. The implications of this divergent outcome will be discussed later 

in this section. 

A remarkable dose-response association was observed in the cardiovascular 

measurements, where 1.0 mg/kg showed to be a clear cut-off dose for MDMA to 

have cardiovascular effects; below 1.0 mg/kg MDMA failed to induce any changes 

while all the studies that administered more then 1.0 mg/kg MDMA reported 

significant increases compared to placebo (Fig. 2). 
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Pupil diameter measurements all proved very sensitive to MDMA. All but 

one result, linked to a low dose (0.5 mg/kg), were increased after MDMA 

administration. This measure, although very sensitive, is not specific for MDMA, 

however, as many agents that interact with the autonomic nervous system cause 

pupil dilation (Dumont, de Visser et al. 2005). This limitation holds for all 

physiological measures, which, as discussed in the methods section, devaluates the 

relevance of these tests. Nevertheless, physiological data are, of course, crucial when 

formulating safety guidelines. 

Clinical research into the actions of psychoactive compounds has a 

drawback in that the outcomes may not reflect the effects the same drug would 

induce in ‘normal’ situations. Clearly, the drug’s effects are dependent upon the 

user’s surroundings and mood, factors that are nearly impossible to fully reconstruct 

in the laboratory. This holds for the current weak temperature-related findings, for 

example, where robust increases after MDMA administration have been reported: 

some reports even mentioned ecstasy induced hyperthermia and fatal complications 

(Garcia-Repetto, Moreno et al. 2003;Ravina, Quiroga et al. 2004). It should be noted 

that animal studies have shown that the effects of MDMA on body temperature are 

dependent on ambient temperature (Green, O'Shea et al. 2004), where normal room 

temperature (20-22˚C) proved not to induce any changes in body temperature. As 

the temperature in clinical laboratories is most likely to be around the 20˚C mark, 

the studies conducted in this setting will inherently not show a significant effect of 

MDMA on body temperature.  

On a related note, the scale cluster Anxiety showed an increase, which 

seems to conflict with the drug’s overall subjective profile of pleasurable, desired 

effects. However, this unexpected effect may be associated with the unusual 

circumstances the participants found themselves in, which may have caused 

considerable psychological stress. Also, the cluster contains data of studies with 

MDMA-naïve volunteers in whom the unfamiliar experience with the drug might 

have translated into anxiety. Yet, an analysis of the anxiety scores of the subgroup of 

MDMA-familiar volunteers still yielded a 58%-increase. Similarly, the social-

interaction scores did not increase as much as as we had expected from this 
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entactogenic drug. Again, for social interactions to increase, circumstances and 

surroundings are crucial, making it plausible that the laboratory conditions also 

depressed this characteristic property of MDMA. 

Psychopharmacological research into the acute effects of drugs in humans 

is heavily dependent on the tests that are employed. With this in mind it is important 

that validated test batteries are used that can detect alterations in the broad range of 

CNS functions. This would vastly improve the transparency of experimental 

findings and facilitate the comparison and generalisation of results obtained in 

clinical trails with psychoactive compounds. Although advances have been made, to 

date no such generally approved compendium of tests that is both sensitive to 

stimulation and sedation of the CNS has been developed. MDMA research of course 

also suffers from this lack of standardisation. On the other hand, in this review firm 

conclusions were even more hindered by the generally limited number of 

neuropsychological tests the selected studies employed. Future studies should avoid 

these shortcomings. Moreover, the authors welcome a broad debate to identify 

which tests are most sensitive or best suited for detecting improvement or 

impairment in the several specific areas of cognitive functioning featuring in this 

report. 

The assembled data showed that typical MDMA effects are fully expressed 

at doses above 1.0 mg/kg, at which level the drug’s adverse effects will also 

manifest themselves. These side effects are addressed in a comprehensive report in 

which Vollenweider and team review their own work into MDMA (Liechti, Gamma 

et al. 2001). The most prevalent adverse drug reactions were difficulty in 

concentrating, jaw clenching, lack of appetite, dry mouth/thirst and impaired 

balance. The effects of MDMA on the body’s hydration balance (induction of ADH 

release) are significant and it is a potent stimulant of the sympathetic nervous 

system, causing increases in blood pressure, heart rate and perspiration. Since these 

effects can potentially set off serious complications in susceptible participants, 

researchers intending to mount clinical trials should be aware of these hazards. 

In conclusion, MDMA displays all its prominent features at doses of 1.0 

mg/kg and above, which is in line with the desirable doses reported by recreational 
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users (Croft, Klugman et al. 2001;Soar, Parrott et al. 2004). The potentially 

hazardous adverse effects are also fully expressed at this level. In the relevant 

studies generated by our search of the literature, findings reflecting the subjective 

(the entactogenic profile), physiological (cardiovascular, pupil diameter) and 

endocrine effects (cortisol, prolactin) were the most prominent and abundant. 

MDMA effects on neuropsychological functioning were reported infrequently, thus 

rendering firm conclusions impossible and supporting our recommendation for more 

intensive research into the acute cognitive effects of MDMA. 
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Abstract 

 

In Western societies, a considerable percentage of young people expose 

themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”). 

Commonly, ecstasy is used in combination with other substances, in particular 

alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, 

whereas ethanol is a general central nervous system depressant. 

The aim of the present study is to assess the acute effects of single and co-

administration of MDMA and ethanol on executive, memory, psychomotor, 

visuomotor and visuospatial, and attention function, as well as on subjective 

experience. 

We performed a four-way, double blind, randomized, crossover, placebo-

controlled study in 16 healthy volunteers (9 male, 7 female) between the ages of 18-

29. MDMA was given orally (100 mg) and blood alcohol concentration (BAC) was 

maintained at 0.6 0/00 by an ethanol infusion regime.  

Co-administration of MDMA and ethanol was well tolerated and did not 

show greater impairment of performance compared to the single drug conditions. 

Impaired memory function was consistently observed after all drug conditions, 

whereas impairment of psychomotor function and attention was less consistent 

across drug conditions.  

In conclusion, co-administration of MDMA and ethanol did not exacerbate 

the effects of either drug alone. Although the impairment of performance by all drug 

conditions was relatively moderate, all induced significant impairment of cognitive 

function. 
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Introduction 

 

In Western societies, a considerable proportion of young people expose 

themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) (Gross 

2002;Parrott 2001;Tancer and Johanson 2007). Ecstacy has gained widespread use 

in the ‘club’ scene, typically all-night parties with loud music and intense lights 

(Winstock, Griffiths et al. 2001). The average dose of ecstasy used recreationally is 

reported to be around 80-90 mg of MDMA with considerable individual variation 

(Tanner-Smith 2006). Ecstasy users are generally multidrug users, who have 

experience with various recreational drugs and use these in combination with 

ecstasy (Gouzoulis-Mayfrank and Daumann 2006). Probably due to its availability, 

alcohol remains one of the most co-used substances (Barrett, Gross et al. 2005). As 

the use of alcohol is known to induce impairment of cognitive function and decrease 

the awareness of this impairment, this can lead to dangerous behaviour like driving 

under influence (Lamers and Ramaekers 2001;Riley, James et al. 2001).  

MDMA acts primarily by releasing serotonin (5-HT) from presynaptic 5-

HT terminals. It reverses the direction of the reuptake transporter and increases 5-

HT levels at the postsynaptic receptors (Liechti and Vollenweider 2000b;Mlinar and 

Corradetti 2003;Pifl, Drobny et al. 1995). MDMA is also a potent releaser of 

dopamine and (nor)adrenaline (Colado, O'Shea et al. 2004;Liechti and Vollenweider 

2001).  

MDMA is rapidly absorbed following oral administration. Within 30 

minutes MDMA is detectable in the blood. Plasma levels peak at 1-2 hr after drug 

administration, and maximum behavioural and subjective effects occur around 1-2 

hr and have declined by 4 hr in spite of persisting plasma levels (de la Torre, Farre et 

al. 2004;Green, Mechan et al. 2003). Increasing the dose does not result in a 

proportional rise in plasma concentrations, which is indicative for non-linear 

pharmacokinetics (de la Torre, Farre et al. 2000a). 

The behavioural effects of MDMA resemble, but are not restricted to, 

effects of psychostimulants (e.g. amphetamines or ‘speed’) as well as 

hallucinogenics (e.g. lysergic acid or ‘LSD’), although MDMA's most characteristic 



 

- 36 - 

effects are described as an increase in empathy and friendliness (Vollenweider et al. 

2002). This led to MDMA being categorized as an ‘entactogen’, as coined by 

Nichols and Oberlender (Nichols and Oberlender 1990).  

Most research into the cognitive effects of MDMA in humans has focused 

on the long term effects, where only memory was consistently found to be impaired 

(Verbaten 2003;Verkes, Gijsman et al. 2001). Our review of the acute effects of 

MDMA in humans showed that cognitive effects were assessed only in a limited 

number of studies, using diverse tests and generally addressing only certain aspects 

of neuropsychological function. As such, no consensus on MDMA’s cognitive 

effects could be reached (Dumont and Verkes 2006). Since then, reports on the 

effects of MDMA generally confirmed previous findings (Kuypers, Samyn et al. 

2006;Kuypers, Wingen et al. 2007;Ramaekers, Kuypers et al. 2006B;Tancer and 

Johanson 2007). Interestingly, two studies reported effects of MDMA on memory, 

which had not been assessed previously. These reports showed acute impairment of 

immediate and delayed recall of words as well as spatial memory by MDMA 

(Kuypers and Ramaekers 2005;Kuypers and Ramaekers 2007). 

Drinks containing ethanol, commonly referred to as alcohol, are widely 

available and regularly used in Western society. Ethanol is chiefly a central nervous 

system (CNS) depressant. It inhibits both excitatory and inhibitory postsynaptic 

potentials by potentiating the action of GABA at its receptor (Suzdak, Schwartz et 

al. 1988). Reports of the cognitive effects of combined use of MDMA and ethanol in 

humans have been sparse in the literature. Studies that were performed assessed 

psychomotor function, attentional performance and subjective effects (Hernandez-

Lopez, Farre et al. 2002;Kuypers, Samyn et al. 2006;Ramaekers, Kuypers et al. 

2006b). In general, MDMA and ethanol had no or opposite effects on effect 

measures, and as such co-administration did not exacerbate single drug effects. 

In the current study, we employed a series of tests sensitive to changes in 

all common neuropsychological domains induced by several pharmacological 

compounds, including amphetamines (Wezenberg, Hulstijn et al. 2004). 

It is generally acknowledged that the combined use of alcohol with other 

CNS-depressant drugs may enhance the effects of ethanol or of the other drugs. 
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MDMA, however, has stimulant effects while ethanol is a sedative agent, suggesting 

that the effects of co-administration are diminished rather than augmented compared 

to the effects following single administration. This hypothesis was investigated 

during acute co-administration of MDMA and ethanol in healthy volunteers.  
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Materials and methods 

 

Study Design 

This study utilized a four-way, double blind, randomized, crossover, 

placebo-controlled design. Sixteen volunteers were randomly assigned to one of four 

treatment sequences. Each volunteer received a capsule containing either MDMA 

100 mg or placebo and an ethanol/placebo infusion (target BAC of 0.60/00) with a 

wash-out of 7 days between each treatment. 

 

Study outline 

Subjects arrived in the morning and were admitted to the study after a 

negative urine drug screen (opiates, cocaïne, benzodiazepines, amphetamines, 

methamphetamines and delta-9-tetrahydrocannabinol), as well as a negative alcohol 

breath test and recording of signs and symptoms of possible health problems. A light 

breakfast was offered. Drug administration was scheduled at 10:30h and the alcohol 

infusion was started at 11:00h for a duration of three hours. At 11:30h subjects 

performed the psychological test battery as described below. Specific test times are 

reported in Table 1. Subjects received lunch at 14:00h and were sent home at 17:00h 

after a medical check. Adverse events where recorded throughout the study day. 

Vital signs were monitored using a Datascope® Accutorr Plustm cardiovascular 

monitor and Braun® type 6021 ThermoScan during the study day. The data 

presented in this report are a subset of a larger data set, which will be reported 

elsewhere.  

 

Subjects 

Sixteen healthy volunteers (9 male, 7 female), regular users of ecstasy and 

alcohol, aged 18-29 years and within 80-130% of their ideal bodyweight were 

recruited through advertisement on the internet and at local drug testing services. 

They were all in good physical and mental health as determined by assessment of 

medical history, a medical-, ECG- and clinical-, haematological- and chemical blood 

examination. Previous drug use was assessed using a structured interview. Fifteen 
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volunteers were right handed and one was left handed. The study was approved by 

the local Medical Ethics Committee. All subjects gave their written informed 

consent before participating in the study and were compensated for their 

participation. Subject demographics and drug history are reported in Table 2.  

One subject had a mild adverse reaction (local vascular reaction) to the 

alcohol infusion and one subject did not refrain from drug use, both (1 male, 1 

female) were excluded from further participation and results obtained were not 

included in the data-analysis.  

 

Drugs and Dosages 

MDMA (or matched placebo) was given as a capsule in a single dose of 

100 mg via oral administration (dose range: 1.1-2.2 mg/kg). MDMA was obtained 

from Lipomed AG, Arlesheim, Switzerland and encapsuled according to Good 

Manufacturing Practice (GMP) by the Department of Clinical Pharmacy UMC St 

Radboud, Nijmegen, the Netherlands. MDMA 100 mg orally is a relevant dose in 

the range of normal single recreational dosages. Previous experiments in humans 

used doses up to 150 mg without serious adverse events.  

Ethanol (or matched placebo) was administered continuously by IV 

infusion of 10% ethanol in glucose solution resulting in an ethanol blood 

concentration of 0.6 0/00 with a duration of three hours as described below. 

 

Alcohol clamping 

To standardize alcohol delivery and maintain a constant alcohol blood 

concentration over time, an intravenous ethanol clamp was used. Ethanol was 

administered by infusion of a 10% ethanol in glucose solution for a duration of three 

hours. The infusion rate was calculated using frequent breath alcohol concentrations 

measurements, according to a previously designed algorithm (Amatsaleh, Dumont et 

al. 2006). Breath alcohol concentration was assessed using a HONAC AlcoSensor 

IV® Intoximeter.  

An intravenous administration route was chosen, ensuring standardization 

of the rate and bioequivalence of ethanol administration. This is an important 
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prerequisite for predictable pharmacokinetics of ethanol. The process was semi-

automated using a computer spreadsheet programme, which uses measured breath 

alcohol concentrations to calculate the infusion rate needed to maintain the ethanol 

level at 0.6 0/00. This is a relevant dose equivalent to peak levels of approximately 2-

3 units of alcoholic beverages. In many European countries driving is prohibited at 

blood alcohol concentrations (BAC) above 0.5 0/00. This limit has been confirmed by 

a report that shows that at an average BAC of 0.6 0/00 psychomotor performance is 

significantly impaired (Amatsaleh, Schoemaker et al. 2006). A BAC of 0.6 0/00 is 

equivalent to approximately 2-3 alcoholic beverages commonly used in social 

settings in Western society, which is considered to be a safe and relatively moderate 

dose, despite its significant CNS effects. 

 

MDMA blood analysis 

For the assessment of serum levels of MDMA blood samples were 

collected 90 minutes after drug administration from each subject on each study day. 

Venous blood samples (10 ml) were collected into heparinised tubes, centrifuged 

immediately at 4 ºC for 15 minutes. Plasma was split into aliquots of 2mL (to 

prevent overfreeze/thawing) and frozen rapidly using liquid nitrogen, stored at -80 

ºC. Samples were analyzed for MDMA and MDA concentration by the Toxicology 

unit of the Leyenburg hospital, the Hague, the Netherlands. 

 

Neuropsychological tests, apparatus and procedure 

The performance on all neuropsychological tests was recorded by means of 

a digitizing tablet (WACOM UD-1218-RE), a laptop computer, a pressure sensitive 

pen (which could also be used as a cursor) and test-forms. The x and y coordinates 

of the pen tip on and up to 5 mm above the digitizer were sampled with a frequency 

of 200 Hz and a spatial accuracy of 0.2 mm. The time schedule of the tests is 

summarized in Table 1. 

To familiarize the subjects with the tests and procedures, they were invited 

to the hospital to perform a practice session within one week before the actual study 
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days. All tests had 5 equivalent versions for 4 test-days and one practice day, test-

versions were counterbalanced over test-days. 

 

Neuropsychological tests Description Time 
(h:m) 

Drug administration  0:00 
18 Words list immediate 
recall 

Immediate recall of 18 word list 1:00 

SDST Translate symbols to digits with key present in 90 s. 1:05 
SDRT  Translate symbols to digits from memory 1:08 
Pursuit task Keep dot within moving circle 1:10 
Tangles task Tangled line leads to which target? 1:13 
Switch task Follow, possibly conflicting, instructions (choice 

between left or right) 
1:17 

18 Words list delayed recall Delayed recall of 18 word list 1:22 
18 Words list delayed 
recognition 

Recognize words of 18 words list memorized earlier 
among 18 distractors 

1:23 

Point task Keep pen steady in air, measures tremor 1:25 
Visual Analog Scales 16 100mm scales for subjective experiences 1:30 

Table 1. Timeline. Times are relative to drug administration. 

 

Executive function 

Switch task This test is a reaction time task measuring simple as well as 

complex reaction time, assessing executive performance (Baker and Letz 1986). 

After a random period of 0.75 to 1.75 seconds two rectangular fields appeared on 

both sides of a circle in the centre of the screen. Only one of the two fields provided 

the subjects with information, either a color, an arrow or both. The other non-

informative field always had a neutral grey color. Five conditions were subsequently 

presented to subjects. If only green fields appeared, subjects had to move as fast as 

possible into the green field. If green and red fields appeared, subjects had to move 

into the green field and away from the red field as soon as they appeared. 

If green fields with a left or right arrow were presented, subjects were to move into 

the direction of the arrow. Green and red fields with a left or right arrow indicated 

that subjects were to follow the direction of the arrows in the green field, but the 

opposite direction of the arrows in the red field. Finally, the first condition was 

repeated. All conditions contained 20 trials except condition four in which there 

were 40 trials (total = 120 trials).  The outcome measures were the mean reaction 
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times per condition. The last condition is a repetition of the first to check for 

possible changes in attention. 

 

Memory 

Eighteen words list  A verbal memory test based on the classic Auditory 

Verbal Learning Test (Vakil and Blachstein 1993). A variant was made consisting of 

a list of eighteen words. The classic test uses 15 words. A longer wordlist was 

chosen, however, to prevent ceiling effects. The list was presented verbally three 

times. Under normal circumstances subjects are supposed to remember an increasing 

number of words after each trial. Directly after each presentation, and after an 

interval of 20 minutes, subjects were asked to recall as many words as possible. 

After the delayed recall trial a list of thirty-six words was presented from which they 

were asked to recognize the eighteen words previously presented. The incorrect 

words were distracters and resembled the correct words in a semantic or phonologic 

manner. Responses were either correct positive (when a word that was recognized 

was indeed part of the list presented during immediate recall) or false positive (when 

a word was recognized but was not part of the list presented during immediate 

recall, e.g. the word was a distracter). The outcome measure was the number of 

correctly recalled/recognized words for the average of the three immediate recall 

trials, the delayed recall trial and the delayed recognition trial.  

Symbol Digit Recall Test (SDRT) The SDRT followed directly after the 

Symbol Digit Substitution Test (SDST), which is discussed in the last paragraph of 

this section. After subjects had finished the SDST, they were shown the symbols of 

the SDST without the translation key, one at a time, and asked to produce the 

corresponding numbers. This test is based on an extended procedure of the SDST to 

measure incidental learning (Kaplan, Fein et al. 1991). The outcome measure was 

the number of correctly translated symbols. 

 

Psychomotor function 

Pursuit task To measure implicit procedural learning a computerized 

version of the rotor pursuit task was used. This test is based on the classic rotary 
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pursuit task (Ammons 1951). It is a continuous motor task. Subjects had to follow 

the movement of a large target stimulus on the computer screen with a cursor by 

moving the pen over the XY-tablet. The speed of the target gradually increased 

when the cursor was contained within the target but decreased considerably when it 

was not. The target followed a spatially predictable circular path over the screen. 

The outcome measure for this test was the total number of rotations within two 

minutes. 

Point task The point task, a measure for tremor, required subjects to try to 

keep the cursor inside a very small circle for one minute, while avoiding contact 

between the pen and the test form. The outcome measure for this test was the 

deviation from the target. 

 

Visuospatial and visuomotor function 

Tangle task The Tangle task required the subject to visually track a 

particular line winding through two to four other lines. On subsequent trials the 

tangles increased in complexity; they got longer and made more 90-degree turns. 

The paper form had a start area and five target areas, numbered 1 to 5, which reflect 

the maximum target areas on the screen, starting with only three target areas. 

This test is modelled after the visualisation test from the “kit for factor 

referenced cognitive tests”. It was selected by the US NAVY to study environmental 

and other time-course effects and has good task stability and reliability (Bittner, Jr., 

Carter et al. 1986). The outcome measures are the reaction time per trial and the 

number of correct trials in two minutes. 

 

Attention 

Symbol Digit Substitution Test (SDST) This test is a version of the subtest 

from the WAIS (Wechsler Adult Intelligence Scale) (Wechsler 1981). Subjects had 

to substitute the nine symbols for the digits 1-9 on the basis of a given translation 

key. The outcome measure was the total number of digits completed in 90 seconds.  

According to Hege et al. (Hege, Ellinwood, Jr. et al. 1997) this task measures many 

cognitive components, e.g. visuospatial scanning, intermediate memory, perceptual 
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motor speed, and speed of cognitive processing. Therefore, subsequent analyses 

were performed in order to attempt and disentangle these cognitive processes. Based 

on pen pressure, movement trajectories were defined as either pen-up periods or 

pen-down periods. This allowed for subsequent analysis of matching times and 

movement (writing) times in the symbol digit substitution test. For the motor 

component, the mean writing times were computed. For the more cognitive 

component, the mean matching times were computed. These analyses have been 

previously performed (Sabbe, Hulstijn et al. 1999;Wezenberg, Verkes et al. 2005). 

 

Subjective  

Subjective effects were recorded using the Bond and Lader (Visual 

Analogue) Mood Rating Scale (BLMRS). This inventory was completed at the end 

of each neuropsychological test battery on each study day. 

The BLMRS scale consisted of 16 lines, each 10 cm in length, with 

opposite terms at each end of the line (alert/drowsy, calm/excited, strong/feeble, 

muzzy/clear-headed, well-coordinated/clumsy, lethargic/energetic, 

contented/discontented, troubled/tranquil, mentally slow/quick witted, tense/relaxed, 

attentive/dreamy, incompetent/proficient, happy/sad, antagonistic/amicable, 

interested/bored, withdrawn/gregarious). Subjects were asked to indicate which item 

was more appropriate by marking the line. The outcome measure was the distance to 

the marker on each scale. These scale scores were then aggregated to scores for 

'calmness', 'alertness' and 'contentedness' as described by Bond and Lader (Bond, 

James et al. 1974).  

 

Statistical Analyses 

Statistical evaluation (using SPSS 11.5 for Windows) was performed with 

GLM Repeated Measures Analysis of Variance (ANOVA). Main and interaction 

effects were tested using a two factor ('ethanol' and 'MDMA'), two level (absent 

versus present) multivariate model.  

The analysis of the data was based on Maxwell and Delaney (2004) and 

Kirk (1995). First the presence of interaction (non-additivity) was tested with alfa = 
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.05. When the interaction was not statistically significant we proceeded by testing 

the main effects, each at alfa = .05. In the case of a significant interaction we 

proceeded by testing simple main effects of each drug, i.e. MDMA vs. placebo and 

ethanol vs. placebo. 
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Results 

 

Subject demographics are summarized in Table 2. 14 out of 16 subjects 

completed the study procedure. One subject had a mild adverse reaction (local 

vascular reaction which 

subsided with infusion stop) 

to the alcohol infusion and 

one subject did not refrain 

from drug use, both were 

discontinued from study 

participation and data 

already obtained was not 

included in statistical 

analysis. Only significant 

results are mentioned in 

this section, unless stated 

otherwise.  

 

MDMA blood concentration 90 minutes after administration did not differ 

for MDMA single vs. MDMA and ethanol co-administration and was on average 

196 μg/L (SD=83 μg/L). Blood alcohol concentration was maintained at an average 

of 0.54 0/00 (SD=0.07 0/00). 

 

Executive function 

Executive function (Switch task) did not show any significant main or 

interaction effects. 

 

Memory function 

Memory function was assessed by the 18 words list (outcome measures 

were 'immediate recall', 'delayed recall' and 'recognition', see Figure 1) as well as the 

 Mean SD min max 
Age (years) 22.1 2.9 18 29 
Education (years) 16.5 1.6 12 18 
Heigth (cm) 174.7 12.3 147.0 189.1 
Weigth (kg) 67.5 12.4 45.7 88.4 
Opiates 0.1 0.3 0 1 
LSD 2.5 6.6 0 25 
Amphetamines 37.3 81.1 0 250 
Ecstasy 94.6 138.4 14 431 
Cannabis 1174.3 1665.5 20 5840 
Cocaine 33.7 105.7 0 400 
Alcohol 2367.9 1981.6 50 5200 
Solvents 3.6 13.3 0 50 
Barbiturates 0 0 0 0 
Benzodiazepines 18.6 57.3 0 216 
Psilocybin 6.9 10.4 0 30 

Table 2; Volunteer demographics/drug history. Drug quantities 
mentioned are lifetime drug exposures, not further specified. 



 

- 47 - 

Symbol Digit Recall Task (SDRT). Immediate recall was impaired only by ethanol 

(F(1,12)=8.71, p=0.011). 

Delayed recall as assessed by the 18 words list was impaired by MDMA 

(F(1,12)=10.447, p=0.007) as well as by ethanol (F(1,12)=16.031, p=0.002). The 

SDRT, also a test for delayed recall, showed a similar pattern of impairment by 

MDMA (F(1,12)=5.300, p=0.038) as well as by ethanol (F(1,12)=7.654, p=0.016). 

 

Psychomotor function 

Psychomotor function was assessed with tests for tremor (Point task), 

accuracy (Pursuit task) and speed (Symbol Digit Substitution Task (SDST) writing 

time, see Figure 2), other 

SDST results are reported in 

the section ‘Attention’. 

Ethanol impaired psychomotor 

speed as reflected in the 

increase in SDST writing time 

(F(1,12)=9.295, p=0.009).  
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Figure 1. Memory effects 
(18 words list (mean, 
s.e.m.)), Immediate: 

immediate recall, 
average score of three 

trials of correctly 
recalled verbally 
presented words, 

Delayed: correctly 
recalled verbally 

presented words 20 
minutes after 
presentation, 

Recognition: correctly 
recognized verbally 

Figure 2. Psychomotor effects: SDST writing time (mean, 
s.e.m.). 
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Visuospatial and visuomotor function 

Visuospatial and visuomotor function were measured with the Tangle task, 

subdivided into 'total number correctly solved' and 'reaction time', and did not show 

any significant effects, although a trend of impairment by MDMA (F(1,12)=3.966, 

p=0.068) was observed.  

 

Attention 

Attention was assessed with the SDST task; the outcome measures were 

‘motor time’ (see ‘Psychomotor function’), ‘matching time’ (figure 3) and ‘total 

number correctly substituted’. 

The time required to match 

symbols to the corresponding 

numbers showed a significant 

MDMA and ethanol 

interaction (F(1,12)=6.214, 

p=0.027). Tests for simple 

main effects revealed that both 

single drug conditions reduced 

attention compared to placebo (ethanol F=6.248, p=0.027; MDMA F=6.822, 

p=0.022, see Figure 3). 

 

Subjective effects 
Subjective effects are depicted in Figure 4. Feelings of 'Contentedness' 

where increased significantly by MDMA only (F(1,12)=4.710, p=0.049). 

A significant interaction effect (F(1,12)=7.358, p=0.018) was found for 

feelings of 'Alertness'. Tests for simple main effects revealed that ethanol, but not 

MDMA, significantly decreased feelings of alertness compared to placebo 

(F=50.613, p<0.001).  

Feelings of 'Calmness' were reduced only by MDMA (F(1,12)=20.259, 

p=0.001). 
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Figure 3. Attention: SDST matching time, i.e., time 
needed for translation (mean,s.e.m.). 
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Discussion  

 

This study demonstrates that the effects of 100 mg MDMA, commonly 

known as ecstacy, on cognitive function are no greater than the effects of a relatively 

low dose of ethanol. This is remarkable as these results suggest that the effects of 

100 mg MDMA are comparable to the peak effects of 2-3 alcoholic beverages. Co-

administration of these compounds did not result in any significant cognitive 

impairments beyond those observed after administration of only ethanol. The use of 

moderate amounts of alcohol is common in Western societies and, although 

impairing cognitive function, socially accepted, while ecstacy use remains very 

controversial. Of course, our findings only relate to the acute neuropsychological 

implications of ecstacy use and not to the physiological and long-term effects, which 

rightfully remain topics of discussion (Gouzoulis-Mayfrank and Daumann 

2006a;Nutt 2006;Parrott 2007a). 

Drug effects observed in this placebo controlled crossover study were 

moderate. Co-administration was well-tolerated as indicated by the subjective 

scores, which were comparable to those found after single administration of 

MDMA. An interaction of MDMA and ethanol was found for subjective alertness 

scores. Ethanol, as expected, reduced subjective alertness, while MDMA co-

administration reversed the reduction of subjective alertness by ethanol. In the 

present study MDMA by itself did not significantly affect subjective alertness, 

although this effect has been consistently reported in other studies and is a well-

known effect of amphetamines. However, MDMA did significantly reduce 

subjective calmness, i.e., subjects felt more excited after MDMA. Probably, the 

Bond and Lader mood rating scale is not well suited for the assessment of subjective 

effects of psychoactive drug effects and future studies should employ more 

appropriate subjective drug effect measures such as the Profile Of Mood States 

(POMS) (de Wit, Enggasser et al. 2002). 

When considering the results for each neuropsychological domain 

executive function was not affected by any drug condition. A previous study showed 

impairment of executive function by ethanol but not MDMA, although ethanol 
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impaired performance in only one out of three tests of executive function (Lamers, 

Ramaekers et al. 2003). The BAC in this study was 0.3 promille at the time of 

testing compared to 0.56 promille in our current study, suggesting a lack of 

sensitivity of the test employed in the current study. 

The abovementioned previous study also reported visuospatial and 

visuomotor impairment by MDMA but not by ethanol. Although not significantly, 

our current results show a similar pattern where MDMA showed a trend of 

impairment of visuospatial and visuomotor function, whereas ethanol did not. 

Psychomotor function was impaired only after ethanol administration 

(SDST writing time, see Figure 2). The majority of studies addressed in our review 

of acute effects of MDMA in humans (Dumont and Verkes 2006) did not report any 

change in psychomotor function after MDMA either. However,  increased 

psychomotor function after MDMA has also been found (Lamers, Ramaekers et al. 

2003;Ramaekers, Kuypers et al. 2006a). These studies administered 75 mg instead 

of 100 mg. Possibly, the effects of MDMA are biphasic, with a low dose of MDMA 

exhibiting more amphetamine-like effects, e.g. arousal, increasing performance, 

whereas higher doses may elicit more hallucinogenic effects and impair performance 

(Liechti, Gamma et al. 2001;Solowij, Hall et al. 1992).  

As mentioned above, MDMA co-administration reversed the ethanol 

induced feelings of sedation, although MDMA was unable to reverse the 

psychomotor impairment induced by ethanol. This dissociation between subjective 

and objective sedation confirms previous findings by Hernandez-Lopez et al. (2002). 

Several studies assessed MDMA's effect on attention using the Digit 

Symbol Substitution Task (DSST), although no significant effects were found 

(Cami, Farre et al. 2000;Farre, de la Torre et al. 2004;Kuypers and Ramaekers 

2005). One study reported decreased DSST performance after ethanol as well as 

after ethanol and MDMA co-administration, but no effect of MDMA (Hernandez-

Lopez, Farre et al. 2002). Our findings confirm these findings to a large extent. We 

found no main effects of MDMA or ethanol on attention, although an interaction of 

ethanol and MDMA for 'matching time' (time required to match the number to the 

corresponding symbol) was found. Co-administration of MDMA and ethanol 
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increased 'matching time' comparable to the increase observed after both MDMA 

and ethanol single administration, compliant with our hypothesis of competitive 

mechanisms of action of both drugs (see Figure 3). 

Studies investigating the long term effects of MDMA consistently found 

memory to be affected (Verbaten 2003). In the present report, almost all memory 

measures showed quantitatively comparable impairment for each drug condition 

(see Figure 1), although the effect of MDMA on immediate recall did not reach 

statistical significance. Only delayed recognition was not impaired in any drug 

condition. These findings suggest a deficit in the retrieval of verbal information 

encoded in memory, rather than impairment in the storage of information. Our 

findings are similar to the results of a previous study on MDMA induced effects on 

memory (Kuypers and Ramaekers 2005). In this previous study no memory 

impairment was observed after methylphenidate administration, a pronounced 

dopamine and norepinephrine releaser, suggesting the involvement of serotonin in 

memory impairment. Several other studies also have shown serotonin mediated 

modulation of memory function through interaction with the cholinergic 

neurotransmitter system, although the details of this complicated interaction remain 

elusive (Cassel and Jeltsch 1995;Garcia-Alloza, Zaldua et al. 2006;Meneses 2007). 

Generally, subjects stated that they were well aware of their impaired memory after 

MDMA.  

Blood alcohol concentration (BAC) was on average 0.56 promille. At this 

level, driving is prohibited by law in many European countries, because of its 

interference with normal functioning. Although the effects were moderate, ethanol 

impaired cognitive performance in various tests. Similar moderate effects were 

observed with MDMA 100 mg, considered to be slightly above the average 

recreational dose (Tanner-Smith 2006). This might be considered surprising for a 

drug with reported robust subjective stimulating and hallucinogenic properties. 

However, since the effects caused by a single dose of 100 mg MDMA were 

comparable to the effects of a BAC of 0.56 promille, this dose should by inference 

be considered unacceptable in motorized traffic.  
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Arguably, the moderate drug effects as found in this study could be 

explained by ‘missing’ the time of the maximal drug effects. Although the average 

MDMA blood concentration reported here (196 μg/L) is comparable to the Cmax of 

100 mg MDMA (199,8 μg/L) as reported by de la Torre et al. (2000), MDMA 

concentration was assessed at the end of the testing procedure. However, Hernandez 

Lopez et al. (Hernandez-Lopez, Farre et al. 2002), found significant effects at 60 as 

well as 90 minutes after drug administration arguing against the suggestion of 

‘missing’ peak drug effects.  

The circumstances in which these substances are normally used cannot be 

fully recreated in the laboratory and this may have suppressed the effects of both 

substances. It is not unlikely that these substances show enhanced effects when 

tested under typical circumstances and surroundings. Recently, Parrott et al. (Parrott, 

Rodgers et al. 2006) concluded that the increase in physical activity and body 

temperature typically experienced when using MDMA, enhance MDMA effects. 

Ball et al. (Ball, Budreau et al. 2006) demonstrated that a familiar surrounding 

increased MDMA induced locomotor response as well as single neuron activity in 

rats, compared to unfamiliar surroundings. Therefore, the psychosocial context in 

which MDMA is used, along with the different expectations and behaviour, 

probably influences its effects (Sumnall, Cole et al. 2006). It is unlikely however, 

that this affects the quality of the interactions of MDMA and ethanol. 

In conclusion, co-administration of MDMA and ethanol did not impair 

cognitive function significantly more than MDMA or ethanol administration alone. 

The most prominent effect of  (co-)administration of MDMA and ethanol was an 

impairment of memory. Ethanol also impaired psychomotor function. Although the 

impairment of performance by each drug condition was relatively moderate, this 

significant impairment of cognitive function should be considered intolerable in 

motorized traffic and other cognitively demanding situations as confirmed by 

previous research and as defined by law. However, the effects of these drugs in the 

concentrations used in the present study on established neuropsychological tests 

appear to be smaller than one would assume based on their reputation. 
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Abstract 
 

In Western societies a considerable percentage of young people use 3,4-

methylenedioxymethamphetamine (MDMA or “ecstasy”). The use of alcohol 

(ethanol) in combination with ecstasy is common. The aim of the present study was 

to assess the acute psychomotor and subjective effects of (co-) administration of 

MDMA and ethanol over time and in relation to the pharmacokinetics.  

We performed a four-way, double blind, randomized, crossover, placebo-

controlled study in 16 healthy volunteers (9 male, 7 female) between the ages of 18 

and 29. MDMA (100 mg) was given orally, while blood alcohol concentration was 

maintained at pseudo-steady state levels of approximately 0.6 0/00 for three hours by 

a 10% intravenous ethanol clamp.  

MDMA significantly increased psychomotor speed but did not affect 

psychomotor accuracy and induced subjective arousal. Ethanol impaired both 

psychomotor speed and accuracy, and induced sedation. Co-administration of 

ethanol and MDMA improved psychomotor speed but impaired psychomotor 

accuracy compared to placebo, and reversed ethanol induced sedation. 

Pharmacokinetics and pharmacodynamics showed maximal effects at 90-150 

minutes after MDMA administration after which drug effects declined in spite of 

persisting MDMA plasma concentration, with the exception of ethanol induced 

sedation, which manifested itself fully only after the infusion was stopped.  

In conclusion, results show that subjects were more aroused when 

intoxicated with both substances combined compared to placebo, but psychomotor 

accuracy was significantly impaired. These findings may have implications for 

general neuropsychological functioning as this may provide a sense of adequate 

performance that does not agree with a significant reduction in psychomotor 

accuracy. 

 



 

- 57 - 

Introduction  

 

In Western societies a significant proportion of young people expose 

themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) (Parrott 

2001). Ecstasy has gained widespread use in the ‘club’ scene, typically at all-night 

parties with loud, intense music and lights (Winstock, Griffiths et al. 2001). The 

average dose of ecstasy used recreationally is reported to contain around 80-90 mg 

of MDMA with considerable individual variation (Tanner-Smith 2006). Ecstasy 

users are generally polydrug users, having experience with different psychoactive 

substances and combining them with ecstasy (Gouzoulis-Mayfrank and Daumann 

2006). Alcohol (ethanol) is frequently used with ecstasy (Barrett, Gross et al. 

2005;Izco, Orio et al. 2007).  

MDMA releases serotonin (5-HT) from presynaptic 5-HT terminals by 

reversal of the reuptake transporter and thus increases 5-HT levels at the 

postsynaptic receptors (Liechti and Vollenweider 2000;Mlinar and Corradetti 

2003;Pifl, Drobny et al. 1995). MDMA is also a potent releaser of dopamine and 

(nor) adrenaline (Colado, O'Shea et al. 2004;Liechti and Vollenweider 

2001;Sprague, Brutcher et al. 2004). 

MDMA is rapidly absorbed following oral administration. Within 30 

minutes MDMA is detectable in the blood. Plasma levels peak 1-2 hours after drug 

intake. Maximal behavioural and subjective effects also occur around 1-2 hours and 

decline after 4 hours (de la Torre, Farre et al. 2004;Green, Mechan et al. 2003). A 

moderate increase of plasma MDMA levels when ethanol is co-administered with 

MDMA has been reported (Hernandez-Lopez, Farre et al. 2002), but also disputed 

(Kuypers, Samyn et al. 2006).    

Ethanol depresses both excitatory and inhibitory postsynaptic potentials by 

allosterically potentiating the action of GABA at its receptor-complex (Suzdak, 

Schwartz et al. 1988). Consequently, alcohol has both arousing and sedating effects 

that are dose-dependent with high inter-individual variability (Gulick and Gould 

2007). 
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Reports on the effects of co-administration of MDMA and ethanol in 

humans are relatively sparse (Hernandez-Lopez, Farre et al. 2002;Kuypers, Samyn 

et al. 2006;Pacifici, Zuccaro et al. 2001;Ramaekers and Kuypers 2006b). Of these, 

two studies reported on psychomotor performance. Kuypers et al. (Kuypers, Samyn 

et al. 2006) assessed the effects of 75 and 100 mg MDMA in combination with 

orally administered ethanol (mean peak blood alcohol concentration (BAC) reached 

was 0.60/00).  The authors reported that certain aspects of psychomotor performance, 

assessed by actual driving tests (mean BAC below the legal limit (0.50/00) during 

driving tests), were impaired by ethanol (standard deviation of lateral position 

(SDLP)) and improved by MDMA (SDLP and standard deviation of speed). Co-

administration of 100 but not 75 mg MDMA reversed ethanol induced impairment 

of SDLP. Ethanol also increased brake reaction time. Psychomotor performance 

assessed using the Critical Tracking Task (CTT) was impaired by ethanol and 

unaffected by MDMA. Another study assessed the effects of 100 mg MDMA and 

0.8 g/kg ethanol (peak BAC of 1.250/00) co-administration on psychomotor function 

over time (Hernandez-Lopez, Farre et al. 2002). In this study, ethanol impaired 

psychomotor performance using the Digit Symbol Substitution Task (DSST), an 

effect which was counteracted by MDMA co-administration. MDMA alone did not 

affect psychomotor performance. MDMA showed stimulant effects assessed with 

the Maddox wing test, an effect which was counteracted by ethanol co-

administration. Maximal effects occurred 90 minutes after MDMA administration 

and declined thereafter. 

We recently reported on the peak effects of MDMA and ethanol co-

administration on neuropsychological function (Dumont, Wezenberg et al. 2008). 

Only moderate effects were observed, although the timing of tests relative to drug 

administration remained an issue. Although the time when Cmax is reached (Tmax) 

provides a guideline to assume peak effects, the dynamic effects do not necessarily 

follow the kinetic time profile of a compound. This study aimed to assess the acute 

psychomotor and subjective effects of MDMA and ethanol (co-) administration over 

time controlling for the pharmacokinetics. This study extends previous studies by 

employing an ethanol clamp, effectively eliminating the variations in BAC of orally 
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administered alcohol. As previous studies showed a robust neuroendocrine response 

after MDMA administration (de la Torre, Farre et al. 2000b;Harris, Baggott et al. 

2002;Mas, Farre et al. 1999), the current study also assessed neuroendocrine 

response to assess possible moderating effects of ethanol co-administration on 

MDMA induced neuroendocrine response.  

We hypothesize that the stimulating effects of MDMA will moderate 

ethanol’s subjective as well as objective sedation. As MDMA also induces mild 

hallucinogenic effects which are expected to impair cognitive function, we 

hypothesize that tests not reliant on psychomotor speed would not benefit from 

MDMA co-administration compared to ethanol (Dumont, Wezenberg et al. 2008). 

Peak drug effects were hypothesized to co-incide with MDMA Tmax, although 

effects were expected to decline in spite of persisting plasma levels as previously 

reported (Hernandez-Lopez, Farre et al. 2002). 
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Materials and methods 

 

Study Design 

This study utilized a four-way, double blind, randomized, crossover, and 

placebo-controlled design and was conducted according to the principles of the 

Declaration of Helsinki. Each volunteer received a capsule containing either MDMA 

100 mg or placebo and an ethanol/placebo infusion (target blood alcohol 

concentration (BAC) of 0.60/00) with a washout of 7 days between each treatment. 

 

Study outline 

Subjects were admitted to each study day after a urinary drug check 

(opiates, cocaïne, benzodiazepines, amphetamines, methamphetamines and delta-9-

tetrahydrocannabinol, AccuSign®, Princeton BioMeditech, Princeton, USA) (drug 

use was not allowed 14 days prior to the first study day until study completion) and 

the recording of possible signs and symptoms of health problems. A light breakfast 

was offered two hours prior to drug administration. Drug administration was 

scheduled at 10:30h and the ethanol infusion was started at 11:00h. Subjects 

received a standardized lunch at 14:00h and were sent home around 17:00h. 

Outcome measures were assessed repeatedly, i.e. before MDMA 

administration and at 30, 90, 150, 240, 300, and 360 minutes post drug 

administration, and consisted of pharmacokinetic samples of breath (for ethanol) or 

blood (for MDMA and MDA) and pharmacodynamic assessments as specified 

below. Parts of these data were presented at a meeting of the Dutch Society for 

Clinical Pharmacology, the abstract of which has been published (Dumont, 

Valkenberg et al. 2007). 

 

Subjects  

Sixteen healthy volunteers (9 male, 7 female), regular users of ecstasy (at 

least eight exposures in the last two years) and alcohol (at least one exposure per 

week), 22.1 ± 2.9 (mean ± SD) years of age (range 18-29) and within 80-130% of 

their ideal body weight were recruited through advertisement on the internet and at 
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local drug testing services. Lifetime ecstasy exposure was on average 95 doses 

(SD=138; range 14-431). More detailed demographic data have been reported 

elsewhere (Dumont, Wezenberg et al. 2008). Exclusion criteria included pregnancy, 

(history of) psychiatric illness (assessed using the Structured Clinical Interview for 

DSM-IV axis 1 disorders, non-patient version (First, Frances et al. 1994), Axis II 

disorders were excluded using the Temperament and Character Inventory (Svrakic, 

Whitehead et al. 1993), use of over-the-counter medication within 2 months prior to 

the study start, (history of) treatment for addiction problems, excessive smoking 

(>10 cigarettes/day) and orthostatic dysregulation. Physical and mental health was 

determined by assessment of medical history, a physical- and ECG examination as 

well as standard haematological and chemical blood examinations. The local 

Medical Ethics Committee approved the study. All subjects gave their written 

informed consent before participating in the study, and were paid for their 

participation. Subjects were aware that the active drug conditions would be ethanol, 

MDMA, and ethanol and MDMA co-administration, but that the order in which they 

received the treatments was randomized. 

One subject had a mild adverse reaction (local vascular reaction) to the 

ethanol infusion and one subject did not refrain from drug use, both (1 male, 1 

female) were excluded from further participation and results obtained from these 

subjects were not included in the final data analysis.  

 

Ethanol clamping 

Ethanol (or glucose 5% as its placebo) was administered continuously by 

IV infusion of 10% ethanol in 5% glucose solution, aimed to maintain a blood 

ethanol concentration of 0.60/00 for three hours. The infusion rate was calculated 

using frequent breath alcohol concentration measurements, according to a previously 

designed algorithm (Amatsaleh, Dumont et al. 2006). Breath alcohol concentration 

was assessed using a HONAC Alco Sensor IV® Intoximeter. The process was semi-

automated using a computer spreadsheet programme, which used measured breath 

alcohol concentrations to calculate the infusion rate needed to maintain the ethanol 

level at 0.60/00. The operator of the breath alcoholmeter and the ethanol infusion 
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pump was unblinded for alcohol-treatment, but did not communicate with the study 

team or the subjects about the results at any stage of the trial. A sham-procedure was 

used during ethanol placebo occasions. 

The alcohol clamp was targeted at 0.60/00, since in many European 

countries driving is prohibited at blood alcohol concentrations (BAC) at or around 

this level. Consequently, the psychomotor effects of an ethanol concentration equal 

to or exceeding 0.60/00 are likely to affect an individual’s ability to drive a car. 

Recent studies showed that a BAC of 0.60/00 induces significant effects on eye 

movements (Amatsaleh, Schoemaker et al. 2006;Nyberg, Wahlstrom et al. 2004). 

Moreover, despite significant CNS effects, this dose is considered to be a safe and 

relatively moderate dose. A BAC of 0.60/00 is equivalent to approximately 2-3 

alcoholic beverages, reflecting normal social drinking. 

 

MDMA 

MDMA (or matched placebo) was given as a capsule in a single oral dose 

of 100 mg. MDMA 100 mg orally is a relevant dose in the range of normal single 

recreational dosages. Previous experiments in humans used doses up to 150 mg 

without serious adverse events. MDMA was obtained from Lipomed AG, 

Arlesheim, Switzerland and encapsulated according to Good Manufacturing Practice 

(GMP) by the Department of Clinical Pharmacy of Radboud University Nijmegen 

Medical Centre.  

 

Analytical Methods 

All reagents were of analytical grade. A high-performance liquid 

chromatography–diode array detection (HPLC-DAD) method was employed to 

measure plasma MDMA and MDA concentrations. In brief: 100 µl internal standard 

solution (1.27 µg MDEA in 1.0 ml water) was added to 1.0 ml plasma, 500 µl borate 

buffer (0.05 M, pH 9.3) was added, the solution was mixed, and 5 ml 

dichloromethane added. The tube was stoppered and shaken for 10 min. Thereafter, 

the tube was centrifuged for 5 min at 2500 g. The organic layer was separated from 

the water layer and transferred into a clean tube and 500 µl mobile phase (880 ml 
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0.015 M phosphate buffer, pH 3.3 plus 120 ml acetonitrile) was added. The tube was 

shaken for 10 min and centrifuged for 5 min. An aliquot of 60 µl from the upper 

layer was injected onto the HPLC-DAD system consisting of a model 1100 solvent 

delivery system (Agilent Technologies, Amstelveen, the Netherlands), column oven 

(Agilent Technologies, Amstelveen, the Netherlands) with a Symmetry C18 column 

(Waters, Middelburg, the Netherlands), model 1100 DAD (Agilent Technologies, 

Amstelveen, the Netherlands). Flow was 1 ml/min and separation took place at 

50°C. Peaks were recorded from 199-400 nm. Recovery was >90% for MDMA, 

MDA and MDEA with a coefficient of variation (CV) of <2%. The lower limit of 

detection for both MDMA and MDA was 3 µg/l with a CV of 20%. The upper limit 

of detection was 500 µg/l for MDMA and 165 µg/l for MDA. Peak purity was 

>0.995 for positive identification of MDMA, MDA and MDEA. MDMA, MDA and 

MDEA were kindly obtained from the Dutch Forensic laboratory. Dichloromethane 

was obtained from Biosolve (Valkenswaard, the Netherlands) and acetonitrile was 

obtained from Rathburn (Walkerburn, United Kingdom). 

 

Neuroendocrine assays 

Cortisol and prolactin were determined as measures of neuroendocrine 

activity, as previous research has shown that the serum concentrations of these 

neuropeptides increases after MDMA administration (de la Torre, Farre et al. 

2000b;Harris, Baggott et al. 2002;Mas, Farre et al. 1999b). Serum total cortisol was 

measured by Fluorescence Polarization Immunoassay (FPIA) on a TDX batch 

analyzer (Abbott, Hoofddorp, the Netherlands). Serum prolactin was measured by 

Fluorescence Immuno Enzymometric Assay (FIEMA) on an AxSym automated 

immunoanalyzer (Abbott, Hoofddorp, the Netherlands).  

 

Saccadic and smooth pursuit eye movements 

Saccadic eye movements are a measure for psychomotor speed and 

sedation. Eye movements were quantified by recordings of field potential changes 

due to eye rotations. Similar to EEG patterns and the architecture of evoked 
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potentials in rats (Meeren, Van Luijtelaar et al. 1998), saccadic motion is dependent 

on the state of alertness (van Steveninck, van Berckel et al. 1999).  

For the saccadic test, which lasted 1.5 minutes, the subject was presented 

with sudden changes of target position at random intervals. The target consisted of 

an array of light emitting diodes on a bar fixed at 50 cm in front of the head support. 

Each recording session consisted of 15 saccades of 15 degrees stimulus amplitudes. 

The outcome measures are peak saccadic velocity and reaction time.  

For smooth pursuit eye movements, a measure for psychomotor accuracy, 

the target moved sinusoidal at frequencies ranging from 0.3 to 1.1 Hz, by steps of 

0.1 Hz during 60 s. The amplitude of target displacement corresponded to 20 

degrees eyeball rotation to both sides. The time in which the eyes were in smooth 

pursuit of the target was calculated for each frequency and expressed as a 

percentage.  

Saccadic- and smooth pursuit eye movements were recorded using Nihon-

Kohden and Cambridge Electronics Design (CED) hardware, and CED Spike2 

software for sampling and analysis of eye movements. Effects on the saccadic eye 

movements, the Saccadic Eye Velocity (PV), were analysed according to published 

rules (Meeren, Van Luijtelaar et al. 1998;Sundstrom and Backstrom 1998). Head 

movements were restrained using a fixed head support. Eye movements are used to 

locate objects and predict the path of moving objects, and as such can be expected to 

be relevant for driving related abilities (Orban de Xivry and Lefevre 2007). 

Moreover, they are sensitive to the effects of serotonergic challenges (Gijsman, van 

Gerven et al. 2002), as well as to the effects of ethanol at the currently employed 

concentration (Amatsaleh, Dumont et al. 2006). 

 

Body sway 

Subjects were asked to close their eyes while in upright position and were 

attached to the body sway apparatus that records cumulative horizontal body 

movement (in mm) for two minutes. The test is a measure for postural stability 

(Wright 1971). 
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Subjective effects 

Subjective effects were assessed using the short version of the Addiction 

Research Centre Inventory (ARCI). The ARCI is a 49 item self-report questionnaire 

that consists of five subscales, each representing the characteristics of a specific drug 

group; i.e. pentobarbital-chlorpromazine-alcohol group (PCAG, a measure for 

sedation), morphine-benzedrine group (MBG, a measure for euphoria), 

amphetamine scale (A, an empirically derived scale sensitive to D-amphetamine 

effects), benzedrine group (BG, a measure for stimulant effects) and lysergic acid 

diethyl amide scale (LSD, a measure for dysphoria and psychomimetic changes) 

(Lamas, Farre et al. 1994). The ARCI questionnaire was performed at baseline, and 

90 and 300 minutes after drug administration. 

 

Statistical Analyses 

The pharmacodynamic parameters were analyzed by mixed model analyses 

of variance (using SAS PROC MIXED) with treatment, time and treatment by time 

as fixed effects, with subject, subject by time and subject by treatment as random 

effects, and with the baseline value as covariate, where baseline was defined as the 

average of the available values obtained prior to dosing. Treatment effects are 

reported as the contrasts between the 4 treatments where the average of the 

measurements up to the last time point was calculated within the statistical model. 

Contrasts are reported along with 95% confidence intervals and analyses are two-

sided with a significance level of 0.05. Graphical representation shows mean and 

standard error of the mean of data. 

Statistical evaluation of the differences in MDMA kinetics between 

MDMA only and MDMA and ethanol (co-) administration (using SPSS 11.5 for 

Windows) was performed with GLM Repeated Measures Analysis of Variance 

(ANOVA).  
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Results 

 

Pharmacokinetics  

MDMA and MDA kinetics did not differ between MDMA single and 

MDMA and ethanol conditions. The maximal plasma MDMA concentration (Cmax) 

was on average 202.5 

μg/l (SD=74.1 μg/l) 

150 minutes after 

drug administration 

(Figure 1). Plasma 

MDA concentration 

on average increased 

to 9.4 μg/l (SD=3.6 

μg/l) 360 minutes 

after drug 

administration. 

Ethanol kinetics are shown in Figure 2, during the pseudo-steady state 

phase blood alcohol 

concentration was on 

average 0.560/00 

(SD=0.0570/00). 

 

Pharmacodynamics 

Only 

significant results are 

mentioned in this 

section unless noted 

otherwise. Statistically significant main effects of treatment, time and treatment by 

time as well as drug condition comparisons are summarized in Table 1. For the drug 

condition comparisons, mean change, 95% confidence interval (95% CI) and 

corresponding p-values are reported.  

Figure 1. Plasma MDMA concentrations (mean, s.e.m.) for the 
MDMA, and the MDMA and ethanol condition. 

Figure 2. Blood alcohol concentrations (BAC, (mean, s.e.m.)).
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Neuroendocrine measurements 

Serum cortisol concentrations showed a pronounced increase after MDMA 

as well as after MDMA and ethanol (co-) administration compared to the placebo 

and ethanol condition (Figure 3A). The cortisol response did not differ between the 

MDMA and the MDMA and ethanol condition. Serum cortisol concentrations 

peaked 90 minutes after drug administration and decreased to baseline levels 360 

minutes after drug administration in spite of persisting plasma MDMA levels. 

 

Serum prolactin concentrations 

(Figure 3B) showed a profile similar to 

that of cortisol. Peak prolactin 

concentrations were observed 90 

minutes after MDMA and MDMA and 

ethanol (co-) administration. Prolactin 

levels after MDMA as well as after 

MDMA and ethanol (co-) 

administration returned to baseline 

levels 300 minutes after administration 

of the drug(s). There was no significant 

difference between the MDMA and the 

MDMA and ethanol condition.  

 

 

Figure 3. Neuroendocrine measures. Figure 3A: 
Serum cortisol concentration (mean, s.e.m.). 
Figure 3B: Serum prolactin concentration 
(mean, s.e.m.) 
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Body sway 

There were no significant treatment or treatment by time effects for the 

body sway measurements. 

 

Eye movements 

Smooth pursuit eye movements 

(psychomotor accuracy) were 

significantly impaired after ethanol as 

well as after ethanol and MDMA (co-) 

administration compared to the placebo 

and MDMA condition (Figure 4).  

 

Psychomotor speed and 

sedation/arousal were assessed by saccadic eye movements. Outcome measures are 

peak saccadic velocity (PV, see Figure 5A) and reaction time (RT, see Figure 5B) 

respectively. Subjects showed increased PV after MDMA administration compared 

to the placebo, ethanol and MDMA-

ethanol condition. Ethanol decreased 

PV compared to the placebo condition. 

Co-administration of MDMA with 

ethanol increased PV compared to the 

ethanol as well as to the placebo 

condition.  

A trend for a significant 

treatment by time interaction for RT 

was observed (p=0.0571). Drug 

comparisons showed that reaction time 

of saccadic eye movements was 

significantly increased after ethanol 

compared to placebo (p=0.023), 

although the effect was moderate.  

Figure 4. Psychomotor accuracy; smooth 
pursuit eye movements (mean, s.e.m.). 

Figure 5. Psychomotor speed measures. Figure 
5A: Saccadic peak velocity (mean, s.e.m.). 
Figure 5B: Reaction time of saccadic eye 

movements (mean, s.e.m.). 

5A 

5B 
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Subjective effects  

All ARCI sub-groups showed comparable time profiles. Maximal effects 

were observed 90 minutes after drug administration and effects had returned to 

baseline values 300 minutes after drug administration. The exception to this time 

profile were the ARCI pentobarbital-chlorpromazine-alcohol (PCAG) and 

benzedrine (BG) group-scores after ethanol administration, which showed a linear 

relation in time (positive for PCAG, negative for BG) with maximal effects 300 

minutes post drug administration, i.e. subjects felt increasingly sedated after ethanol 

compared to the placebo, MDMA and MDMA-ethanol conditions.  

Drug induced euphoria (ARCI morphine-benzedrine group-scores (MBG)) 

was reported after MDMA and MDMA-ethanol (co-) administration compared to 

the placebo and ethanol condition.  

Subjects reported amphetamine-like effects (ARCI amphetamine (A) 

group) in the MDMA and MDMA-ethanol condition compared to the placebo and 

ethanol condition.  

Arousal was assessed by the ARCI BG group. MDMA administration 

showed a trend for increased arousal compared to the placebo condition (p=0.069). 

MDMA and ethanol co-administration increased arousal significantly compared to 

the placebo condition. Ethanol decreased subjective arousal compared to the 

placebo, MDMA and MDMA-ethanol condition. 

Psychomimetic changes (ARCI lysergic acid (LSD) group) were 

experienced during all active drug conditions compared to placebo; these effects did 

not differ between drug conditions.  
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Discussion 

 

Here we report the acute pharmacokinetic and pharmacodynamic effects of 

MDMA and ethanol co-administration over time. The results suggest distinct effects 

of MDMA and ethanol on psychomotor function as well as on subjective 

experience. Co-administration effects were either averages of or comparable to 

single drug effects, but there was no reinforcement of the effects. We hypothesized 

that (1) the stimulating effects of MDMA would moderate ethanol’s sedating effects, 

that (2) tests not reliant on psychomotor speed would not benefit from MDMA co-

administration compared to ethanol and that (3) peak drug effects would co-incide 

with MDMA Tmax, although effects were expected to decline in spite of persisting 

plasma levels. 

Our results support these hypotheses as (1) co-administration of ethanol and 

MDMA reversed ethanol induced subjective as well as objective sedation, and (2) 

co-administration of ethanol and MDMA improved psychomotor speed but impaired 

psychomotor accuracy compared to placebo. Third, MDMA's peak dynamic effects 

coincided with the time of maximal plasma MDMA concentrations (Cmax), 

although effects diminished thereafter in spite of persisting plasma MDMA levels. 

The time profile of MDMA induced subjective and performance effects was 

congruent with neuroendocrine response, and MDMA and ethanol co-administration 

did not affect the neuroendocrine response compared to MDMA alone. The time 

course of ethanol induced effects also correlated with its kinetic profile, with the 

exception of ethanol-induced sedation, which had peak effects that were delayed 

compared to the kinetic profile.  

MDMA improved psychomotor speed but did not affect psychomotor 

accuracy. Lamers et al (Lamers, Ramaekers et al. 2003) also reported increased 

psychomotor speed after 75 mg MDMA in the Motor Choice Reaction Task 

(MCRT). While MDMA's most characteristic effect is the release of serotonin, it 

also releases dopamine (Colado, O'Shea et al. 2004;Liechti and Vollenweider 2001). 

Psychomotor speed is likely to benefit from the increased dopamine availability and 

the resulting increase in arousal (Mehta and Riedel 2006). However, tasks not solely 
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depending on speed, like psychomotor accuracy, are less likely to benefit from the 

increase in arousal. Ethanol on the other hand generally impaired psychomotor 

function, in line with previous reports (Hernandez-Lopez, Farre et al. 2002; 

Kuypers, Samyn et al. 2006; Dumont, Wezenberg et al. 2008).  

Co-administration of MDMA and ethanol caused a significant increase in 

psychomotor speed compared to placebo (although slightly less than MDMA alone). 

Hernandez-Lopez et al. (2002) also reported that MDMA co-administration reduced 

ethanol induced impairment of psychomotor function as measured with the DSST 

task, although this did not reach the level of significance. This discrepancy may be 

due to the fact that the DSST task is not a pure psychomotor speed task, but also 

assesses other cognitive functions such as memory, which is impaired by MDMA 

(Dumont, Wezenberg et al. 2008).  

Psychomotor accuracy on the other hand was decreased after the 

combination (comparable to the effects of ethanol alone). These findings are similar 

to those of a previous study that reported that ethanol administration decreased 

performance on the critical tracking task (CTT, a laboratory task) as well as 

measures of actual driving tests (increase of standard deviation of speed (SD(speed)) 

and standard deviation from lateral position (SDLP)) (Kuypers, Samyn et al. 2006). 

In line with our hypothesis that MDMA may overcome ethanol induced impairment 

of psychomotor speed but not accuracy, MDMA did not affect CTT scores, i.e. 

MDMA co-administration could not overcome ethanol induced impairment. Co-

administration of 100 mg MDMA did however reverse ethanol induced impairment 

of driving performance (ethanol increased SDLP, an effect which was counteracted 

by MDMA). Our finding of reversal of ethanol induced sedation by MDMA co-

administration (as measured by the reaction time of saccadic eye movements) is 

congruent with these results and support our hypothesis that MDMA may overcome 

ethanol induced sedation.   

Subjective effects were as expected; MDMA was experienced as arousing 

and induced mild euphoria. Co-administration of ethanol with MDMA showed a 

profile similar to MDMA induced subjective effects. Subjective effects returned to 

baseline values five hours after drug administration, with the exception of ethanol 
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induced sedation, which increased with time and showed maximal effects five hours 

after drug administration. Co-administration of MDMA with ethanol reversed 

ethanol induced subjective sedation. This may have important implications, for 

instance when a subject who has used both MDMA and ethanol decides to drive. 

MDMA may cause him or her to feel fit enough to drive, while actual performance 

may be profoundly impaired by alcohol. 

Remarkably, sedation as assessed by the reaction time of saccadic eye 

movements was also delayed relative to ethanol kinetics. Sedation was most 

pronounced 30 minutes after the ethanol infusion was stopped and declined 

thereafter, in line with reports that show that ethanol induces sedation mainly in the 

descending limb of the kinetic profile of ethanol (Pohorecky 1988). As already 

mentioned, subjective assessments also reflected delayed increase in sedation 

compared to ethanol administration, whereas other subjective measures had a more 

direct relationship with blood alcohol concentration. The results reported here show 

that alcohol may increase sedation even after the intake has stopped. This is 

particularly relevant if an ethanol-intoxicated subject decides to drive home after a 

tiresome social event. 

The Cmax after 100 mg orally administered MDMA (202.5 μg/l) was 

comparable to data reported elsewhere (de la Torre, Farre et al. 2000a). MDMA 

kinetics did not differ between MDMA single and MDMA-ethanol co-

administration. Two studies investigated the effects of MDMA and ethanol co-

administration on MDMA kinetics in humans, where ethanol co-administration 

increased plasma MDMA concentration significantly in one (Hernandez-Lopez, 

Farre et al. 2002) but not the other study (Kuypers, Samyn et al. 2006). A possible 

explanation for this discrepancy might lie in the fact that the study by Hernandez 

Lopez et al. (2002) achieved a peak BAC of 1.250/00, whereas Kuypers et al. (2006) 

achieved a peak BAC of 0.590/00 comparable to our steady state BAC of 0.560/00. 

Future studies should address this issue by assessing the effects of co-administration 

of different doses of ethanol with MDMA. 

Serum cortisol and prolactin concentrations increased significantly after 

MDMA administration, although both concentrations returned to baseline values 
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before a decrease in MDMA levels was observed. In other words, the neuro-

endocrine response diminished in spite of persisting plasma MDMA concentrations, 

a pattern observed in most other outcome measures as well. As MDMA is a 

serotonin releaser, both by reversing the direction of the reuptake transporter as well 

as by releasing neurotransmitter from the vesicles (Mlinar and Corradetti 2003), it is 

likely that the available neurotransmitter pool is rapidly depleted, and as a result the 

neuroendocrine effects of MDMA diminish in spite of persisting plasma MDMA 

concentration (Green, Mechan et al. 2003).  

A short-term reduction of sensitivity to MDMA may also explain why users 

often take multiple doses of this drug during the night, so-called 'drug-binging' 

(Gross, Barrett et al. 2002). Several anecdotal reports as well as personal 

communication with subjects indicate that the purpose of 'binging' is to prolong 

rather than to increase the effects (de la Torre, Farre et al. 2000b;Parrott 2006;Riley, 

James et al. 2001).  

Several limitations of our study should be mentioned. First, although eye 

movements play a significant role in everyday psychomotor performance (Orban de 

Xivry and Lefevre 2007), and the results of this measure are in agreement with those 

of actual driving tests, the relevance of the effects measured using laboratory tests 

for actual driving performance remains arguable. Second, subjective effects were 

assessed only at baseline and 90 and 300 minutes after drug administration, which 

limits the conclusions regarding the time profile of subjective effects. However, 

Hernandez-Lopez et al (Hernandez-Lopez, Farre et al. 2002), who assessed 

subjective effects more frequently over time, also reported that peak effects occurred 

at 90 minutes after drug administration after which effects declined. Third, although 

the ARCI measures several aspects of subjective performance, we did not directly 

assess subjective driving performance. We would recommend such a measure in 

future studies as it would provide a simple yet effective method of relating objective 

driving abilities to subjective perception of driving performance (Kuypers, Samyn et 

al. 2006). Last, our conclusions are based on a BAC of 0.560/00. As suggested in the 

discussion of the effects of ethanol on MDMA kinetics, ethanol effects might be 

dose-dependent, an issue which warrants further research.  
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In conclusion, we have shown that MDMA significantly increased 

psychomotor speed but not accuracy and induced significant subjective arousal, 

effects which were maximal around MDMA Cmax, and declined thereafter. Ethanol 

on the other hand impaired both psychomotor speed and accuracy, and induced 

sedation. Only the latter effect did not correspond with ethanol kinetics, sedation 

was observed during the descending limb of the BAC profile only. Co-

administration of MDMA with ethanol reversed ethanol induced sedation and 

improved psychomotor speed to above placebo levels, although psychomotor 

accuracy remained impaired. These findings may have implications for general 

functioning and when driving. Individuals will be more aroused when intoxicated 

with both substances, which may provide a false sense of better performance, 

although the accuracy of their performance is actually significantly impaired. 
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Abstract 
 

Alcohol is frequently used in combination with MDMA. Both drugs affect 

cardiovascular function, hydration and temperature regulation, but may have partly 

opposing effects. The present study aims to assess the acute physiologic effects of 

(co-) administration of MDMA and ethanol over time. 

A four-way, double blind, randomized, crossover, placebo-controlled study 

in 16 healthy volunteers (9 male, 7 female) between the ages of 18 and 29. MDMA 

(100 mg) was given orally and blood ethanol concentration was maintained at 

pseudo-steady state levels of 0.60/00 by a three-hour 10% intravenous ethanol clamp. 

Cardiovascular function, temperature and hydration measures were recorded 

throughout the study days. 

Ethanol did not significantly affect physiologic function, with the exception 

of a short lasting increase in heart rate. MDMA potently increased heart rate and 

blood pressure and induced fluid retention as well as an increase in temperature. Co-

administration of ethanol with MDMA did not affect cardiovascular function 

compared to the MDMA alone condition, but attenuated the effects of MDMA on 

fluid retention and showed a trend for attenuation of MDMA induced temperature 

increase. 

In conclusion, co-administration of ethanol and MDMA did not exacerbate 

physiologic effects compared to all other drug conditions, and moderated some 

effects of MDMA alone. 
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Introduction 

 

3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) is a 

frequently used club-drug in Western societies (Gross 2002;Parrott 2001). Apart 

from its desired effects on mood and perception, ecstasy has powerful physiologic 

side effects. Moreover, ecstasy users are generally multi-drug users and alcoholic 

beverages are commonly combined with MDMA (Barrett, Gross et al. 2005;Izco, 

Orio et al. 2007). However, the physiologic effects of this common combination, 

with the exception of effects on immune function (Pacifici, Zuccaro et al. 2001), 

have not been assessed previously.  

MDMA is a potent stimulant of cardiovascular action, increasing heart rate 

and blood pressure (Dumont and Verkes 2006;Green, Mechan et al. 2003). 

Disturbances in fluid homeostasis due to MDMA consumption, i.e. an increase of 

anti-diuretic hormone concentration (ADH or vasopressin, which promotes water 

retention) after MDMA consumption has been reported (Henry, Fallon et al. 

1998;Wolff, Tsapakis et al. 2006). This, in turn, can lead to hyponatraemia and 

serious health risks (Hall and Henry 2006;Rosenson, Smollin et al. 2007). MDMA 

also affects temperature regulation, generally increasing body temperature. Although 

this has received considerable attention in the literature, the mechanism of action is 

controversial (Colado, O'Shea et al. 2004;Colado, Williams et al. 1995;Green, 

O'Shea et al. 2004;Mechan, Esteban et al. 2002;Saadat, O'Shea et al. 2005). Recent 

reports suggest the involvement of the sympathetic nervous system in MDMA 

induced hyperthermia (Mills, Banks et al. 2003;Sprague, Banks et al. 2003;Sprague, 

Moze et al. 2005). The pharmacology of MDMA induced hyperthermia is of special 

interest as prevention of hyperthermia has been shown to diminish or even prevent 

MDMA induced neurotoxicity (Malberg and Seiden 1998;O'Shea, Easton et al. 

2002).  

Case reports of severe, sometimes fatal, physiologic disturbances after 

MDMA use, which are often facilitated by unfavorable behavior and/or 

circumstances, illustrate the relevance of these side effects of MDMA use (Connolly 
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and O'Callaghan 1999;Kalantar-Zadeh, Nguyen et al. 2006), although the incidence 

is low relative to the large population at risk (Nutt 2006).  

Drinks containing ethanol, commonly referred to as alcohol, are regularly 

used in social settings. Ethanol is an allosteric modulator of many transmembrane 

receptors (Pohorecky and Brick 1988), but functionally it acts foremost as a CNS 

depressant, depressing both excitatory and inhibitory postsynaptic potentials by 

potentiating the action of GABA at the GABAa receptor (Suzdak, Schwartz et al. 

1988). Although the chronic effects of ethanol on physiologic function have been 

assessed frequently, reports of acute physiological effects of ethanol are less 

frequent. Contrary to the effects of chronic ethanol exposure, which increases blood 

pressure (Kodavali and Townsend 2006), acute ethanol administration moderately 

lowers blood pressure and increases heart rate (Pohorecky and Brick 1988;Silva, 

Silveira et al. 2004;Tawakol, Omland et al. 2004). Ethanol also affects hydration 

regulation (e.g. promotes diuresis). Although some reports suggested that ethanol 

attenuates blood ADH concentration (Madeira and Paula-Barbosa 1999), others did 

not find an effect of ethanol administration on ADH levels (Rivier and Lee 

1996;Silva, Silveira et al. 2004). Effects of ethanol on body temperature also remain 

poorly understood. Generally, ethanol has been found to lower body temperature, 

tentatively explained by its vasodilatory effects. Recent studies suggest that the 

effects of ethanol on thermoregulatory behavior are major contributors to the 

hypothermic effect of ethanol in humans (Turek and Ryabinin 2005;Yoda, 

Crawshaw et al. 2005). 

As both substances have distinct and possibly opposite actions on 

physiologic function, we hypothesized that moderate ethanol intake may ameliorate 

the effects of MDMA. Co-administration of ethanol with MDMA may ameliorate 

MDMA induced water retention by promoting diuresis, and as such protect against 

hyponatraemia and its consequences. Cardiovascular distress after MDMA may be 

enhanced by co-administration of ethanol as ethanol acutely increases heart rate. On 

the other hand, MDMA induced cardiovascular distress may also be attenuated via 

ethanol’s central depressant effects which may attenuate sympathetic drive of 

cardiovascular function. The hypothermic effect of ethanol may offset MDMA 



 

- 81 - 

induced temperature increase when co-administered, which in turn may diminish 

MDMA's neurotoxic potential.  
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Materials and methods 

 

Study Design 

This study utilized a four-way, double blind, randomized, crossover, and 

placebo-controlled design. Sixteen volunteers were randomly assigned to one of four 

treatment sequences. Each volunteer received a capsule containing either 100 mg 

MDMA or placebo and an ethanol or placebo infusion (target blood alcohol 

concentration of 0.60/00) with a washout of 7 days between each treatment. 

 

Study outline 

Subjects were admitted to each study day after a urinary drug check 

(opiates, cocaïne, benzodiazepines, amphetamines, methamphetamines and delta-9-

tetrahydrocannabinol, AccuSign®, Princeton BioMeditech, Princeton, USA) (drug 

use was not allowed 14 days prior to the first study day until study completion) and 

the recording of possible signs and symptoms of health problems. A light breakfast 

was offered. Drug administration was scheduled at 10:30h and the ethanol infusion 

was started at 11:00h. A 30 minute lunch break was scheduled 210 minutes after 

drug administration. Outcome measures were assessed before MDMA 

administration and at 30, 90, 150, 240, 300, and 360 minutes post drug 

administration and consisted of cardiovascular function assessed by heart rate, 

systolic- and diastolic blood pressure measurements using a Datascope® Accutorr 

Plustm cardiovascular monitor and temperature measurements using a Braun® type 

6021 ThermoScan. Room temperature was kept at 22 degrees Celsius. Blood was 

collected for measurement of MDMA, antidiuretic hormone (ADH), sodium, 

norepinephrine and epinephrine plasma concentration. The latter two were collected 

at baseline, 60 and 150 minutes after drug administration. Subjects received lunch at 

14:00h and were sent home at 17:00h after a medical check.  

 

Subjects  

Sixteen healthy volunteers (9 male, 7 female), regular users of ecstasy (at 

least eight exposures in the last two years) and alcohol (at least one exposure per 
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week), 22.1 ± 2.9 (mean ± SD) years of age (range 18-29) and within 80-130% of 

their ideal body weight were recruited through advertisement on the internet and at 

local drug testing services. Lifetime ecstasy exposure was on average 95 (SD=138; 

range 14-431). More detailed demographic data have been reported elsewhere 

(Dumont, Wezenberg et al. 2008). Exclusion criteria included pregnancy, (history 

of) psychiatric illness, use of over-the-counter medication within 2 months prior to 

the study start, (history of) treatment for addiction problems, (familial or personal 

history of) schizophrenia, excessive smoking (>10 cigarettes/day) and orthostatic 

dysregulation. Physical and mental health was determined by assessment of medical 

history, a physical- and ECG examination as well as standard haematological and 

chemical blood examinations. None of the subjects screened for study participation 

showed signs of cardiovascular disturbances or (a history of) psychiatric ilness. The 

local Medical Ethics Committee approved the study. All subjects gave their written 

informed consent before participating in the study, and were paid for their 

participation. One subject had a mild adverse reaction (local vascular reaction) to the 

ethanol infusion and one subject did not refrain from drug use, both (1 male, 1 

female) were excluded from further participation and results obtained from these 

subjects were not included in the final data analysis.   

 

Ethanol clamping 

Ethanol (or glucose 5% as its placebo) was administered continuously by 

IV infusion of 10% ethanol in 5% glucose solution, aimed to maintain an ethanol 

blood concentration of 0.60/00 for three hours. The alcohol clamp was targeted at 

0.60/00, the equivalent of approximately 2-3 alcoholic beverages. This concentration 

is just above the legal limit for traffic participation in many Western countries and 

commonly used in social settings, as it is considered to be a safe and relatively 

moderate level, despite significant CNS effects (Amatsaleh, Schoemaker et al. 

2006). The infusion rate was calculated using frequent breath alcohol concentration 

measurements, according to a previously designed algorithm (Amatsaleh, Dumont et 

al. 2006). Breath alcohol concentration was assessed using a HONAC AlcoSensor 

IV® Intoximeter. The process was semi-automated using a computer spreadsheet 
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program, which uses changes in the measured breath alcohol concentrations to 

calculate the infusion rate that is needed to maintain the ethanol level at 0.60/00. The 

operator of the breath alcoholmeter and the ethanol infusion pump was unblinded for 

alcohol-treatment, but did not communicate with the study team or the subject about 

the results at any stage during the trial. A sham-procedure including a mock-

spreadsheet was used on ethanol-placebo-occasions.  

 

MDMA 

MDMA (or matched placebo) was given orally as a capsule in a single dose 

of 100 mg. MDMA was obtained from Lipomed AG, Arlesheim, Switzerland and 

encapsulated according to Good Manufacturing Practice (GMP) by the Department 

of Clinical Pharmacy of the Radboud University Nijmegen Medical Centre. 100 mg 

MDMA orally is a relevant dose in the range of normal single recreational dosages. 

Previous experiments in humans used doses up to 150 mg without serious adverse 

events. 

 

Analytical Methods 

All reagents were of analytical grade. 

MDMA analysis: Plasma samples were stored frozen at –70 °C until the 

time of analysis. An HPLC–diode array detection (HPLC-DAD) method was 

employed to measure MDMA plasma concentration (Dumont, Wezenberg et al. 

2008). 

Hormone analysis: ADH was measured by an in-house radioimmunoassay 

RIA employing 125I-labelled ADH and an antibody raised against arginine-

vasopressine, performed after prepurification of ADH by means of Sep-Pak C18 

columns. The average recovery was 75±8%. Within- and between-assay CVs were: 

7.1 and 14.0% at 2.6 pmol/l, 3.4 and 8.5% at 5.0 pmol/l and 4.0, and 9.4% at 8.9 

pmol/l. 

Plasma norepinephrine and epinephrine concentration was measured by a 

sensitive and specific HPLC with fluorometric detection as described previously 

(Willemsen, Ross et al. 1995). Blood samples were collected after the subject had 
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remained in seated position for at least 15 minutes and were processed within 30 

minutes after collection. 

 

Statistical Analyses 

Pharmacodynamic parameters were analyzed by mixed model analyses of 

variance (using SAS PROC MIXED; SAS 9.1.3 for Windows, SAS Institute, Inc., 

Cary, NC) with treatment, time and treatment by time as fixed effects, with subject, 

subject by time and subject by treatment as random effects, and with the baseline 

value as covariate, where baseline was defined as the average of the available values 

obtained prior to dosing. Treatment effects are reported as the contrasts between the 

4 treatments where the average of the measurements up to last time point was 

calculated within the statistical model. Contrasts are reported along with 95% 

confidence intervals and analyses are two-sided with a significance level of 0.05.  

Temperature measurements were also converted to a composite measure (TAUC) as 

described by Miller et al. (Miller and O'Callaghan 2003). This composite measure 

represents the area under the curve of a plot of temperature (˚C) and time (min) and 

has units of ˚C min. Statistical evaluation of TAUC was performed using the GLM 

Repeated Measures Analysis of Variance (ANOVA) in SPSS 12 for windows.  The 

relationships between MDMA dose corrected for body weight and MDMA maximal 

plasma concentration and between MDMA dose corrected for body weight and heart 

rate were statistically evaluated using a linear regression analysis in SPSS 12 for 

Windows.    
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Results 

 

Only significant results are mentioned in this section unless noted 

otherwise. Main effects of treatment, time and treatment by time as well as drug 

condition comparisons are summarized in Table 1. For the drug condition 

comparisons, (percentual) change, 95% confidence interval (95% CI) and 

corresponding p-values are reported. 

 

Pharmacokinetics 

Mean MDMA maximal plasma concentration (Cmax) was 202.5 ng/ml 

(SD=74.1 ng/ml) 150 minutes after drug 

administration, mean ethanol steady 

state concentration was 0.56 0/00 

(SD=0.06 0/00). A positive linear 

relationship was found for MDMA dose 

corrected for body weight and MDMA 

Cmax (R=0.85, p<0.001, see Figure 1). 

Ethanol co-administration did not affect 

this relationship. MDMA and ethanol 

kinetics in time are reported elsewhere 

(Dumont et al, in press). 

 

Cardiovascular function 

Heart rate was increased in all 

drug conditions compared to placebo as 

shown in figure 2A. Co-administration of 

MDMA and ethanol did not increase heart 

rate compared to the MDMA alone 

condition. Maximal heart rate increase 

was correlated with MDMA dose 

corrected for body weight and showed a 

Figure 1. Effect of MDMA dose corrected 
for body weight on MDMA maximal 

plasma concentration (Cmax). 

Figure 2A: Heart rate (in bpm) per drug 
condition (mean, s.e.m.). 
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positive linear dose response curve (R= 0.69, p<0.001).  

Systolic and diastolic blood 

pressure showed a similar response to 

drug administration in time and were 

increased after MDMA as well as 

MDMA and ethanol (co-) 

administration compared to the placebo 

and ethanol condition, Figure 2B shows 

the mean arterial pressure (MAP).  

 

Norepinephrine and epinephrine concentrations 

Norepinephrine levels, shown 

in Figure 3A, were increased after 

MDMA administration compared to the 

placebo and ethanol condition. 

Epinephrine levels, shown in Figure 

3B, were increased after MDMA as 

well as MDMA and ethanol (co-) 

administration compared to the ethanol 

and placebo condition. Co-

administration of ethanol with MDMA 

did not increase norepinephrine levels 

compared to placebo. Ethanol alone did 

not affect norepinephrine 

concentrations compared to placebo 

either. Compared to the ethanol 

condition, co-administration of ethanol 

and MDMA increased norepinephrine concentrations. 

 

 

Figure 2B: Mean arterial pressure (MAP, in mm 
Hg) per drug condition (mean, s.e.m.). 

Figure 3. Norepinephrine and epinephrine 
plasma concentrations. Figure 3A: 
Norepinephrine plasma concentration (in 
nmol/l) per drug condition (mean, s.e.m.). 
Figure 3B: Epinephrine plasma concentration 
(in nmol/l) per drug condition (mean, s.e.m.)

3A 

3B 
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Hydration 

Antidiuretic hormone (ADH or vasopressin) plasma concentrations are 

shown in Figure 4 and were increased after MDMA administration compared to 

placebo. Ethanol administration alone 

did not affect ADH levels compared to 

placebo. Co-administration of ethanol 

with MDMA reversed the MDMA 

induced increase of ADH 

concentrations to levels comparable to 

placebo.  

Sodium plasma concentrations 

were decreased after MDMA 

administration compared to all other conditions. Co-administration of ethanol with 

MDMA did not significantly affect sodium plasma concentrations compared to the 

placebo condition. Ethanol alone also did not have an effect on sodium plasma 

concentrations. 

 

Temperature 

Temperature, shown in Figure 

5A, increased significantly after 

MDMA administration compared to the 

placebo (by 0.4 oC on average) as well 

as compared to the ethanol condition. 

Ethanol did not affect temperature 

significantly compared to any drug 

condition, although there was a trend 

(p=0.09) for attenuation of the MDMA 

effect on temperature during co-

administration of MDMA and 

ethanol. Temperature data was also 

converted to AUC data (TAUC, 

Figure 4. Antidiuretic hormone plasma 
concentrations (ADH, in pmol/l) per drug 

condition (mean, s.e.m.). 

Figure 5. Temperature effects. Figure 5A: 
Temperature (in ˚C) per drug condition (mean, 

s.e.m.). Figure 5B: Temperature AUC (TAUC in ˚C 
min) per drug condition (mean, s.e.m.).  

5A 

5B 
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Figure 5B). Following a significant main effect of drug condition (F(3,11)=4.049, 

p=0.036), subsequent pairwise comparisons showed a significant increase in TAUC 

after MDMA administration compared to placebo (p=0.015), ethanol (p=0.018), and 

MDMA and ethanol co-administration (p=0.016). Other comparisons did not reveal 

significant differences between drug conditions. In other words, co-administration of 

ethanol with MDMA reversed the MDMA induced increase of TAUC to levels 

comparable to placebo.  
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Discussion 

 

This study confirms previous findings that MDMA exerts potent 

stimulatory effects on the human cardiovascular system, induces an increase in 

temperature and a disturbance of water homeostasis. Ethanol single administration 

did not affect the physiological parameters investigated in this study, with the 

exception of a mild increase in heart rate. Co-administration of ethanol with MDMA 

did not exacerbate MDMA induced stimulation of cardiovascular measures, and 

moderated the effect of MDMA on temperature and water homeostasis. Thus, co-

administration of low-dose ethanol, i.e. the equivalent of 2-3 alcoholic beverages, 

with MDMA attenuates some and does not exacerbate any of MDMA's physiologic 

effects.  

A relatively wide range (1.1-2.2 mg/kg) of MDMA dose corrected for body 

weight was administered in the current study. Our current findings show a 

significant positive linear relationship between MDMA dose corrected for body 

weight and Cmax, where an increase in dose of 0.1 mg/kg elevated MDMA Cmax 

with approximately 20 μg/l (Figure 1). Ethanol co-administration did not affect this 

relationship. A previous study reported a non-linear dose response relationship for 

MDMA dose vs. MDMA peak blood concentrations (de la Torre, Farre et al. 2000a). 

Although this study assessed the Cmax of separate doses (50, 100 and 150mg), the 

sample size was relatively small (N=6, two subjects per dose tested) and doses were 

not corrected for body weight (reported weight range was 66–83 kg).  

A significant, positive linear dose-response relationship was found for the 

effect of MDMA dose (corrected for body weight) on heart rate, where an increase 

of 0.1 mg/kg induced an average increase in heart rate of  4.2 bpm. Ethanol co-

administration did not affect this relationship. Although ethanol single 

administration led to a modest increase in heart rate, co-administration of ethanol 

and MDMA did not show an additive effect on heart rate.   

Blood pressure was increased after MDMA as well as after MDMA and 

ethanol co-administration (see Figure 2B). The lack of ethanol effects on blood 

pressure is in contrast with previous findings, which reported a moderate decrease of 
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blood pressure after ethanol administration (Pohorecky and Brick 1988;Silva, 

Silveira et al. 2004;Tawakol, Omland et al. 2004). The ethanol administration route 

(infusion of 10% ethanol solution over three hours) may have counteracted the 

effects of ethanol on blood pressure.  

Hyponatraemia has been suggested to be a, potentially fatal, side effect of 

MDMA use, likely due to MDMA induced increase in anti-diuretic hormone (ADH) 

concentration (Hartung, Schofield et al. 2002;Henry, Fallon et al. 1998). In line with 

this suggestion, we report a decreased sodium plasma concentration and increased 

ADH concentration after MDMA administration. Co-administration of ethanol with 

MDMA attenuated the MDMA induced increase in ADH concentration (Figure 4). 

After co-administration, sodium concentration did not differ from placebo or from 

the MDMA condition. Although the effects reported here are relatively small and 

are unlikely to be of clinical relevance, the circumstances in which MDMA is 

typically used may exacerbate these effects (Kalantar-Zadeh, Nguyen et al. 2006) 

(crowded, high ambient temperature clubs in combination with vigorous dancing as 

well as excessive water intake stimulated by public education). Ethanol single 

administration did not affect these measures. Previous reports have shown that 

ethanol can attenuate ADH release (Madeira and Paula-Barbosa 1999), although 

others did not find an effect of ethanol administration on ADH levels (Rivier and 

Lee 1996;Silva, Silveira et al. 2004). Possibly, the continuous administration of low 

levels of ethanol is insufficient to disturb ADH regulation per se, whereas the 

increased ADH concentration after MDMA allowed ethanol to demonstrate its 

attenuating effect on ADH release.  

Body temperature (Figure 5) has been shown to robustly increase after 

MDMA administration in animals (Green, O'Shea et al. 2005). In the current 

(human) study, MDMA increased body temperature slightly but significantly with 

an average maximal increase of 0.4 degrees Celsius. Although this effect is very 

moderate in comparison to the animal data, the effects on temperature regulation 

may be of significance in recreational MDMA use settings. These environments are 

assumed to be crowded and to have a high ambient temperature. Combined with 

vigorous dancing these factors may facilitate the MDMA induced increase of body 
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temperature beyond the effect size observed in the current, strictly controlled 

laboratory study (Freedman, Johanson et al. 2005;Parrott, Rodgers et al. 

2006;Williams, Dratcu et al. 1998). Two naturalistic studies assessed the effects of 

(among others) MDMA on body temperature during a 'club night' (Cole, Sumnall et 

al. 2005;Irvine, Keane et al. 2006). Both studies did not find a signficant rise in body 

temperature in users of psychostimulants (among which MDMA). However, all 

psychostimulant users in the study of Cole et al. (2005) reported the co-use of 

alcohol, thus confirming our current findings. The study by Irvine et al. (2006), 

which showed a trend for increased body temperature, did not assess alcohol co-use, 

although the authors did note that all participants were regular users of alcohol.  

In rats, MDMA induced hyperthermia has been shown to be mediated by 

the sympathetic nervous system, more specifically via α1 mediated vasoconstriction 

and β3 mediated thermogeneration in rats (Blessing 2005;Mills, Banks et al. 

2003;Mills, Weaver et al. 2007;Sprague, Moze et al. 2005). In the current study, 

MDMA indeed potently increased epinephrine (E) and norepinephrine (NE) plasma 

concentrations (Figure 3). Ethanol co-administration attenuated the MDMA induced 

NE (but not E) increase as well as MDMA induced temperature increase. Moreover, 

the above mentioned report by Sprague et al. (2005) showed that the blockade of 

either heat generation (mediated by the β3 receptor) or blockade of vasoconstriction 

(mediated by the α1 receptor) could only reduce hyperthermia by approximately 

50%. In the current study, temperature after MDMA and ethanol co-administration 

did not differ from placebo and showed a trend for attenuation of MDMA induced 

temperature increase. This is in line with the abovementioned report, as ethanol co-

administration attenuated NE concentration, effectively diminishing heat generation 

(the β3 receptor shows a higher affinity for NE over E), although ethanol co-

administration did not reduce the elevated E plasma concentrations. As the α1 

receptor, mediating vasoconstriction, has equal affinity for NE and E, the increased 

E concentration is likely to powerfully maintain vasoconstriction, and thus impair 

heat dissipation, confirming the findings of Sprague et al. (2005) in humans. The 

attenuation of NE output did not affect cardiovascular measures, although the 

reduced NE concentration should reduce vasoconstriction (mediated by NE) and 
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thus lower blood pressure. The potent stimulatory effects on heart rate (mainly 

mediated by E) have probably counteracted any effect of the reduced NE 

concentration on blood pressure (Figure 2).  

Although MDMA's neurotoxic potential in humans is still a matter of 

debate (Gouzoulis-Mayfrank and Daumann 2006a), MDMA induced temperature 

increase is of particular interest as its prevention has been shown to be an effective 

way of reducing or even preventing MDMA induced neurotoxicity in animal studies 

(Goni-Allo, Mathuna et al. 2008;Malberg and Seiden 1998;O'Shea, Easton et al. 

2002).  However, our findings suggest that low-dose ethanol co-administration, by 

attenuating sympathetic output, may moderate MDMA induced neurotoxicity. 

Although this provides interesting avenues for future studies regarding MDMA 

induced neurotoxicity, the current study did not assess these effects under the 

circumstances where temperature increase may become clinically relevant. In fact, a 

recent study in rats reported that ethanol did not attenuate MDMA induced 

temperature increase in high ambient temperature (Cassel, Ben et al. 2007). 

Moreover, as ethanol is able to increase hydroxyl radical formation, higher doses of 

ethanol may potentiate MDMA induced oxidative stress, and thus neurotoxicity, as 

suggested by a recent study that showed that repeated pre-exposure to high doses of 

ethanol exhausted CNS anti-oxidant resources and potentiated the neurotoxic effects 

of a subsequent dose of MDMA (Izco, Orio et al. 2007). 

Our results should be considered explorative due to some limitations of our 

study design. Firstly, the attenuating effects of ethanol co-administration on 

temperature and hydration did not reach statistical significance when directly 

compared to the single MDMA condition (with the exception of ADH and TAUC 

effects). It is likely that our study did not have sufficient power to statistically 

distinguish between these relatively small effects, although as discussed these 

effects may be enhanced and become relevant under more naturalistic conditions. 

Secondly, we assessed the effects of a single dose of MDMA and subsequent 

ethanol administration, and effects may differ depending on the dose assessed and 

the sequence of drug administration. Moreover, effects where assessed at a single 

ambient temperature of  22°C, and different ambient temperatures may induce 
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different effects. In general, the circumstances in which these substances are 

normally used cannot be fully recreated in the laboratory. These circumstances, 

along with the different expectations and behaviour, likely influence the effects of 

MDMA (Sumnall, Cole et al. 2006). Thus, further research should investigate the 

effects of the surroundings that ecstasy users are exposed to while being intoxicated, 

although such studies face considerable issues regarding feasibility (Irvine, Keane et 

al. 2006). Such studies should also assess the effects of different doses of ethanol 

and MDMA on physiologic function to corroborate our suggestions. Lastly, the 

difference in ethanol administration and resulting kinetics may have influenced our 

results, as it has been shown that some ethanol effects (i.e. sedation) manifest only 

during ascending or descending BAC (Pohorecky and Brick 1988). 

  As studies investigating the therapeutic potential of MDMA are emerging 

(Parrott 2007b;Sessa 2007;Sessa and Nutt 2007), information on how to treat and 

possibly even prevent side effects of MDMA in clinical studies appears vital. Our 

results suggest that antagonism of the sympathetic nervous system during MDMA 

use may diminish temperature increase, and, although speculative, thereby may 

diminish the possibility of neurotoxicity. Moreover, the cardiovascular distress 

induced by MDMA may also be effectively treated or prevented via this 

intervention. Last, careful management of fluid intake may effectively manage the 

symptoms of inappropriate increase in ADH concentration under controlled 

circumstances. 

In conclusion, co-administration of ethanol and MDMA did not exacerbate 

physiologic effects compared to all other drug conditions, and moderated some 

effects of MDMA alone. It should be stressed that these findings are only valid for 

the relatively low dose of ethanol (0.6 0/00 or 2-3 alcoholic beverages) as employed 

in the current study. Although the effects observed in this study are considered 

subtle, they demonstrate that MDMA and ethanol dysregulate physiological systems 

that are particularly important during the typical circumstances in which MDMA is 

used (Cassel, Ben et al. 2007;Cornish, Shahnawaz et al. 2003;Green, Sanchez et al. 

2004;Hargreaves, Hunt et al. 2007). 
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Abstract 
 

In Western societies a considerable percentage of young people expose 

themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or 

“ecstasy”) and cannabis.  

The aim of the present study was to assess the acute effects of (co-) 

administration of MDMA and THC (the main psychoactive compound of cannabis) 

on pharmacokinetics, psychomotor performance, memory and subjective experience 

over time.  

We performed a four-way, double blind, randomized, crossover, placebo-

controlled study in 16 healthy volunteers (12 male, 4 female) between the ages of 18 

and 27. MDMA (100 mg) was given orally, THC (4, 6, and 6 mg, interval of 90 

minutes) was vaporized and inhaled.  

THC induced more robust cognitive impairment compared to MDMA, and 

co-administration did not exacerbate single drug effects on cognitive function. 

However, co-administration of THC with MDMA increased desired subjective drug 

effects and drug strength compared to the MDMA condition, which may explain the 

widespread use of this combination. 
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Introduction 

 

In Western societies a significant proportion of young people expose 

themselves to 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) (Parrott 

2001). Ecstasy users are generally multidrug users, having experience with different 

psychoactive substances and combining them with ecstasy (Gouzoulis-Mayfrank 

and Daumann 2006b). Cannabis (main active compound ∆9-tetrahydrocannabinol or 

THC) is frequently co-used with ecstasy (Parrott, Milani et al. 2007). Despite the 

prevalence of co-administration of MDMA and THC, the effects of combined use of 

these substances in humans have so far not investigated. 

MDMA releases serotonin (5-HT) from presynaptic 5-HT terminals by 

reversal of the reuptake transporter and thus increases 5-HT levels at the 

postsynaptic receptors (Liechti and Vollenweider 2000;Mlinar and Corradetti 

2003;Pifl, Drobny et al. 1995). MDMA is also a potent releaser of dopamine and 

(nor) adrenaline (Colado, O'Shea et al. 2004;Liechti and Vollenweider 

2001;Sprague, Brutcher et al. 2004). In a previous study by our group, MDMA was 

found to increase psychomotor speed without affecting psychomotor accuracy. 

MDMA impaired the delayed recall of words, whereas word recognition was 

unaffected. MDMA increased subjective arousal and decreased subjective calmness 

(Dumont, Wezenberg et al. 2008). These effects generally co-incided with maximal 

MDMA plasma concentration but declined to baseline values in spite of persisting 

MDMA plasma concentration, which is generally consistent with the literature 

(Dumont and Verkes 2006). MDMA is rapidly absorbed following oral 

administration, and within 30 minutes detectable in the blood. MDMA plasma levels 

peak 1-2 hours after drug intake.  

THC, the major psychoactive compound in cannabis (Ilan, Gevins et al. 

2005;Wachtel, ElSohly et al. 2002), is an agonist for the CB1 and CB2 receptors of 

the endocannabinoïd system (ECS). The CB1 receptor is abundantly expressed in the 

central nervous system whereas the CB2 receptor is expressed predominantly in the 

periphery (Ameri 1999). The central effects of THC have received abundant 

attention in the scientific literature and generally include, but are not restricted to, 
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impairment of memory and psychomotor function and subjective relaxation. A 

recent review revealed that cannabis affects most functional CNS-domains, but due 

to great variations in study methodology only increases of heart rate and subjective 

feelings (feeling 'high') were found to be reliable biomarkers of cannabis effects 

(Zuurman, Ippel et al. 2009). THC, a highly lipophilic compound, is rapidly 

distributed into fatty tissue (among which the CNS), and after inhalation peak 

plasma concentration are reached within minutes and show a rapid decline, although 

cognitive effects and subjective effects are maximal after 15 to 60 minutes and last 

for several hours (Curran, Brignell et al. 2002;Strougo, Zuurman et al. 2008).  

As combined use of MDMA and THC is common (Parrott, Gouzoulis-

Meyfrank et al. 2004;Parrott, Milani et al. 2007), and these substances both affect 

memory as well as psychomotor function, we aimed to assess the cognitive and 

subjective effects of co-administration of these substances over time under 

controlled laboratory conditions in experienced users. Previous research regarding 

the cognitive effects of co-administration of MDMA and THC is limited to a study 

in rats and showed that co-administration induced a synergistic impairment of 

working memory (Young, McGregor et al. 2005). Thus, co-administration was 

expected to show additive impairment of memory, whereas effects on psychomotor 

performance were expected to be attenuated due to the opposing actions of the 

stimulant MDMA and the relaxant THC.  
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Materials and methods 

 

Study Design 

This study utilized a four-way, double blind, randomized, crossover, and 

placebo-controlled design and was conducted according to the principles of the 

Declaration of Helsinki. Each volunteer received a capsule containing either MDMA 

100 mg or placebo and inhaled a vapor containing consecutively 4, 6, and 6 mg of 

THC (dosing intervals of 90 minutes) or placebo vapor containing vehicle with a 

washout of 7 days between each condition. 

 

Study outline 

Subjects were admitted to each study day after a urinary drug check 

(opiates, cocaïne, benzodiazepines, amphetamines, methamphetamines and delta-9-

tetrahydrocannabinol, AccuSign®, Princeton BioMeditech, Princeton, USA: drug use 

was not allowed 14 days prior to the first study day until study completion) and the 

recording of possible signs and symptoms of health problems. As THC was 

administered during study days, urine positive for THC led to exclusion only on 

study day 1. A light breakfast was offered two hours prior to drug administration. 

MDMA administration was scheduled at 10:30h and THC was administered at 0, 90, 

and 180 minutes after MDMA administration. Subjects received a standardized 

lunch at 14:00h and were sent home around 17:00h. 

Outcome measures were assessed repeatedly, i.e. before MDMA 

administration and at 15, 60, 105, 150, 240 and 300 minutes post drug 

administration, with the exception of the 18 word list memory task, which was 

performed 120 minutes after drug administration. Repeated measures consisted of 

blood sampling for analysis of study drug kinetics and assessments of postural 

stability, psychomotor function, memory, and subjective effects as specified below. 

To familiarize the subjects with the tests and procedures, they were invited to the 

hospital to perform a practice session one week before the actual study days.  
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Subjects 

Sixteen healthy volunteers (12 male, 4 female), regular users of ecstasy (at 

least 8 exposures in the last two years) and THC (on average two exposures per 

week in the last year), between the ages of 18 and 27, were recruited through 

advertisement on the internet and at local drug testing services. Detailed 

demographic data are shown in Table 1. Exclusion criteria included pregnancy, 

(history of) psychiatric illness (assessed using the Structured Clinical Interview for 

DSM-IV axis I disorders, non-patient version (First, Frances et al. 1994), Axis II 

disorders were excluded using the Temperament and Character Inventory (Svrakic, 

Whitehead et al. 1993)), use of over-the-counter medication within 2 months prior to 

the study start, (history of) treatment for addiction problems, excessive smoking 

(>10 cigarettes/day) and orthostatic dysregulation. Physical and mental health was 

determined by assessment of medical history, a physical- and ECG examination as 

well as standard haematological and chemical blood examinations. The local 

Medical Ethics Committee approved the study. All subjects gave their written 

informed consent before participating in the study, and were paid for their 

participation. 

One subject did not refrain from drug use, after which further study 

participation was denied. Two subjects experienced an adverse event that was 

judged to be likely related to study 

drug administration (one subject 

experienced a short lasting (55 

seconds) heart rate increase of >180 

bpm and another subject experienced 

mild hallucinations, the latter subsiding 

along with other drug effects). These 

subjects were excluded from further 

participation, data of completed study 

days obtained prior to these adverse 

events were analysed as described. 

 

 Mean s.e.m. Min  Max 
Age (years) 21 0.5 18 27 
Education (years) 16 0.3 12 18 
Height (cm) 178 1.7 165 189 
Weight (kg) 71 2.1 60 86 
Opiates 26 9 1 50 
LSD 33 13 2 108 
Ecstasy 143 53 10 702 
Amphetamines 96 50 1 624 
Cannabis 1716 429 364 6570 
Cocaine 46 19 2 234 
Alcohol 6071 1221 144 15600 
Solvents 122 70 1 834 
Benzodiazepines 7 3 1 25 
Psilocybin 19 6 1 60 
GHB 33 19 1 208 
Ketamine 211 116 1 1040 

Table 1: Demographic data of study participants, 
drug use is quantified as the cumulative number of 

lifetime drug exposures (not further specified). 
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 Study drugs 

THC was purified according to Good Manufacturing Practise (GMP)-

compliant procedures (Farmalyse BV, Zaandam, The Netherlands) from the flowers 

of Cannabis sativa grown under Good Agricultural Practice (Bedrocan BV 

Medicinal Cannabis, Veendam, The Netherlands) (Choi, Hazekamp et al. 

2004;Hazekamp, Choi et al. 2004). Each dose (4, 6 and 6 mg) of THC (>98% purity 

by HPLC/GC) was dissolved in 200 μl 100 vol% alcohol. THC was stored in the 

dark at -20ºC in 1 ml amber glass vials containing a teflon screw-cap secured with 

Para film to minimize evaporation. The solvent was used as placebo.  

On each study day, THC (4, 6 and 6 mg) or placebo were administered by 

inhalation at 90-minute intervals using a Volcano® vaporizer (Storz-Bickel GmbH, 

Tüttlingen, Germany), a validated method of intrapulmonary THC administration 

(Abrams, Vizoso et al. 2007;Hazekamp, Ruhaak et al. 2006). Concurrent with 

MDMA administration, THC (4 mg) was administered to ensure tolerability. 90 and 

180 minutes after drug administration, 6 mg of THC was administered. Within five 

minutes before administration THC was vaporized at a temperature of about 225ºC 

and the vapour was stored in a polythene bag equipped with a valved mouthpiece, 

preventing the loss of THC in between inhalations. The transparant bag was covered 

with a black plastic bag to prevent unblinding. Subjects were not allowed to speak, 

and were instructed to inhale deeply and hold their breath for 10 seconds after each 

inhalation. Within 2-3 minutes the bag was to be fully emptied. The inhalation 

procedure was practiced at screening using the vehicle only. 

The inhalation schedule was predicted to cause THC plasma concentrations 

and effects which roughly correspond to those of one marijuana cigarette. The 

decision to proceed to the next THC dose was made by a physician, based on 

adverse events and physical signs. 

MDMA (or matched placebo) was given as a capsule in a single oral dose 

of 100 mg. MDMA was obtained from Lipomed AG, Arlesheim, Switzerland and 

encapsulated according to GMP by the Department of Clinical Pharmacy of 

Radboud University Nijmegen Medical Centre.  
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Pharmacokinetic measurements  

 

THC 

For determination of the concentration of plasma THC and its two most 

important metabolites (11-OH-THC and 11-nor-9-carboxy-THC), venous blood was 

collected in EDTA tubes of 4.5 ml blinded with aluminium foil. Blood samples were 

taken 5 and 20 minutes after each THC administration and immediately put on ice 

and were processed (spun at 1500 g for 10 minutes at 4 ºC ) within 30 minutes after 

collection. THC blood samples were handled sheltered from light. Plasma samples 

were stored at a temperature of -80ºC for less than 3 months before laboratory 

analysis. Concentrations of THC and the metabolites were shown to be stable over 

this period (Hazekamp, Choi et al. 2004).  

Determination of THC, 11-OH-THC and 11-nor-9-carboxy-THC content 

was performed using a validated high performance liquid chromatography with 

tandem mass spectrometric detection. Calibration range was 1.00 – 500 ng/ml for all 

compounds. Over this range the intra-assay coefficient of variation was between 4.0 

and 6.5%. The inter-assay coefficient of variation was between 1.4 and 9.4%. 

 

MDMA 

An HPLC–diode array detection (HPLC-DAD) method was employed to 

assess MDMA and MDA plasma concentration, which has been described in detail 

previously (Dumont, Schoemaker et al, in press). 

 

Pharmacodynamic measurements  

 

Eye movements 

Saccadic eye movements are a measure for psychomotor speed and 

sedation. Eye movements were quantified by recordings of field potential changes 

due to eye rotations. Similar to EEG patterns and the architecture of evoked 

potentials in rats (Meeren, Van Luijtelaar et al. 1998), saccadic motion is dependent 

on the state of alertness (van Steveninck, van Berckel et al. 1999). For the saccadic 
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test, which lasted 1.5 minutes, the subject was instructed to look at a target that 

suddenly changed position at random intervals. The target consisted of an array of 

light emitting diodes on a bar fixed at 50 cm in front of the head support. Each 

recording session consisted of 15 saccades of 15 degrees stimulus amplitudes. The 

outcome measures are peak saccadic velocity and reaction time.  

For smooth pursuit eye movements, a measure for psychomotor accuracy, 

the target moved sinusoidal at frequencies ranging from 0.3 to 1.1 Hz, by steps of 

0.1 Hz during 60 s. The amplitude of target displacement corresponded to 20 

degrees eyeball rotation to both sides. The time in which the eyes were in smooth 

pursuit of the target was calculated for each frequency and expressed as a 

percentage.  

Saccadic- and smooth pursuit eye movements were recorded using Nihon-

Kohden and Cambridge Electronics Design (CED) hardware, and CED Spike2 

software for sampling and analysis of eye movements. Effects on the saccadic eye 

movements, the Saccadic Eye Velocity (PV), were analysed according to published 

rules (Meeren, Van Luijtelaar et al. 1998;Sundstrom and Backstrom 1998). Head 

movements were restrained using a fixed head support. Eye movements are used to 

locate objects and predict the path of moving objects, and as such can be expected to 

be relevant for driving related abilities (Orban de Xivry and Lefevre 2007). 

Moreover, they are sensitive to the effects of serotonergic challenges, MDMA and 

cannabis (Dumont, Valkenberg et al. 2007;Gijsman, van Gerven et al. 

2002;Zuurman, Roy et al. 2008). 

 

Body sway 

Subjects were asked to close their eyes while in upright position and were 

attached to the body sway apparatus that records cumulative horizontal body 

movement (in mm) for two minutes. The test is a measure for postural stability 

(Wright 1971). 
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Pursuit task 

To measure implicit procedural learning a computerized version of the rotor 

pursuit task was used. This test is based on the classic rotary pursuit task (Ammons 

1951). It is a continuous motor task. Subjects had to follow the movement of a large 

target stimulus on the computer screen with a cursor by moving the pen over a XY-

tablet. The speed of the target gradually increased when the cursor was contained 

within the target but decreased considerably when it was not. The target followed a 

spatially predictable circular path over the screen. The outcome measure for this test 

was the total number of rotations within two minutes. 

 

Eighteen words list   

The eighteen words list is a verbal memory test based on the classic 

Auditory Verbal Learning Test (Vakil and Blachstein 1993). A variant was made 

consisting of a list of eighteen words. The classic test uses fifteen words. A longer 

wordlist was chosen to prevent ceiling effects. The list was presented verbally three 

times 120 minutes after MDMA administration (30 minutes after the second THC 

administration). Under normal circumstances subjects are supposed to remember an 

increasing number of words after each trial. Directly after each presentation, and 

after an interval of 20 minutes, subjects were asked to recall as many words as 

possible. After the delayed recall trial a list of thirty-six words was presented from 

which they were asked to recognize the eighteen words previously presented. The 

incorrect words were distracters and resembled the correct words in a semantic or 

phonologic manner. Responses were either correct positive (when a word that was 

recognized was indeed part of the list presented during immediate recall) or false 

positive (when a word was recognized but was not part of the list presented during 

immediate recall, e.g. the word was a distracter). The outcome measure was the 

number of correctly recalled/recognized words for the average of the three 

immediate recall trials, the delayed recall trial and the delayed recognition trial.  
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N-back task 

The N-back task, a test of working memory, is widely used for the detection 

of working memory deficits (Meyer-Lindenberg, Poline et al. 2001). Subjects were 

presented with a starting circle and six possible target circles surrounding the 

starting circle on the screen, reflecting the same positions as on the paper form. In 

the 1-back condition, subjects had to respond to the stimulus that was presented in 

the previous trial. In the 2-back condition, subjects had to respond to the stimulus 

presented two trials before. In the 3-back condition, subjects had to respond to the 

stimulus presented three trials before. The outcome measure was the time needed 

until completion of 25 correct trials. 

 

Bond and Lader (Visual Analogue) Mood Rating Scale (BLMRS).  

The BLMRS scale consists of 16 lines, each 10 cm in length, with opposite 

terms at each end of the line (Bond, James et al. 1974). Subjects were asked to 

indicate which item was more appropriate by marking the line. The outcome 

measure of these visual analogue scales was the distance to the marker on each 

scale. These scale scores were aggregated to scores for 'calmness', 'alertness' and 

'contentedness' as described by Bond and Lader (1974).  

 

Subjective drug experience visual analogue scales  

To assess subjective drug experience and motivation, three visual analogue 

scales were constructed (drug liking, drug strength and motivation). Similar to the 

BLMRS, these were each 10 cm in length, and subjects were asked to quantify these 

terms by marking the line. The outcome measure was the distance to the marker on 

each scale. 

 

Bowdle visual analogue scales 

Psychedelic effects were monitored by an adapted version of the visual 

analogue scales (13 items, each 10 cm in length), originally described by Bowdle et 

al (Bowdle, Radant et al. 1998). Individual scales were aggregated to scores for 

'feeling high', 'drowsy', 'internal perception' (reflecting inner feelings not 
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corresponding to reality) and 'external perception' (reflecting a misperception of an 

external stimulus or a change in the awareness of the subject's surroundings) 

(Zuurman, Roy et al. 2008). 

 

Statistical Analyses 

The pharmacodynamic parameters were analyzed by mixed model analyses 

of variance (using SAS PROC MIXED, SAS 9.1.3 for Windows, SAS Institute, Inc., 

Cary, NC) with treatment, time and treatment by time as fixed effects, with subject, 

subject by time and subject by treatment as random effects, and with the baseline 

value as covariate, where baseline was defined as the average of the available values 

obtained prior to dosing. Treatment effects are reported as the contrasts between the 

4 treatments where the average of the measurements up to the last time point was 

calculated within the statistical model. Contrasts are reported along with 95% 

confidence intervals and analyses are two-sided with a significance level of 0.05.  
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Results 

 

Pharmacokinetics  

MDMA and MDA kinetics did not differ between MDMA alone and 

MDMA plus THC conditions. Mean MDMA maximal plasma concentrations 

(Cmax) were on average 213.3 μg/l (s.e.m.=7.9 μg/l) 105 minutes after drug 

administration and showed minimal decline during the sampling period (on average 

168.3 μg/l (s.e.m.=5.4 μg/l) 300 minutes after drug administration). Mean MDA 

plasma concentrations on average rose to 12.0 μg/l (s.e.m.=0.5 μg/l) 300 minutes 

after drug administration. 

Plasma THC concentrations and 

its two most important metabolites (11-

OH-THC and 11-nor-9-carboxy-THC) 

did not differ between the THC alone 

and MDMA plus THC conditions (see 

Table 2). THC and 11-OH-THC 

consistently showed peak concentrations 

directly after administration and declined 

thereafter, whereas 11-nor-9-carboxy-

THC concentrations inclined throughout 

the sampling period. 

 

Pharmacodynamics 

Only significant results are mentioned in this section unless noted 

otherwise. Main effects of treatment, time and treatment by time as well as drug 

condition comparisons are summarized in Table 3. For the drug condition 

comparisons, reported are mean change, 95% confidence interval (95% CI) and 

corresponding p-values.  

 

Condition Dose THC 11-
THC  

11-9-
THC 

THC 4 mg 59.7 
(5.6) 

2.8 
(0.9) 

8.4 
(0.8) 

MDMA+THC  53.8 
(6.9) 

2.9 
(0.8) 

9.2 
(1.2) 

THC 6 mg 
(1st) 

84.5 
(9.0) 

3.7 
(1.0) 

16.0 
(1.9) 

MDMA+THC  84.6 
(8.6) 

4.7 
(1.0) 

18.5 
(1.7) 

THC 6 mg 
(2nd) 

74.8 
(6.9) 

4.8 
(1.2) 

20.6 
(1.5) 

MDMA+THC  73.3 
(7.1) 

6.9 
(1.3) 

21.7 
(2.6) 

Table 2: Peak THC, 11-OH-THC (11-THC) and 
11-nor-9-carboxy-THC (11-9-THC) plasma 

concentrations (in ng/ml; mean, (s.e.m.)). 1st= 
administered at 90 min. and 2nd = administered 

at 180 min after MDMA administration. 
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Body sway 

 Body sway was increased, i.e. postural position was impaired, in all drug 

conditions compared to placebo. THC alone as well as co-administration of THC 

plus MDMA increased body sway compared to the MDMA alone condition. 

 

Eye movements 

Although smooth pursuit eye movements (psychomotor accuracy) were not 

significantly impaired in any drug condition compared to placebo, MDMA and THC 

showed opposite effects on this measure: (co-)administration of MDMA increased 

smooth pursuit eye movements compared to the THC administration.  

Psychomotor speed and sedation/arousal were assessed by saccadic eye 

movements (respectively peak saccadic velocity (PV) and reaction time). PV was 

increased in the MDMA condition as well as in the MDMA plus THC condition 

compared to the placebo and the THC condition. THC did not affect PV. Saccadic 

reaction time did not show a significant main effect of drug administration. 

 

Rotor pursuit task 

The Rotor Pursuit task (see 

Figure 1) performance was significantly 

impaired in the THC condition and the 

MDMA plus THC condition compared 

to the placebo and MDMA condition. 

MDMA alone did not affect the Rotor 

Pursuit task. 

Figure 1. Rotor pursuit task scores per drug 
condition (mean, s.e.m.). Arrows indicate THC 

administration (t=0 (4 mg), t=90 (6 mg), and 
t=180 (6 mg) minutes). 
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18 Word list 

Immediate recall of words was impaired in all drug conditions compared to 

placebo. Delayed recall and delayed recognition did not show a significant main 

effect of drug administration.  

 

N-back task 

Performance on the 1-back task 

was impaired in the THC condition and 

MDMA plus THC condition compared to 

the placebo and MDMA condition.  

2-back performance did not show 

a significant main effect of drug 

condition, although drug condition 

comparisons revealed a trend for 

impairment of 2-back performance in the 

THC condition compared to the MDMA 

condition (p=0.053).  

Co-administration of MDMA 

plus THC impaired 3-back performance 

compared to placebo. THC 

administration showed a trend for 

impairment of 3-back performance 

compared to placebo (p=0.055). 

 

Bond and Lader Mood Rating Scale 

 

Subjective alertness was reduced in the THC condition compared to the 

placebo and the MDMA condition. Although co-administration of MDMA plus 

THC attenuated this reduction in alertness compared to the THC condition, 

subjective alertness was still reduced in the MDMA plus THC condition compared 

to placebo. Subjective contentedness was reduced in the THC condition compared to 

Figure 2. Memory effects. Figure 2A: 18 word 
list results per drug condition (mean, s.e.m., *= 

p<0.05). Arrows indicate THC administration 
(t=0 (4 mg), t=90 (6 mg), and t=180 (6 mg) 

minutes). Immediate: average number of words 
immediately recalled over three consecutive 

immediate recall trials, Delayed: words recalled 
after a delay of 20 minutes, Recognition: 

number of words recognized among 18 
distractor words. Figure 2B:Working memory: 

3-back results per drug condition (mean, s.e.m.). 
Arrows indicate THC administration (t=0 (4 

mg), t=90 (6 mg), and t=180 (6 mg) minutes). 

2A 

2B 
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the placebo as well as the MDMA 

condition. Co-administration of MDMA 

plus THC abolished this effect: 

contentedness after co-administration 

did not differ compared to the placebo 

or the MDMA condition. Subjective 

calmness was reduced in the MDMA 

condition and the MDMA plus THC 

condition compared to the placebo and 

THC condition. THC did not affect 

calmness ratings.  

 

Drug liking and Drug strength 

scale 

'Drug liking' ratings were 

increased in the MDMA condition and 

MDMA plus THC condition compared 

to the placebo and THC condition. 

'Drug strength' ratings were increased 

after all drug conditions compared to 

placebo. Co-administration of THC plus 

MDMA further increased ratings of 

drug strength compared to the MDMA 

condition.  

Motivation was decreased in 

the THC condition compared to the 

placebo, MDMA, and MDMA plus 

THC condition. In other words, co-

administration of MDMA with THC reversed the THC induced reduction of 

motivation.  

 

Figure 3. Subjective effects. Arrows indicate 
THC administration (t=0 (4 mg), t=90 (6 mg), 

and t=180 (6 mg) minutes). Figure 3A: 
Subjective alertness (mean, s.e.m.). Figure 3B: 

Subjective drug liking (mean, s.e.m.). Figure 
3C: Subjective drug strength (mean, s.e.m.). 

Figure 3D: Subjective motivation (mean, s.e.m.).  

3A 

3B 

3C 

3D 
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Bowdle scale 

All drug conditions increased ratings of internal and external perception 

compared to placebo. Co-administration of THC plus MDMA increased both 

internal and external perception compared to the placebo as well as MDMA 

condition, and external perception also increased compared to the THC condition. 

Ratings of 'feeling high' were increased in all drug conditions compared to placebo. 

'Feeling high' ratings showed a more robust increase in the THC condition compared 

to the MDMA condition, and co-administration of THC plus MDMA further 

increased subjective 'feeling high' compared to the MDMA condition (but not 

compared to the THC condition). Feeling 'drowsy' scores were increased in the THC 

as well as the MDMA plus THC condition compared to placebo.  
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Discussion 

 

This study assessed the cognitive and subjective effects of co-

administration of MDMA and THC in humans, a frequent recreational drug 

combination. As MDMA is a psychostimulant, while THC generally impairs 

psychomotor function, psychomotor effects of these substances separately were 

expected to be attenuated after co-administration. However, results show that 

MDMA generally could not attenuate THC’s impairment of psychomotor function.  

Rotor pursuit performance was impaired by THC administration. This is in 

agreement with previous findings, where THC moderately impaired driving related 

performance (Weinstein, Brickner et al. 2008), and actual driving behavior 

(Ramaekers, Robbe et al. 2000). THC also robustly impaired postural stability, an 

effect that has been reported previously (Zuurman, Roy et al. 2008). MDMA had no 

effect on rotor pursuit performance, but it increased body sway, albeit to a lesser 

extent than THC. In a previous study with different treatment combinations, we did 

not find an overall effect of MDMA on postural stability (Dumont, Schoemaker et 

al. in press), but a post hoc direct comparison of drug conditions did show a 

significant postural effect of MDMA compared to placebo (unpublished data). Co-

administration of MDMA and THC further impaired rotor pursuit performance and 

postural stability compared to MDMA, but not compared to THC, indicating that the 

detrimental effects of THC prevailed. Direct comparison of the MDMA condition 

with the THC condition also showed that the effect of THC on rotor pursuit 

performance and postural stability was more robust. 

Although psychomotor performance was impaired by THC, THC did not 

affect eye movements, which confirms previous reports (Ploner, Tschirch et al. 

2002;Zuurman, Roy et al. 2008), and is congruent with cannabinoid receptor 

distribution patterns: eye movements are primarily driven by brain stem areas, which 

show little CB1 receptor expression (Zuurman, Roy et al. 2008). MDMA on the 

other hand increased saccadic peak velocity but not accuracy, which is also in line 

with a previous study (Dumont, Schoemaker et al. in press ). Effects of co-
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administration of MDMA and THC were similar to those observed in the MDMA 

only condition . 

The effects of THC and MDMA on memory were complex. Both THC and 

MDMA impaired word recall: immediate recall of words was significantly reduced 

in both single drug conditions. Delayed recall and recognition were unaffected by 

drug administration. Previous results regarding THC effects on memory generally 

are congruent with our results, where THC impaired immediate (Curran, Brignell et 

al. 2002;Hart, van et al. 2001;Heishman, Arasteh et al. 1997) but also delayed recall 

(Curran, Brignell et al. 2002) of a word list. MDMA’s impairment of word list 

performance in the current study was comparable in size to the effects reported 

earlier. However, in a previous study the reduction of immediate recall failed to 

reach significance, whereas impaired delayed recall did (Dumont, Wezenberg et al. 

2008). Co-administration of MDMA and THC did not exacerbate impairment of 

word list recall compared to either drug alone.  

As previous (animal) research showed that co-administration of MDMA 

and THC induced a synergistic impairment of working memory (Young, McGregor 

et al. 2005), co-administration was expected to show additive impairment on tests of 

working memory compared to single drug effects. However, the effects of these 

substances on the N-back task, a test of working memory, were subtle and did not 

appear to be additive, although the complexity of THC induced impairment warrants 

further research regarding this topic. The effects of THC on the N-back working 

memory task were time- and dose dependent, where THC generally induced a robust 

but short-lived impairment of working memory. The 2-back condition did not show 

an effect of drug administration. THC impaired performance in the 1-back condition 

and showed a trend of impairment (p=0.055) in the 3-back condition, congruent with 

previous reports where THC impaired N-back performance (Ilan, Smith et al. 2004), 

although Curran et al. (2002) found no effect of THC on working memory using the 

serial sevens task. The discrepancy of THC effects on 2- and 3-back performance 

versus the 1-back performance may be explained by the fact that the 1-back 

condition may assess psychomotor function rather than working memory as subjects 

only have to locate the dot that lit-up, i.e. performance will primarily be determined 
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by the time the subject needs to reach the target, rather than correctly memorizing 

which dot lit up n times before. In this sense, these results may reflect THC induced 

impairment of psychomotor function rather then working memory. A recent 

systematic literature review also showed complex effects of THC/cannabis on 

working memory, with possible indications for an inverse dose response relationship 

(Zuurman, Ippel et al. 2009).  

N-back performance was unaffected in the MDMA condition. Co-

administration of MDMA and THC impaired 1-back and 3-back performance. 

Although THC alone did not significantly impair 3-back performance, the observed 

trend suggests that the impairment of n-back performance after co-administration 

was driven primarily by THC, and co-administration of MDMA and THC did not, 

contrary to our hypothesis, exacerbate single drug induced memory impairment.  

These results suggest that THC may exert much of its cognitive impairment 

via a common mechanism of reduced alertness. This is in line with its classification 

as a relaxant/sedative drug, and with reports that show that subjects are able to 

compensate for these impairments at the cost of greater effort (Curran, Brignell et al. 

2002). The stimulant effects of MDMA may attenuate this effect, but could not 

overcome THC induced impairments in the current study. Subjective ratings show 

that the subjects were aware of these impairments: THC increased subjective ratings 

of feeling 'drowsy', and reduced ratings of 'motivation' and 'alertness'. Co-

administration of MDMA reversed the THC induced reduction of subjective 

motivation, and attenuated the reduction of alertness by THC, although the latter 

was still significantly decreased after co-administration compared to placebo. The 

fact that subjects appeared aware of the THC induced cognitive impairment may be 

of significance when participating in traffic while intoxicated. Subjects who are 

aware of their reduced alertness are likely to adapt their behavior, thus reducing the 

risk of traffic accidents (Ronen, Gershon et al. 2008).  

Subjective effects further suggest that the combination may be popular 

because it enhances the pleasurable subjective effects of each drug alone. Both THC 

and MDMA induced robust subjective drug effects and increased subjective ratings 

of 'feeling high', internal perception (reflecting inner feelings not corresponding to 
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reality) and external perception (reflecting a misperception of an external stimulus or 

a change in the awareness of the subject's surroundings), and both were comparable 

in 'drug strength'. MDMA increased subjective 'drug liking', whereas in the THC 

condition 'drug liking' ratings appeared inversely dose-related: 'drug liking' was 

robustly decreased after the high THC dose (6 mg) compared to the lower dose (4 

mg). Congruent with drug liking ratings, subjective contentedness was dose-

dependently reduced in the THC condition. This apparent inverse dose response 

relationship is in line with an overall assessment of the literature on the effects of 

cannabis/THC (Zuurman, Ippel et al. 2009). Co-administration of THC and MDMA 

enhanced subjective drug effects: ratings of 'drug strength', ‘internal and external 

perception’, and 'feeling high' were increased compared to the MDMA condition, 

whereas ratings of ‘contendedness’, ‘external perception’, and ‘drug liking’ where 

increased compared to the THC condition. The perceived increase of drug strength, 

combined with enhanced sensory drug effects, without an unacceptable decrease of 

cognitive function, offers a plausible incentive for combining cannabis with ecstasy 

in recreational settings. 

Some limitations should be addressed. In the current study some effects of 

THC on memory failed to reach significance (although trends were observed). 

Likely, this may be related to the short lived effects of THC on memory. As can be 

seen in Figure 2, the effects of THC on memory were robust around 15 minutes but 

were diminished 60 minutes after drug administration, a pattern which could be 

observed after all three doses, although memory was assessed 60 minutes after the 

third dose only. This suggestion is congruent with previous studies showing that 

THC impaired N-back task performance 20 but not 60 minutes after THC 

administration (Ilan, Smith et al. 2004), and that THC induced impairment of 

immediate recall was the strongest in the period immediately after drug 

administration (Heishman, Arasteh et al. 1997). Future studies with more frequent 

test intervals relative to drug administration are recommended to elucidate the time 

profile and possible dose dependency of THC induced memory impairment. 

This also points to another limitation of our study. To maintain a stable effect level 

of THC during co-administration of MDMA, we assessed the effects of a single dose 
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of MDMA and three consecutive THC doses. Effects may differ depending on the 

dose assessed and the timing of drug administration, and our approach cannot be 

considered to be fully representative of all modes of combined drug use in practice. 

In general, the circumstances in which these substances are normally used cannot be 

fully recreated in the laboratory, although they may influence the effects of MDMA 

(Sumnall, Cole et al. 2006). However, the doses of each drug used in this study were 

similar to normal recreational use. In this sense, the current study sets a relevant 

benchmark for future evaluations of other dose combinations. 

In conclusion, our study shows that co-administration of MDMA and THC 

did not exacerbate single drug induced cognitive impairment. Compared to MDMA 

(100 mg), THC (4, 6 and 6 mg) induced more robust impairment of cognitive 

function. Subjective effects show that subjects were aware of these impairments, and 

that the combination of THC with MDMA enhanced the perceived drug strength and 

desired drug effects compared to the MDMA condition. These results suggest that 

cannabis increases the desired effects of ecstasy without an unpredictable increase in 

cognitive impairment, which may explain the wide-spread recreational use of this 

combination. 
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Abstract 

 

The present study assessed the acute physiologic effects of (co-

)administration of Δ9-THC (the main psychoactive compound of cannabis) and 

MDMA over time in 16 healthy volunteers. Pharmacokinetics, and cardiovascular, 

temperature, and catecholamine responses were assessed over time.  

Both single drug conditions increased heart rate robustly, and co-

administration showed additive effects. MDMA increased epinephrine and 

norepinephrine concentrations, THC did not affect the catecholamine response. Co-

administration of MDMA and THC attenuated the increase of norepinephrine 

concentrations compared to the MDMA condition.  

These results show that THC mediates its heart rate increase independent of 

sympathetic (catecholaminergic) activity and likely via direct CB1 agonism in 

cardiac tissue. Furthermore, THC co-administration did not prevent MDMA induced 

temperature increase, but delayed the onset and prolonged the duration of 

temperature elevation. These effects may be of particular relevance for the 

cardiovascular safety of ecstasy users in nightclubs with high ambient temperature 

and intensive dancing.  
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Introduction 

 

3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) is a 

frequently used club-drug in Western societies (Gross 2002;Parrott 2001). Next to 

its desired effects on mood and perception, ecstasy has powerful effects on human 

physiology. Moreover, ecstasy users generally are multi-drug users, and cannabis is 

commonly combined with MDMA (Parrott, Milani et al. 2007).  

MDMA is a potent stimulant of cardiovascular action, increasing heart rate 

and blood pressure. MDMA also affects temperature regulation, generally increasing 

body temperature (Dumont and Verkes 2006;Freedman, Johanson et al. 2005;Green, 

Mechan et al. 2003). Although the relationship between body and brain temperature 

in humans is as yet unclear (Kiyatkin 2007), the pharmacology of MDMA induced 

temperature increase is of special interest as the prevention of hyperthermia has been 

shown to diminish or even prevent MDMA induced neurotoxicity (Malberg and 

Seiden 1998b;O'Shea, Easton et al. 2002a). Although MDMA induced temperature 

increase has received abundant attention in the literature, the mechanism is as yet 

unclear (Colado, O'Shea et al. 2004;Colado, Williams et al. 1995;Green, O'Shea et 

al. 2004;Mechan, Esteban et al. 2002;Saadat, O'Shea et al. 2005). In a previous 

report we suggested that the increase in both cardiovascular measures and 

temperature after MDMA administration is mediated by increases in both 

norepinephrine and epinephrine blood concentrations (Dumont, Kramers et al. 

2009). These findings in humans corroborate previous findings in animals (Mills, 

Banks et al. 2003;Sprague, Banks et al. 2003;Sprague, Moze et al. 2005). Case 

reports of severe, sometimes fatal, physiologic disturbances after MDMA use, which 

are often facilitated by unfavorable behavior such as vigorous dancing and/or 

circumstances such as high ambient temperatures, illustrate the relevance of these 

side effects of MDMA use (Connolly and O'Callaghan 1999;Kalantar-Zadeh, 

Nguyen et al. 2006). However, the incidence of these adverse events after ecstasy 

use is low relative to the large population at risk ((Nutt 2006), but see also (Parrott 

2007)).  
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A recent review showed that one of the most reliable markers of THC use is 

a concentration related increase of heart rate (Zuurman, Ippel et al. 2009). Although 

it is assumed that the cardiovascular effects of THC are mediated by sympathetic 

stimulation, studies suggest that THC may induce these effects (partly) via direct 

stimulation of peripheral CB1 receptors (Sidney 2002). In spite of the increased heart 

rate, THC does not markedly affect blood pressure. This is most probably related to 

concommitant vasodilatory effects (Hall and Solowij 1998;Zuurman, Roy et al. 

2008b). THC induced vasodilatation may, in theory, also lead to a decrease in body 

temperature, although most clinical studies did not report significant temperature 

effects of THC (Zuurman, Ippel et al. 2009). 

Although studies into the effects of co-administration of MDMA and THC 

in humans are absent, several reports suggest that THC co-use may protect against 

MDMA induced temperature increase and resulting neurotoxicity (Fisk, 

Montgomery et al. 2006;Morley, Li et al. 2004;Parrott, Milani et al. 2007). Both 

substances are potent stimulators of heart rate, while MDMA increases blood 

pressure which is unaffected by THC. MDMA leads to these effects via sympathetic 

stimulation, but the mechanism of THC (increase of sympathetic function or direct 

peripheral CB1 stimulation) is unclear. We hypothesize that 1) MDMA and THC co-

administration may show additive effects on cardiovascular function as these 

substances may induce their effects through different mechanisms, and that 2) the 

vasodilatory effect of THC may attenuate MDMA induced vasoconstriction and 

resulting temperature increase when co-administered. To address these issues, this 

study assessed the effects of MDMA and THC co-administration on cardiovascular 

function, temperature, pharmacokinetics and plasma levels of norepinephrine and 

epinephrine levels over time. 
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Materials and methods 

 

Study Design 

This study utilized a four-way, double blind, randomized, crossover, and 

placebo-controlled design and was conducted according to the principles of the 

Declaration of Helsinki. Each volunteer received a capsule containing either MDMA 

100 mg or placebo, and inhaled three consecutive vapors containing 4, 6, and 6 mg 

of THC or placebo with dosing intervals of 90 minutes with washout periods of 7 

days. 

 

Study outline 

Subjects were admitted to each study day after the recording of possible 

signs and symptoms of health problems, and after a urinary drug check for opiates, 

cocaïne, benzodiazepines, amphetamines, methamphetamines and 

tetrahydrocannabinol (AccuSign®, Princeton BioMeditech, Princeton, USA). Drug 

use was not allowed 14 days prior to the first study day until study completion. A 

light breakfast was offered two hours prior to drug administration. MDMA 

administration was scheduled at 10:30h and THC was administered at 0, 90, and 180 

minutes after MDMA administration. Subjects received a standardized lunch at 

14:00h and were sent home around 17:00h. 

Outcome measures were assessed repeatedly, i.e. before MDMA 

administration and at 15, 60, 105, 150, 240 and 300 minutes post drug 

administration, and consisted of blood sampling (for analysis of study drug kinetics), 

cardiovascular function assessed by heart rate, systolic- and diastolic blood pressure 

measurements using a Datascope® Accutorr Plustm cardiovascular monitor, and 

tympanic temperature measurements using a Braun® type 6021 ThermoScan. Room 

temperature was kept at 22 degrees Celsius. Heart rate was also monitored 

continuously using a POLAR® Vantage NV watch, set to sample the average heart 

rate per five seconds and analysed using POLAR® Precision Performance 2.0 

software. Blood samples for analysis of norepinephrine and epinephrine 

contcentration were taken at baseline, and 50, 95, 140, and 195 minutes after drug 
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administration. To familiarize the subjects with the tests and procedures, they were 

invited to the hospital to perform a practice session within one week before the first 

study day.  

 

Subjects 

Sixteen healthy volunteers (12 male, 4 female), regular users of ecstasy 

(lifetime exposure of 143 ± 212 units (mean±SD)) and THC (lifetime exposure of 

1716 ± 1717 units (mean±SD)), 18 - 27 years of age (21.4 ± 2.2 mean±SD) were 

recruited through advertisements on the internet and at local drug testing services. 

Detailed demographic data will be reported elsewhere. Exclusion criteria included 

pregnancy, (history of) psychiatric illness (assessed using the Structured Clinical 

Interview for DSM-IV Axis I disorders, non-patient version (First, Frances et al. 

1994), Axis II disorders were excluded using the Temperament and Character 

Inventory (Svrakic, Whitehead et al. 1993), use of over-the-counter medication 

within 2 months prior to the study start, (history of) treatment for addiction 

problems, excessive smoking (>10 cigarettes/day), unable to refrain from smoking 

during the study days, and orthostatic hypotension. Physical and mental health was 

determined by assessment of medical history, a physical- and ECG examination as 

well as by standard haematological and chemical blood examinations. The local 

Medical Ethics Committee approved the study. All subjects gave their written 

informed consent before participating in the study, and were paid for their 

participation. 

One subject did not refrain from drug use, after which further study 

participation was denied. Two subjects were withdrawn at some point in the study 

because of side effects. Data of completed study days obtained prior to withdrawal 

were analysed as described. 
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Study drugs 

 

THC 

THC was purified according to Good Manufacturing Practise (GMP)-

compliant procedures (Farmalyse BV, Zaandam, The Netherlands) from the flowers 

of Cannabis sativa grown under Good Agricultural Practice (Bedrocan BV 

Medicinal Cannabis, Veendam, The Netherlands) (Choi, Hazekamp et al. 

2004;Hazekamp, Choi et al. 2004). Each dose (4, 6 and 6 mg) of THC (>98% purity 

by HPLC/GC) was dissolved in 200 μl 100 vol% ethanol. THC was stored in the 

dark at -20ºC in 1 ml amber glass vials containing a teflon screw-cap secured with 

Para film to minimize evaporation. The solvent was used as placebo.  

On each study day, THC (4, 6 and 6 mg) or placebo were administered by 

inhalation using a Volcano® vaporizer (Storz-Bickel GmbH, Tüttlingen, Germany), 

a validated method of intrapulmonary THC administration (Abrams, Vizoso et al. 

2007;Hazekamp, Ruhaak et al. 2006;Zuurman, Roy et al. 2008). Concurrent with 

MDMA administration, 4 mg THC was administered to ensure tolerability. Two 

subsequent doses of 6 mg of THC were administered 90 and 180 minutes after 

MDMA administration. Within five minutes before administration THC was 

vaporized at a temperature of about 225ºC and the vapour was stored in a polythene 

bag equipped with a valved mouthpiece, preventing the loss of THC between 

inhalations. The transparant bag was covered with a black plastic bag to prevent 

unblinding. Personnel responsible for drug preparation was not involved in any other 

part of the study. Subjects were not allowed to speak, were instructed to inhale 

deeply and hold their breath for 10 seconds after each inhalation. Within 2-3 minutes 

the bag was to be fully emptied. The inhalation procedure was practiced at screening 

using the solvent only. The inhalation schedule was predicted to cause THC plasma 

concentrations and effects corresponding to the THC-contents in roughly one 

marijuana cigarette. The decision to proceed to the next highest THC dose was made 

by a physician, based on adverse events and physical signs. 
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MDMA 

MDMA (or matched placebo) was given as a capsule in a single oral dose 

of 100 mg. MDMA was obtained from Lipomed AG, Arlesheim, Switzerland and 

encapsulated according to GMP by the Department of Clinical Pharmacy of the 

Radboud University Nijmegen Medical Centre.  

 

Pharmacokinetic measurements  

 

THC 

For determination of the concentration of plasma THC and its two most 

important metabolites (11-OH-THC and 11-nor-9-carboxy-THC), venous blood was 

collected in EDTA tubes (wrapped in aluminium foil) of 4.5 ml. Blood samples 

were taken 5 and 20 minutes after each THC administration and immediately put on 

ice and were processed (spun at 1500 g for 10 minutes at 4 ºC ) within 30 minutes 

after collection. THC blood samples were handled sheltered from light. Plasma 

samples were stored at a temperature of -80ºC for less than 3 months before 

laboratory analysis. 

Determination of THC, 11-OH-THC and 11-nor-9-carboxy-THC content 

was performed using a validated high performance liquid chromatography with 

tandem mass spectrometric detection. Calibration range was 1.00 – 500 ng/ml for all 

compounds. Over this range the intra-assay coefficient of variation was between 4.0 

and 6.5%. The inter-assay coefficient of variation was between 1.4 and 9.4%. 

Stability of THC levels in plasma was shown for at least six months. 

 

MDMA 

A validated HPLC–diode array detection (HPLC-DAD) method was 

employed to measure MDMA and MDA plasma concentration, which has been 

described in detail previously (Dumont, Kramers et al. 2009). 
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Norepinephrine and epinephrine  

Plasma (nor)epinephrine concentration was measured by sensitive and 

specific HPLC with fluorometric detection as described previously (Willemsen, 

Ross et al. 1995). Blood samples were collected after the subject had remained in a 

sitting position for at least 15 minutes and were processed within 30 minutes after 

collection. 

 

Statistical Analyses 

The pharmacodynamic parameters were analyzed by mixed model analyses 

of variance (using SAS PROC MIXED) with treatment, time and treatment by time 

as fixed effects, with subject, subject by time and subject by treatment as random 

effects, and with the baseline value as covariate, where baseline was defined as the 

average of the available values obtained prior to dosing. Treatment effects are 

reported as the contrasts between the four treatments where the average of the 

measurements up to the last time point was calculated within the statistical model. 

Contrasts are reported along with 95% confidence intervals and analyses are two-

sided with a significance level of 0.05. Post-hoc evaluation of the specific treatment 

by time interaction of the MDMA and MDMA+THC treatments regarding 

temperature and epinephrine data was performed using the same mixed model 

analyses of variance.  

Pharmacokinetic modelling was performed using nonlinear mixed effect 

modelling as implemented in the NONMEM software package (Version VI, 

NONMEM Project Group, University of California, San Francisco, CA). Previous 

assessment of THC pharmacokinetics indicated the requirement of a two-

compartment model with a bolus administration in the central compartment 

(Strougo, Zuurman et al. 2008). 
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Results 

 

Only significant results are mentioned in this section unless noted 

otherwise. Main effects of treatment, time and treatment by time as well as drug 

condition comparisons are summarized in Table 1. For the drug condition 

comparisons (percentual) differences, 95% confidence interval (95% CI) and 

corresponding p-values are reported. 

 

Pharmacokinetics  

MDMA and MDA kinetics did not differ significantly between MDMA 

single and MDMA and THC conditions. Mean MDMA maximal plasma 

concentrations (Cmax) were 213.3 μg/l 

(s.e.m.=7.9 μg/l) 105 minutes after drug 

administration (see Figure 1A). Mean 

MDA plasma concentrations rose to 

12.0 μg/l (s.e.m.=0.5 μg/l) 300 minutes 

after drug administration. 

Mean observed THC plasma 

concentrations as well as modelled 

THC concentrations are presented in 

Figure 1B. THC and 11-OH-THC 

consistently showed peak 

concentrations five minutes after 

administration and declined thereafter, 

whereas 11-nor-9-carboxy-THC 

concentrations inclined throughout the 

sampling period (data not shown). 

Plasma THC and metabolite concentrations did not differ significantly between THC 

single and MDMA and THC conditions. 

 

Figure 1. Pharmacokinetics. Arrows indicate 
THC administration (t=0 (4 mg), t=90 (6 mg), 

and t=180 (6 mg) minutes). Figure 1A: MDMA 
kinetics per drug condition (mean, s.e.m.). 

Figure 1B. THC kinetics per drug condition 
(mean, s.e.m.). Shown are observed and 

modelled THC concentrations. 

1A 

1B 
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Adverse events 

Five subjects reported side effects (nausea, profuse sweating and paleness) 

associated with a vasovagal reaction that occurred exclusively in the THC alone 

condition with the 6 mg THC dose with an onset of 5-15 minutes after THC 

administration and a duration of 5-30 minutes. Furthermore, one subject reported 

feeling unwell without any overt physical signs, which resolved within 60 minutes 

both in the MDMA (onset 30 minutes post drug administration) and in the MDMA 

and THC condition (onset 60 minutes post drug administration). All of these 

subjects showed no particular signs during a short medical examination, and 

continued study participation after symptoms fully subsided. Two subjects also 

experienced an adverse event in the MDMA plus THC condition: one subject 

showed a short lasting (55 seconds) heart rate of >180 bpm and another subject 

reported mild hallucinations, the latter subsiding along with other drug effects. 

These two subjects were excluded from further study participation. 

 

Cardiovascular function 

Heart rate was increased in all drug conditions compared to placebo (THC: 

14.2 bpm, MDMA: 20.4 bpm, MDMA+THC: 29.9 bpm (mean increase over time), 

see Figure 2). Heart 

rate was also 

increased in the 

MDMA plus THC 

condition compared 

to the MDMA alone 

and the THC alone 

condition.  

Systolic 

blood pressure and 

diastolic blood 

pressure showed similar profiles: both were increased in the MDMA alone condition 

and the MDMA plus THC condition compared to the placebo (MDMA: 14.4 mm 

Figure 2. Heart rate averages per five minutes per drug condition, 
(mean, s.e.m.). Arrows indicate THC administration (t=0 (4 mg), t=90 
(6 mg), and t=180 (6 mg) minutes). 
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Hg, and 11.9 mm Hg, MDMA+THC: 13.5 mm Hg, and 9.8 mm Hg respectively 

(mean increase over time)) and THC alone condition.  

 

Temperature 

Temperature (see Figure 3) 

was significantly increased in the 

MDMA alone condition and the 

MDMA plus THC condition 

compared to the placebo (MDMA: 

0.3°C, MDMA+THC: 0.2°C (mean 

increase over time)) and THC alone 

condition. Post-hoc analyses of the MDMA versus the MDMA+THC condition 

showed a significant treatment by time interaction (p<0.0001). 

 

Norepinephrine and epinephrine concentrations 

Norepinephrine levels, shown 

in Figure 4A, were increased after 

MDMA alone compared to all other 

drug conditions. Co-administration of 

THC with MDMA also increased 

norepinephrine levels compared to the 

placebo and THC alone condition, but 

decreased norepinephrine levels 

compared to MDMA alone. Relative to 

placebo, norepinephrine levels were 

unaffected by THC alone. 

Epinephrine levels, shown in 

Figure 4B, were increased during MDMA 

alone compared to the placebo and the 

THC alone conditions. Average 

epinephrine levels in the MDMA plus 

Figure 3. Temperature per drug condition 
(mean, s.e.m.). Arrows indicate THC 

administration (t=0 (4 mg), t=90 (6 mg), and 
t=180 (6 mg) minutes). 

Figure 4. (Nor)Epinephrine plasma 
concentrations. Arrows indicate THC 

administration (t=0 (4 mg), t=90 (6 mg), and 
t=180 (6 mg) minutes). Figure 4A: 

Norepinephrine plasma concentration per 
drug condition (mean, s.e.m.). Figure 4B: 

Epinephrine plasma concentration per drug 
condition (mean, s.e.m.). 

4A 

4B 
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THC condition were increased compared to THC alone, and did not differ 

significantly compared to placebo or MDMA alone, although compared to the latter, 

co-administration delayed the onset and prolonged the duration of the increased 

epinefrine levels. Post-hoc analyses of the latter effect (MDMA condition versus the 

MDMA+THC condition) showed a significant treatment by time interaction 

(p=0.0077). 
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Discussion 

 

The current placebo controlled, double-blind, and randomized trial in 

healhy volunteers clearly shows that the effects of THC and MDMA on heart rate 

are additive: both drugs alone induced an average peak increase in heart rate of 

approximately 30 bpm, and co-administration of the same dosages induced an 

average peak increase in heart rate of approximately 60 bpm. As expected, MDMA 

also increased blood pressure (mean increase over time SBP: 14.4 mm Hg, DBP: 

11.9 mm Hg), body temperature (mean increase over time 0.3°C) and both 

epinephrine and norepinephrine plasma concentrations. THC single administration 

did not affect these measures. Co-administration of THC with MDMA did not affect 

blood pressure, and attenuated the increase of norepinephrine concentrations due to 

MDMA alone. The onset of increase in epinephrine concentrations was delayed and 

the duration of this elevation was prolonged compared to MDMA alone. As a result, 

the effects were truncated by the end of observation period, and the apparent 

elevation of epinephrine concentrations by co-administration of THC at T=180min 

(Figure 4B) was not enough for an average statistically significant increase. 

Congruent with these findings, THC co-administration modulated the temperature 

time profile compared to the MDMA alone condition: the onset of the temperature 

increase was delayed and the duration of temperature elevation was prolonged 

(Figure 3), although the mean temperature increase over time (0.2°C) was 

comparable to that observed in the MDMA condition. These findings confirm our 

hypothesis that MDMA and THC co-administration induces additive effects on heart 

rate. On the other hand, the hypothesis that THC co-administration may attenuate 

MDMA induced temperature increase by concomitant vasodilatation was not 

supported: THC co-administration delayed the onset of the temperature increase but 

prolonged the duration of temperature elevation. 

Despite the prevalent combined use of cannabis and ecstasy, the acute 

physiologic effects of MDMA and THC co-administration in recreational users have 

not been investigated before. MDMA increased heart rate for several hours, and 

THC induced a robust but shortlasting increase in heart rate approximately 15 
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minutes after administration, findings that are in line with previous reports (Dumont 

and Verkes 2006;Sidney 2002;Strougo, Zuurman et al. 2008;Zuurman, Roy et al. 

2008). The increase of both norepinephrine and epinephrine plasma concentrations 

after MDMA administration compared to placebo have been described previously 

(Dumont, Kramers et al. 2009). As norepinephrine is an important mediator of the 

cardiovascular response to MDMA, it is remarkable that heart rate showed a rapid 

additive increase after co-administration of THC and MDMA relative to single drug 

effects, while co-administration of THC attenuated norepinephrine elevation. 

Similarly, THC single administration did not affect norepinephrine concentrations 

but robustly increased heart rate. These data suggest that THC exerts a direct and 

potent stimulatory effect on cardiac CB1 receptors (Bonz, Laser et al. 2003), instead 

of increasing heart rate via sympathetic stimulation. These results extend the 

findings of a recent publication where the time profile of THC induced heart rate 

effects also suggested a direct stimulatory effect of plasma THC on cardiac CB1 

receptors (Strougo, Zuurman et al. 2008). The involvement of CB1 receptors is 

confirmed by another study that showed that the effects of THC on heart rate can be 

reversed by a selective CB1 antagonist, which did not have any direct cardiovascular 

effects of its own (Zuurman, Roy et al. 2008a). Despite the increase in heart rate, 

THC did not induce an increase in blood pressure. This is in line with the suggestion 

that THC reduces vascular resistance via peripheral CB1 receptors (Sidney 2002), 

which may compensate for the increased heart rate. Several subjects showed a 

vasovagal reaction to the high (6 mg) THC dose in the THC alone condition, 

although these effects generally subsided within several minutes. Vasodepressive 

reactions induced by cannabis (Ghuran and Nolan 2000) as well as other 

vasodilatory compounds (van Eijk, Pickkers et al. 2004) have been previously 

described in the literature. Subjects who experienced a vagal reaction in the current 

study indicated that they had experienced these effects before and more severely 

after recreational cannabis consumption.  

MDMA induced a relatively small but significant increase in body 

temperature, a finding which confirms previous results (Brown and Kiyatkin 

2004;Colado, Williams et al. 1995;Parrott, Rodgers et al. 2006;Williams, Dratcu et 
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al. 1998). THC alone did not affect temperature. Co-administration of THC with 

MDMA also increased temperature compared to placebo, although the onset of the 

temperature increase was delayed and the duration of this increase was longer 

compared to the MDMA condition. Congruent with earlier reports suggesting the 

involvement of epinephrine and norepinephrine in MDMA induced temperature 

elevation (Dumont, Kramers et al. 2009;Sprague, Brutcher et al. 2004), the 

modulation of the temperature time profile corresponds with the modulation of the 

catecholamine profiles by THC co-administration compared to MDMA alone. After 

co-administration, norepinephrine and epinephrine concentrations appeared to be 

reduced at 45 minutes compared to MDMA alone. At later time points epinephrine 

concentrations were increased in the MDMA plus THC condition compared to 

MDMA alone. Since increased epinephrine concentrations induce cutaneous 

vasoconstriction effectively impairing heat dissipation, this is congruent with the 

delayed and prolonged duration of increased temperature that is seen after co-

administration. Thus, although THC may cause a rapid decrease in vascular 

resistance, the duration of this effect may to be too short to attenuate MDMA 

induced vasoconstriction and resulting impairment of heat dissipation, congruent 

with the time profile of THC effects on heart rate (Sidney 2002;Strougo, Zuurman et 

al. 2008).  

These findings contradict earlier reports hypothesizing that THC co-

administration may diminish MDMA induced temperature increase (Fisk, 

Montgomery et al. 2006;Parrott, Milani et al. 2007). Our current design only 

assessed temperature up to 300 minutes after drug administration. At this point in 

time, temperature had returned to placebo levels after MDMA alone, but in the 

MDMA plus THC condition temperature was still elevated compared to placebo. 

The prolongation of the MDMA induced temperature increase by THC co-

administration may be of clinical relevance as the prevention of temperature increase 

has been shown to be an effective way of reducing or even preventing MDMA 

induced neurotoxicity in animal studies (Goni-Allo, Mathuna et al. 2007;Malberg 

and Seiden 1998;O'Shea, Easton et al. 2002). Although MDMA's neurotoxic 

potential in humans is still a matter of debate (Gouzoulis-Mayfrank and Daumann 
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2006), future studies should assess the full duration of this temperature increase 

considering that this may potentiate MDMA induced neurotoxicity. 

In conclusion, MDMA and THC co-administration induced a potent and 

additive effect on heart rate, which may lead to significant harm in vulnerable 

individuals, especially in combination with intense physical exercise during dance 

parties (Parrott, Rodgers et al. 2006). Our results show that THC mediates its heart 

rate increase independent of sympathetic (catecholaminergic) activity and likely via 

direct CB1 agonism in cardiac tissue. Furthermore, THC co-administration did not 

prevent MDMA induced temperature increase, but delayed the onset and prolonged 

the duration of temperature elevation. As the temperature rise was small, it remains 

to be established whether this THC-effect has an impact on MDMA's putative 

neurotoxicity. At any rate, recreational drug users that choose to expose themselves 

to these compounds should be aware that the combined use of THC and MDMA 

may have serious cardiovascular side-effects. 
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Abstract 
 

MDMA (3,4-methylenedioxymethamphetamine or ‘ecstasy’) is a 

recreationally used drug with remarkable and characteristic prosocial effects. In spite 

of abundant attention in the scientific literature, the mechanism of its prosocial 

effects has not been elucidated in humans. Recently, research in animals has 

suggested that the neuropeptide oxytocin may induce these effects.  

In a double blind, randomized, crossover, and placebo-controlled study in 

fifteen healthy volunteers we assessed blood oxytocin and MDMA concentrations 

and subjective prosocial effects after oral administration of 100 mg MDMA or 

placebo.  

MDMA induced a robust increase of blood oxytocin concentrations and an 

increase of subjective prosocial feelings. Within subjects, the variations in these 

feelings were significantly and positively correlated with variation in oxytocin 

levels, and the correlations between these feelings and oxytocin were significantly 

stronger than those between these feelings and blood MDMA levels. 

 In conclusion, MDMA induces oxytocin release in humans, which may be 

involved in the characteristic prosocial effects of ecstasy. 
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Introduction 

 

Ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) is a street drug, 

which gained widespread use in the ‘club’ scene (Winstock, Griffiths et al. 2001). 

MDMA causes characteristic behavioral effects of increased empathy and 

friendliness (Vollenweider, Liechti et al. 2002). These unique prosocial effects led to 

MDMA being categorized as a separate drug class called ‘entactogens’ (Nichols and 

Oberlender 1990), as well as to (calls for) clinical trials investigating the potential 

for therapeutic use of MDMA in psychiatric disorders (Parrott 2007b;Sessa 

2007;Sessa and Nutt 2007). Although appropriate social behavior is vital for human 

health and well-being, as exemplified by many disorders that feature impaired social 

functioning (such as social phobia, psychopathy and autism), the neurobiological 

mechanisms that mediate social behavior remain poorly understood.  

A plausible mediator of MDMA’s subjective effects is oxytocin, a 

neurohypophysial nonapeptide, which is synthesized in the supra-optic and the 

parvoventricular nuclei of the hypothalamus (Gimpl and Fahrenholz 2001). 

Oxytocin has, next to its peripheral effects (i.e. induction of parturition and 

lactation), also received abundant attention for its role in social behavior. Previous 

research showed that oxytocin induces prosocial and affiliative behavior in animals 

as well as in humans (Baumgartner, Heinrichs et al. 2008;Campbell 2008;Domes, 

Heinrichs et al. 2007;Young 2002;Zak, Stanton et al. 2007). A recent study showed 

that MDMA induced oxytocin release in rats, an effect which was blocked by 5-

HT1a antagonism. MDMA's prosocial effects were attenuated by co-administration 

of the oxytocin receptor antagonist tocinoic acid that had no effect on social 

behavior when given alone (Thompson, Callaghan et al. 2007). Other studies 

reported that high ambient temperature increased both the prosocial effects of 

MDMA, and Fos expression (a marker of gene activation) of oxytocinergic cells in 

rats, further suggesting a role for oxytocin in the prosocial effects of MDMA 

(Cornish, Shahnawaz et al. 2003;Hargreaves, Hunt et al. 2007).  

One study assessed whether MDMA induced oxytocin release in humans 

(Wolff, Tsapakis et al. 2006). The authors reported a trend for a small increase of 
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plasma oxytocin concentration in volunteers with positive urine drug screens for 

MDMA. The results are arguable however, because of the naturalistic design of this 

observational study, where subjects were assessed 'pre- and post clubbing', without 

actual control over drug intake or timing of blood sampling. 

The aim of the present, randomized, placebo controlled, crossover study 

was to investigate whether MDMA induces oxytocin release in humans.
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 Materials and methods 

 

Study Design 

This study utilized a double blind, randomized, crossover, and placebo-

controlled design and was conducted according to the principles of the Declaration 

of Helsinki and approved by the local ethics commitee. Each volunteer received a 

capsule containing either MDMA 100 mg or a matched placebo with a washout 

period of 7 days. 

 

Study outline 

Subjects were admitted to each study day after a urinary drug check 

(opiates, cocaïne, benzodiazepines, amphetamines, methamphetamines and delta-9-

tetrahydrocannabinol; AccuSign®, Princeton BioMeditech, Princeton, USA; drug 

use was not allowed 14 days prior to the first study day until study completion) and 

the recording of possible signs and symptoms of health problems. A light breakfast 

was offered. MDMA administration was scheduled at 10:30h. Subjects received a 

standardized lunch at 14:00h and were sent home at 17:00h. Outcome measures 

were assessed repeatedly and consisted of blood sampling for MDMA and oxytocin 

concentration and assessments of subjective effects as specified below. Subjects also 

performed an extensive cognitive test battery that will be reported elsewhere. To 

familiarize the subjects with the tests and procedures, subjects performed a practice 

session within one week before the first study day.  

 

Subjects 

Fifteen healthy volunteers (12 male, 3 female), regular users of ecstasy 

(lifetime drug exposure of 110.5 doses ± 175.3 mean±SD, range 10-702), 18-24 

years of age (21.1 ± 1.7 mean±SD) and a body weight of 71.1 kg ± 8.5 mean±SD 

(range 60-86) were recruited through advertisement on the internet and at local drug 

testing services. Physical and mental health was determined by assessment of 

medical history, a physical- and ECG examination as well as standard 

haematological- and chemical blood examination. Exclusion criteria included a 
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diagnosis of psychiatric illness (assessed using the Structured Clinical Interview for 

DSM-IV axis 1 disorders, non-patient version (First, Frances et al. 1994), Axis II 

disorders were excluded using the Temperament and Character Inventory (Svrakic, 

Whitehead et al. 1993) or substance dependence and pregnancy.  The study was 

approved by the local Medical Ethics Committee. All subjects gave their written 

informed consent before participating in the study, and were paid for their 

participation. One subject did not refrain from drug use after the first studyday and 

further study participation was denied. The data obtained during this day (MDMA 

condition) were included in the data analysis. Two subjects experienced mild 

psychological discomfort (mild anxiety resolving within 60 minutes) after MDMA 

administration that resulted in partially missing data.  

 

 Study drug 

MDMA (or matched placebo) was given as a capsule in a single oral dose 

of 100 mg. MDMA was obtained from Lipomed AG, Arlesheim, Switzerland and 

encapsulated according to Good Manufacturing Practice by the Department of 

Clinical Pharmacy of Radboud University Nijmegen Medical Centre.  

 

 Blood sampling 

Blood samples were obtained using an indwelling catheter. Blood samples 

for analysis of oxytocin content were taken at baseline, i.e. before MDMA 

administration, and 5, 20, 95, 110, 185, 200, 240 and 300 min post drug 

administration. Blood samples were immediately put on ice and were processed 

(spun at 1500 g for 10 minutes at 4 ºC ) within 30 minutes after collection. Blood 

samples for analysis of MDMA content were taken at baseline and at 15, 60, 105, 

150, 240 and 300 minutes post drug administration. All plasma samples were stored 

frozen at –80 °C until the time of analysis. 

 

Analytical Methods 

MDMA plasma concentration was assessed by HPLC–diode array detection 

(HPLC-DAD) (Dumont, Schoemaker et al., in press).  
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Blood oxytocin analysis was performed in serum after prepurification of 

oxytocin by means of Sep-Pak C18 columns by an in-house radioimmunoassay 

(RIA) employing 125I-labelled oxytocin and an antibody raised in rabbits, with sheep 

anti-rabbit antibodies to separate bound and free radioactivity. The average recovery 

was 78 ± 6%. Within- and between-assay CVs were 2.2 and 6.6% at 7.2 pmol/l. The 

analytical range  was 1-90 pmol/l with a sensititvity of 1 pmol/l. All reagents were 

of analytical grade. 

 

Subjective effects 

Subjective prosocial effects were assessed at baseline, and 15, 60, 105, 150, 

240 and 300 minutes post drug administration using two items of the Bond and 

Lader (Visual Analogue) Mood Rating Scale (BLMRS) that specifically assess 

prosocial effects (antagonistic/amicable and withdrawn/gregarious) (Bond, James et 

al. 1974).  

 

Statistical Analyses 

Statistical evaluation (two-sided alpha of 0.05) of drug effects on subjective 

measures (using SPSS 14 for Windows) was performed with a mixed model analysis 

of variance with drug and time as fixed factors and subject as random factor (with 

variance components structure). Given the limited number of subjects and the large 

differences in variation found at different timepoints it was not possible to formulate 

adequate mixed effect models for analysis of drug effects on oxytocin levels. 

Therefore the area under the curve (determined using the trapezoid rule: 

Σn=(Y(n)+Y(n+1))/2*t. Y being oxytocin concentration per time point, and t the time in 

minutes per interval) was used to estimate the total amount of oxytocin and this was 

compared for the different conditions using a paired t-test. The relationship between 

subjective feelings and oxytocin or MDMA concentrations was analyzed using a 

summary-statistics approach. Correlations between each of the subjective 

parameters and oxytocin or MDMA levels (using individual time points) were 

determined for each subject. In order to perform the correlation analysis in an equal 

amounts of samples, subjective measures were correlated with all MDMA time 
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points, while the correlation with oxytocin was assessed using the time points 

closest to the MDMA sampling times. Next, using the Wilcoxon signed rank tests 

with exact p-values, we analysed whether these correlations were symmetrical 

around 0 (indicating no relationship between a subjective feeling and oxytocin or 

MDMA), and whether the correlations between each subjective parameter and 

oxytocin or MDMA were equally strong. 
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  Results 

 

MDMA kinetics 

The mean maximum plasma MDMA concentrations (Cmax) were 222.7 

μg/l (s.e.m.=9.8 μg/l) 105 

minutes after drug administration. 

Plasma MDMA concentrations 

showed a minimal decline and 

were 174.6 μg/l (s.e.m.=10.3 

μg/l) on average at 300 minutes 

after drug administration (see 

Figure 1). 

 

Oxytocin kinetics 

Plasma oxytocin concentrations (transformed to AUC data) were 

significantly increased in the MDMA condition compared to placebo ( t(12) = 4.27, 

MSE = 1125.78, p = 0.001). Mean plasma oxytocin concentrations increased from 

0.8 pmol/l (s.e.m.= 0.3 

pmol/l) at baseline to an 

average maximum 

concentration of 34.3 

pmol/l (s.e.m.= 7.2 

pmol/l) at 110 minutes 

after drug 

administration, and 

declined thereafter to an 

average of 4.0 pmol/l 

(s.e.m. = 0.8 pmol/l) at 300 min after drug administration (Figure 2). No treatment 

order effect was found. 

 

 

Figure 1. MDMA concentrations in time (mean, SEM).

Figure 2. Oxytocin concentrations per condition in time (mean, 
SEM). Legend: x= placebo, o= MDMA. 



 

- 148 - 

Subjective prosocial effects  

Subjective amicability showed a significant treatment effect ( F(1, 165) = 

9.7, p = 0.002). Subjective gregariousness showed a significant time effect ( F(6, 

162) = 2.6, p = 0.018). 

Both subjective 

amicability and subjective 

gregariousness showed a 

significant treatment by 

time interaction ( F(6, 

164) = 3.5, p = 0.003, and 

F(6, 162) = 4.0, p = 0.001, 

respectively, see Figure 3). 

Both subjective 

amicability and subjective 

gregariousness showed a 

significant positive 

correlation with oxytocin 

concentrations (median 

correlation obtained over 

subjects = 0.37, p = 0.001 

and 0.29, p = 0.049 respectively). Subjective amicability was also significantly 

correlated with MDMA concentrations (median correlation obtained over subjects = 

0.23, p = 0.049), but subjective gregariousness was not correlated with MDMA 

concentrations (median correlation obtained over subjects = 0.23, p = 0.46). Further 

analysis using the Wilcoxon signed rank tests with exact p-values showed that both 

subjective amicability and subjective gregariousness were correlated significantly 

stronger with oxytocin than with MDMA (p = 0.013 and p = 0.030 respectively). 

  

 

Figure 3. Subjective responses. Figure 3A: Subjective 
amicability per condition (mean, SEM). Figure 3B: Subjective 

gregariousness per condition (mean, SEM). Legend: x= placebo, 
o= MDMA. 

3A 

3B 
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Discussion 

 

We here show that MDMA robustly increased oxytocin concentrations as 

well as subjective prosocial effects, and that the increase in prosocial effects 

correlated stronger with blood oxytocin concentrations than with blood MDMA 

concentrations. These findings tentatively suggest that oxytocin may be involved in 

the characteristic prosocial effects of MDMA. 

A previous study reported a non-significant increase of plasma oxytocin 

(0.41 pmol/l) in a clubbing population that had positive urine MDMA tests post 

clubbing (Wolff, Tsapakis et al. 2006). Our results show a much stronger effect of 

MDMA on plasma oxytocin concentration with an average increase of 34.3 pmol/l 

with peak levels of 90 pmol/l. The naturalistic basis of the previous study is a likely 

cause of this discrepancy: timelines between drug intake and blood sampling were 

not reported and it is likely that the robust increase of oxytocin concentrations were 

‘missed’ due to this study design. 

Animal research has previously shown a role for oxytocin in social 

cognition and affiliative behavior (Campbell 2008;Lim and Young 2006). 

Thompson et al. (2007) confirmed a role for oxytocin in MDMA's prosocial effects 

in an elegant study where they showed that MDMA administration increased social 

interaction as well as oxytocin plasma concentrations in male rats. MDMA's 

prosocial effects were attenuated by co-administration of the oxytocin receptor 

antagonist tocinoic acid, which had no effect on social behavior when given alone, 

thus confirming that oxytocin mediated MDMA induced prosocial behavior. 

MDMA induced oxytocin release was shown to be mediated by the 5-HT1A 

receptor, since oxytocin concentrations did not increase if administration of MDMA 

was preceded by administration of a 5-HT1A antagonist (Thompson, Callaghan et 

al. 2007). 

A plausible mechanism of action for oxytocin mediated prosocial effects 

was reported in a study that showed that oxytocin attenuates the amygdala response 

to novel social encounters (Baumgartner, Heinrichs et al. 2008). In addition, a recent 

report demonstrated that attenuation of the amygdala inhibits excitatory flow from 
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the amygdala to brain stem sites mediating peripheral fear response (Huber, 

Veinante et al. 2005). For the case of MDMA, oxytocin may thus reduce anxiety 

related to social interaction, effectively promoting social behavior (Amaral, Bauman 

et al. 2003;Rosen and Donley 2006). Combined with its stimulating effects and mild 

enhancement of sensory input, it is not surprising that MDMA has become such a 

popular ‘club-drug’ (Dumont and Verkes 2006;Vollenweider, Liechti et al. 2002).  

Although the results of animal research strongly support our conclusions, 

the findings of the present study should be considered explorative and some 

limitations should be addressed. Firstly, we measured oxytocin concentrations in 

blood, whereas cerebral spinal fluid oxytocin concentrations are expected to provide 

a more direct relation to the central effects. Indeed, a delay between maximal 

subjective effects (t=60min) and measured peak plasma oxytocin concentration 

(t=110min) was observed. Congruent with this finding, several reports have 

suggested that the release of oxytocin from the posterior pituitary gland into the 

peripheral circulation is preceded and driven by central, auto-stimulatory oxytocin 

release in the parvoventricular nucleus and supra-optic nucleus (Amico, Tenicela et 

al. 1983;Armstrong 2007;Ludwig and Leng 2006). However, this remains 

speculative as the relationship between peripheral and central oxytocin release has 

not yet been defined (Landgraf and Neumann 2004). 

Secondly, we assessed subjective prosocial effects. Future studies should 

employ objective measures of social interaction such as the Trust Game or Dictator 

Game (Sanfey 2007) to verify that subjects not only perceive themselves as being 

friendlier but in fact show increased social behavior. 

Thirdly, to reduce the variance in observed oxytocin concentrations, future 

studies should also consider dosing MDMA according to body weight, rather then 

administering a fixed dose. Moreover, oxytocin concentrations should be assessed 

concurrently with MDMA and subjective assessments and between 20 and 95 

minutes, where the current study did not assess oxytocin concentrations but did find 

the most pronounced subjective prosocial effects, to assess the onset of peripheral 

oxytocin levels elevation and its relation to prosocial effects.  
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Lastly, although our results suggest that oxytocin is involved in MDMA’s 

prosocial effects in humans, these results remain tentative as the current design 

cannot determine whether oxytocin really mediated MDMA's prosocial effects. This 

should be verified in a MDMA interaction study using an oxytocin receptor 

antagonist such as Atosiban (Uvnas-Moberg, Bruzelius et al. 1993), although several 

issues regarding oxytocin receptor antagonism remain (Chini and Manning 2007).  

In summary, we showed that MDMA, a drug with characteristic prosocial 

effects, robustly induces oxytocin release. The current results tentatively suggest that 

oxytocin may be involved in the characteristic prosocial effects of MDMA, 

congruent with  previous reports of prosocial effects of oxytocin (Baumgartner, 

Heinrichs et al. 2008;Domes, Heinrichs et al. 2007;Guastella, Mitchell et al. 

2008;Kirsch, Esslinger et al. 2005;Zak, Stanton et al. 2007), and may have 

implications for diseases that are characterised by impaired social functioning, such 

as social phobia, psychopathy and autism. Indeed several reports showed that there 

may be a link between these diseases and altered oxytocin function (Adolphs 

2003;Guastella, Mitchell et al. 2008;Hammock and Young 2006;Lerer, Levi et al. 

2008;McNamara, Borella et al. 2008;Talarovicova, Krskova et al. 2007). Although 

many issues and questions regarding oxytocin and its effects need to be addressed, 

this neuropeptide may provide a promising insight into the neurobiology of human 

social behavior. 
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Summary of results 

 

Chapter 2. A review of acute effects of 3,4-

methylenedioxymethamphetamine in healthy volunteers 

 All studies that reported acute effects of MDMA administered to humans 

were collected, and effects were summarized. Findings reflecting the subjective (the 

entactogenic profile), physiological (cardiovascular, pupil diameter) and endocrine 

effects (cortisol, prolactin) were the most prominent. MDMA effects on 

neuropsychological functioning were reported infrequently, thus rendering firm 

conclusions impossible and supporting our recommendation for more intensive 

research into the acute cognitive effects of MDMA. However, MDMA displayed all 

its prominent and desirable features at doses of 1.0 mg/kg and above, which is in 

line with the desirable doses reported by recreational users (Croft, Klugman et al. 

2001;Soar, Parrott et al. 2004). The potentially hazardous adverse effects were also 

fully expressed at this level, illustrated by the dose response effect of MDMA on 

heart rate with a cut-off of 1.0 mg/kg. 

 

Chapter 3. Acute neuropsychological effects of MDMA and ethanol (co-) 

administration in healthy volunteers 

 This study assessed the peak cognitive effects of 100 mg orally 

administered MDMA and a three hours intravenous infusion of ethanol (resulting in 

a steady blood alcohol concentration of 0.6 promille), alone and in combination, in 

16 healthy volunteers. Co-administration of MDMA and ethanol did not impair 

cognitive function significantly more than MDMA or ethanol administration alone. 

The most prominent effect of  (co-)administration of MDMA and ethanol was an 

impairment of memory. Ethanol also impaired psychomotor function. Although the 

impairment of performance by each drug condition was relatively moderate, this 

significant impairment of cognitive function should be considered unacceptable in 

motorized traffic and other cognitively demanding situations as confirmed by 

previous research and as defined by law. However, the effects of these drugs in the 
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concentrations used in the present study on established neuropsychological tests 

appear to be smaller than one would assume based on their reputation.   

 

Chapter 4. Acute psychomotor effects of MDMA and ethanol (co-) 

administration over time in healthy volunteers 

 This chapter reports psychomotor performance in relation to subjective 

performance after MDMA and ethanol (co-)administration over time, and shows that 

MDMA significantly increased psychomotor speed but not accuracy and induced 

significant subjective arousal, effects which were maximal around maximal MDMA 

blood concentrations (Cmax), and declined thereafter. Ethanol on the other hand 

impaired both psychomotor speed and accuracy, and induced sedation. Only the 

latter effect did not correspond with ethanol kinetics, sedation was only observed 

during the descending limb of the blood alcohol concentration, ie. after the infusion 

was stopped. Co-administration of MDMA with ethanol reversed ethanol induced 

sedation and improved psychomotor speed to above placebo levels, although 

psychomotor accuracy remained impaired. These findings may have implications for 

general performance when driving. Individuals will be more aroused when 

intoxicated with both substances, which may provide a false sense of better 

performance, although the accuracy of their performance is actually significantly 

impaired. 

 

Chapter 5. Ethanol co-administration moderates MDMA effects on human 

physiology  

In this chapter we report the physiologic effects of MDMA and ethanol (co-

) administration over time. Co-administration of ethanol and MDMA did not 

exacerbate physiologic effects compared to other drug conditions, and moderated 

some effects of MDMA alone: Ethanol plus MDMA co-administration decreased 

fluid retention as well as temperature increase compared to MDMA alone. Although 

the effects observed in this study are considered to be subtle, they demonstrate that 

MDMA dysregulates physiological systems that are particularly important during 
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the typical circumstances in which MDMA is used, and that ethanol attenuates some 

of MDMA's deletirious effects on physiology. 

 

Chapter 6. Acute psychomotor, memory and subjective effects of MDMA 

and THC (co-) administration over time in healthy volunteers  

This report regarding the subjective and objective effects on cognitive 

performance shows that co-administration of MDMA and THC did not exacerbate 

single drug induced cognitive impairment. Compared to MDMA (100 mg per os), 

THC (inhalation of vapor containing 4, 6 and 6 mg, dosing interval of 90 minutes) 

induced more robust impairment of cognitive function, congruent with its 

classification as a sedative/relaxant. MDMA's stimulant properties could not 

overcome THC's reduction of performance when co-administered. Subjective effects 

show that subjects were aware of these impairments, and that the combination of 

THC with MDMA enhanced the perceived drug strength and desired drug effects 

compared with the MDMA alone condition. These results suggest that cannabis 

increases the sensory effects and perceived drug strength of ecstasy without an 

unpredictable increase in cognitive impairment, which may explain the wide-spread 

recreational use of this combination. 

 

Chapter 7. Cannabis co-administration potentiates ecstasy effects on heart 

rate and temperature in humans 

 In this chapter we report the physiologic effects of MDMA and THC (co-) 

administration over time. MDMA and THC co-administration induced a potent and 

additive effect on heart rate, which may lead to significant harm in vulnerable 

individuals, especially in combination with intense physical exercise during dance 

parties. Our results further show that THC mediates its heart rate increase 

independent of sympathetic (catecholaminergic) activity and likely via direct CB1 

agonism in cardiac tissue. Furthermore, THC co-administration did not prevent 

MDMA induced temperature increase, but delayed the onset and prolonged the 

duration of temperature elevation. As the temperature rise was small, it remains to 

be established whether this THC-effect has an impact on MDMA's putative 
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neurotoxicity. At any rate, recreational drug users that choose to expose themselves 

to these compounds should be aware that the combined use of THC and MDMA 

may have serious cardiovascular side-effects. 

 

Chapter 8. Increased oxytocin concentrations and prosocial feelings in 

humans after ecstasy (3,4-methylenedioxymethamphetamine) administration  

In this chapter, we investigated the mechanism of action of MDMA's 

characteristic prosocial effects in healthy volunteers. We show that MDMA robustly 

induces oxytocin release, and that oxytocin concentrations correlated stronger with 

subjective prosocial effects then MDMA concentrations. Although tentative, the 

current results  suggest that oxytocin may be involved in the characteristic prosocial 

effects of MDMA, congruent with  previous reports of prosocial effects of oxytocin 

in humans (Baumgartner, Heinrichs et al. 2008;Domes, Heinrichs et al. 

2007;Guastella, Mitchell et al. 2008;Kirsch, Esslinger et al. 2005;Zak, Stanton et al. 

2007). These findings may have implications for diseases that are characterised by 

impaired social functioning, such as social phobia, psychopathy and autism, as 

several reports showed that there may be a link between these diseases and altered 

oxytocin function (Adolphs 2003;Guastella, Mitchell et al. 2008;Hammock and 

Young 2006;Lerer, Levi et al. 2008;McNamara, Borella et al. 2008;Talarovicova, 

Krskova et al. 2007). 

 

 

Limitations of the study design 

 

The following limitations of our study design should be taken into 

consideration: 

  Our findings relate only to the employed doses, i.e. a blood alcohol 

concentration (BAC) of 0.56 promille, 4, 6, and 6 mg of inhaled THC vapor and 100 

mg of MDMA administered orally. Different doses may induce different effects, and 

research in animals such as that reported by Cassel et al. (2005) suggest that higher 

doses of ethanol for example may induce more dramatic interactions with MDMA. 
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At the same time, it is unfeasable to examine every possible combination of ethanol 

or THC and MDMA doses. Although our design is inevitably a model, we believe 

that it is appropriate for the estimation of the effects of recreational drug use by 

humans for the following reasons: 

The ethanol clamp provides a continous steady-state BAC of approximately 

0.6 promille. Although this target BAC reflects the peak achieved after 2-3 alcoholic 

drinks, due to the continuous infusion of alcohol over three hours to maintain this 

BAC the total amount of alcohol administered represents a much larger intake of 

alcoholic drinks corresponding to almost one bottle of wine, a relevant dose of 

ethanol in relation to recreational drug use. As recreational alcohol users are 

expected to spread their alcohol use over the night, our design thus represents 

continuous moderate use of alcohol. A single high dose of oral alcohol (based on 

total drinks consumed during or around MDMA exposure) as typically employed in 

previous research regarding MDMA and ethanol interactions (Hernandez-Lopez, 

Farre et al. 2002;Kuypers, Samyn et al. 2006;Ramaekers and Kuypers 2006a) will 

show a rapid increase and a steady decline in BAC, resembling binge drinking. This 

will induce larger peak effects compared to the effects of our more steady infusion 

of alcohol. It is unknown whether binge drinking or moderate continuous drinking is 

more prevalent in MDMA-users, and our study represents only the latter pattern of 

alcohol use (Cassel, Hamida et al. 2008;Dumont, Verkes et al. 2008). A similar line 

of reasoning pertains to our THC administration method: we administered 4, 6, and 

6 mg of THC, which resulted in peak THC blood concentrations that approximate 

THC levels observed after smoking roughly one joint, a normal dose used 

recreationally. There is a lack of evidence regarding the real world drinking and 

smoking behavior and resulting BAC and THC blood concentrations by recreational 

drug users combining MDMA and ethanol or THC, and further research regarding 

these uncertainties may elucidate these issues. 

 As mentioned, the THC doses employed resulted in THC effects achieved 

after the use of roughly one joint, thus resembling recreational cannabis use. 

However, a joint typically contains a mixture of tobacco and cannabis, and the 

addition of tobacco may influence THC kinetics and/or dynamics. However, as the 
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route of administration closely resembles that of smoking THC with tobacco, effects 

of different THC kinetics as seen after for example oral administration of THC are 

minimized. Moreover, cannabis is a mixture of many psychoactive compounds, 

although THC is the main psychoactive ingrediënt (Ameri 1999), and it is again 

unfeasible to test all combinations and dosages. The alternative, smoking a joint 

with a known THC content or a known cannabis content, presents the issue of the 

absence of or an unknown ratio of other psychoactive compounds and THC. 

Moreover, as cannabis users are reportedly excellent self-titraters, ie. adapt the 

amount of smoke inhaled and the duration the smoke is contained in the lungs to 

achieve the desired level of cannabis intoxication (and hence THC blood 

concentration), cigarettes will typically yield greater variation of THC levels 

(Hazekamp, Ruhaak et al. 2006). As the currently employed vaporizing method 

standardizes the amount of THC inhaled as well as the duration the vapor is kept in 

the lungs, variation in THC blood concentrations is greatly decreased.  

 MDMA was given orally as a single, fixed dose of 100 mg. While this is a 

dose that closely resembles the average content of MDMA in ecstasy pills, dosing 

according to body weight would reduce pharmacokinetic variance between 

individuals and is recommended for future studies (Parrott 2004). On the other hand, 

with the single fixed dose, we were able to assess the effect of bodyweigth upon 

MDMA kinetics, and construct dose (100mg MDMA/body weight) response curves 

for several measures. The use of a single dose of MDMA itself is another 

abstraction: ecstasy is typically used repeatedly throughout the night, as its desired 

effects diminish after 2-3 hours after which more ecstasy is used to prolong its 

effects. Thus, several pills may be taken throughout the night, which was not 

reflected in our study design. Although the effects of MDMA wear out relatively 

quickly, MDMA plasma levels do not diminish at the same rate. The repeated 

administration of MDMA thus causes increasing MDMA plasma levels which likely 

increases the risk of physiologic adverse events and neurotoxicity, thus, for safety 

reasons we administered a single dose of MDMA.  

To conclude, we are of the opinion that our methods and dosages used 

represent normal, non-excessive, recreational drug use that users would expect to be 
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safe, and interactions between these compounds at these dosages would hence be 

very relevant. No research model can capture all possible real-world behaviors of 

combined drug use and our design is only a crude estimation of real world drug use, 

which may involve higher and/or multiple doses that may affect cognitive and 

physiologic function differently. We welcome future research regarding these issues, 

although tolerability, safety and ethical issues may hamper such studies in humans. 

 Another limitation is the fact that these reportedly potent mind altering 

drugs display relatively minor cognitive deficits. This may be related to test 

sensitivity, and as shown in chapter 2, a review of the scientific literature regarding 

acute MDMA effects, cognitive testing shows great variation in test methods used. 

A selection of the most sensitive and appropriate tests for cognitive function may 

increase the effect sizes found as well as the comparability of different reports. An 

alternative explanation for the relatively modest drug effects found in the current 

studies may lie in the fact that the circumstances in which these substances are 

normally used cannot be fully recreated in the laboratory and this may have 

suppressed the effects of these substances. It is not unlikely that these substances 

show enhanced effects when tested under typical circumstances and surroundings. 

Recently, Parrott et al. (Parrott, Rodgers et al. 2006) concluded that the increase in 

physical activity and body temperature typically experienced when using MDMA, 

enhances MDMA effects, a finding which was corrobated by reseach in animals 

(Hargreaves, Hunt et al. 2007). Ball et al. (Ball, Budreau et al. 2006) also 

demonstrated that, compared to unfamiliar surroundings, a familiar surrounding 

increased MDMA induced locomotor response as well as single neuron activity in 

rats. Therefore, the psychosocial context in which MDMA is used, along with the 

different expectations and behaviour, probably influences the effects (Sumnall, Cole 

et al. 2006).  
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Discussion 

 

Pharmacology of the streets: facilitating drug (ab)use or preventing drug 

misuse? 

The effects of recreationally used doses of ecstasy, (combined with) 

cannabis or ethanol at first hand appear relatively mild, and with the exception of 

heart rate after (the combination of) MDMA and THC, clinically irrelevant. These 

results suggest that these substances can be used without acute threats to general 

health and well-being, and whenever robust effects do occur, such as is the case for 

cardiovascular stress, findings described in this thesis provide an evidence based 

rationale for treatment, although most often simply retreating to a relaxing, cool area 

(so-called chill-out rooms) will be sufficient. Thus, our findings provide a rationale 

for minimizing recreational drug harm and provide information regarding 

(pre)cautionary behavior such as not drinking excessive amounts of fluid, taking 

regular breaks from intensive exercise such as dancing and retreating regularly from 

hot environmental temperatures into rooms with low ambient temperatures. 

However, one may argue that this information may provide a basis that facilitates 

drug use, ie. encourages people to use these drugs. Although this argument is valid, 

it also takes away the ability of the individual that decides to expose his- or herself 

to such compounds to minimize its adverse effects by informing him or herself 

regarding these issues. Moreover, information on the adverse effects of these drugs 

may actually stop an individual from experimenting, ie. MDMA has long been 

regarded by users as a 'safe' drug, whereas recent research has clearly shown 

negative effects of MDMA of which users now can be made aware. Although this 

may not stop most users from taking this drug, they currently at least can take into 

account these risks and possibly take precautionary measures to avoid or diminish 

these adverse events. A similar line of reasoning applies to for example the research 

regarding cigarrette smoking, which bares far greater long-term health risks then 

MDMA. 
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MDMA as a therapeutic agent? 

A second argument for performing these studies was the fact that these 

compounds provide powerful tools to examine the basic mechanisms of the central 

nervous system. MDMA is already under investigation as a therapeutic agent in 

post-traumatic stress disorder as well as as a palliative agent in terminal cancer 

patiënts (Sessa and Nutt 2007). However, and specifically for the case of MDMA's 

entactogenic effects, the neurobiologic mechanisms behind the characteristic and 

robust drug effects observed may provide new insights in the way the brain 

functions and is organized. In chapter 8 we suggest that oxytocin may be reponsible 

for MDMA 's pro-social effects, a finding which is supported by several studies that 

show that oxytocin induces robust pro-social effects in humans (Baumgartner, 

Heinrichs et al. 2008;Campbell 2008;Domes, Heinrichs et al. 2007). These findings 

provide a rationale for new therapeutic strategies for for example post-traumatic 

stress disorder, and other anxiety disorders, and possibly even disorders that feature 

social disfunction such as autism and psychopathy (Adolphs 2003). As oxytocin 

nose-spray (Syntocinon) is a registered therapeutic drug to induce labor, with 

virtually no serious side-effects reported, this option may prove highly valuable in 

these disorders without MDMA's other effects. Thus, while recreational drugs have 

side-effects and long-term consequences which limit the applicability of their use in 

therapeutic setttings, studying the pharmacology of such compounds can provide 

crucial data to develop new therapies by isolating therapeutic effects from (desired 

and adverse) drug effects. 

 

Effects of MDMA put in perspective: acute vs. long term and beyond 

Despite the relative lack of robust effects of MDMA on cognitive function, 

and manageable  physiologic effects, one should not assume that MDMA is a safe 

drug. Although not explicitly part of this thesis, many studies suggest that MDMA 

may induce serotonergic neuronal damage via the generation of oxidative 

compounds (Hall and Henry 2006;O'Shea, Orio et al. 2006). Theories regarding the 

mechanism of action of MDMA's neurotoxicity are discussed in more detail 

elsewhere (Gouzoulis-Mayfrank and Daumann 2006a). Several studies in animals 



 

- 163 - 

show that MDMA metabolites are oxidative, which may damage neural structures, 

particularly axon terminals. Although these damaged axons regenerate, they are 

unable to restore themselves to their original appearance. This effect is called 

'pruning': the axon is drastically shortened and shows extensive branching (Green, 

Mechan et al. 2003). This may induce different serotonergic innervation patterns, as 

shortened axons may innervate different brain areas. In humans, indications of 

serotonergic axonal damage after MDMA use have been found, most notably a 

reduction of SERT itself (McCann, Szabo et al. 2008). This effect appears 

reversible, and alternatively may be a negative feedback response to the over-

stimulation of SERT by MDMA itself, and thus does not unequivocally show 

neurotoxicity. In fact, long-term cognitive consequences of ecstasy use are a matter 

of debate with inconsistent or contradictory findings throughout the literature. Most 

studies do show a mild impairment of memory in ecstasy users (Verbaten 

2003;Verkes, Gijsman et al. 2001), but as most ecstasy users are multidrug users (a 

notion supported by our current study population who all were multi-drug users) 

these effects may also be related to other drugs, most notably cannabis (Parrott, 

Gouzoulis-Meyfrank et al. 2004). Also, pre-morbid conditions may be a causative 

factor in the initiation of drug use rather then a consequence of drug use. These and 

other confounding factors are discussed in greater detail in an excellent review by 

Gouzoulis-Mayfrank et al (2006). On the other hand, the absence of notable 

impairments in young healthy ecstasy users does not indicate that ecstasy does not 

induce long-term cognitive deficits either. Much alike its acute induction of severe 

cardiovascular stress that may have long-term consequence that only become 

apparent in subjects with other risk factors or with increased age (Droogmans, 

Cosyns et al. 2007), ecstasy induced impairments may manifest itself as a pre-

mature onset of decreased cognitive function normally associated with advanced 

age. In other words, ecstasy may reduce the cognitive reserve of these young healthy 

individuals and impairments will only present themselves when this reserve is called 

upon, such as in the elderly or after brain trauma. However, and as mentioned, 

conclusive words regarding this matter have not been said, although the aging of the 

generation using ecstasy recreationally may elucidate this issue. 
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Conclusion 

 

This thesis describes the interactions between MDMA plus ethanol and 

MDMA plus THC, two frequently used drug combinations, in humans. Results show 

that the combined use of these drugs generally does not exacerbate single drug 

effects on cognitive function. Physiologic (side-) effects of MDMA were attenuated 

by ethanol co-administration but potentiated by THC co-administration. MDMA's 

characteristic entactogenic effects were shown to be likely mediated by oxytocin, a 

neuropeptide released by MDMA, and this finding may provide interesting leads for 

future pharmacotherapy of social disorders such as anxiety, psychopathy and autism. 

However, the neurobiology of social behavior is as complex as social behavior is 

vital for human health and well-being, and future research should attempt to 

describe and elucidate the interactions between the many substrates that play a role 

in the neurobiology of social behavior, although such an attempt will be challenging.  

It is important to note that considering the large number of people that 

expose themselves to these (and other, possibly even more harmfull) combinations, 

only very few ecstasy induced adverse events are reported. However, the acute 

harmfull effects of such combinations, particularly of MDMA and THC on 

cardiovascular function, should be communicated to the public as these present the 

most robust and acute dangers of using these drugs recreationally. 
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Ecstasy 

 

Ecstasy (XTC) is de straatnaam voor de stof 3,4-

methylenedioxymethamphetamine (MDMA), een methamphetamine dat zich 

onderscheidt van andere (meth)amphetaminen doordat het niet alleen de 

stimulerende eigenschappen van amphetaminen (straatnaam 'speed') en 

methamphetaminen (straatnaam 'crystal meth') bezit, maar ook mild hallucinerende 

effecten geeft zoals bekend van bijvoorbeeld het veel potentere hallucinogeen 

lyserginezuurdiethylamine (LSD). De meest karakteristieke effecten van ecstasy zijn 

echter de gevoelens van openheid, genegenheid en vriendschap naar anderen toe, 

wat MDMA de bijnaam 'love-drug' bezorgde. Waarschijnlijk door de combinatie 

van deze eigenschappen is ecstasy erg populair in het uitgaanscircuit waar het zowel 

het uithoudingsvermogen, de zintuigen als de sociale interactie verhoogt. Alhoewel 

er vaak wordt gesproken over 'ecstasy gebruikers', is deze term enigszins 

misleidend: zelden gebruikt iemand alleen ecstasy en men kan dan ook beter spreken 

over recreationele drugsgebruikers: naast ecstasy worden allerlei andere 

psychoactieve stoffen (drugs) gebruikt, zoals alcohol en cannabis (Hoofdstuk 3 en 6, 

dit proefschrift). 

Momenteel kent Nederland ongeveer 40000 actuele gebruikers van ecstasy 

(Trimbos Instituut 2008). Ondanks deze grote blootstelling zijn er, in verhouding tot 

andere recreationele drugs, weinig rapporten van ernstige intoxicaties met ecstasy 

bekend, alhoewel er sterfgevallen bekend zijn van individuen die gevoelig zijn voor 

complicaties van ecstasy gebruik (Hall and Henry 2006;Hartung, Schofield et al. 

2002;Kalantar-Zadeh, Nguyen et al. 2006).  

 

Neurobiochemische effecten 

Op farmacologisch nivo grijpt MDMA aan op de monoamine heropname 

pomp in de synaptische spleet, als mede op de opname pomp van de pre-synaptische 

neurotransmitter opslag blaasjes (Vmat-2). Hoewel aanvankelijk werd verondersteld 

dat MDMA de heropname pomp blokkeert, is recentelijk aangetoond dat MDMA 

neurotransmitters uitstoot via dit aangrijpingspunt. MDMA keert de richting waarin 
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deze pompen werken om: de neurotransmitter wordt zo niet terug naar het 

presynaptisch gedeelte van het neuron (of het opslag blaasje) gepompt maar vanuit 

het pre-synaptisch neuron naar de synaptische spleet. Via interferentie met Vmat-2 

verhoogt MDMA dus ook de intracellulaire concentratie van de neurotransmitter in 

de pre-synaps. Dit resulteert in een verhoogde beschikbaarheid van de monoamine 

neurotransmitters in de synaptische spleet en uiteindelijk in een sterk verhoogde 

neurotransmissie (Mlinar and Corradetti 2003;Pifl, Drobny et al. 1995). 

 

Betrokken neurotransmitters en neuronale circuits  

De karakteristieke effecten van MDMA (verhoogde empathie en milde 

hallucinaties) zijn het gevolg van de interferentie met de serotonerge 

neurotransmissie. Daarnaast heeft MDMA ook een sterk dopaminerge en, in 

mindere mate, noradrenerge affiniteit welke verantwoordelijk zijn voor de 

stimulerende effecten (Green, Mechan et al. 2003;Liechti and Vollenweider 2001). 

MDMA verhoogt tevens de activiteit van het sympathisch zenuwstelsel, hetgeen 

leidt tot temperatuursstijging en verhoging van de hartslag en bloeddruk (Hoofdstuk 

5 & 7, dit proefschrift).  

 

Kinetiek en dynamiek 

MDMA heeft een halfwaarde tijd van 6-8 uur en word gemetaboliseerd via 

CYP2D6 en CYP2B6, tot deels actieve maar vermoedelijk ook neurotoxische 

componenten (de la Torre, Farre et al. 2004). Polymorphismen in deze genen zorgen 

voor een veranderde MDMA kinetiek, hoewel de functionele relevantie hiervan 

onbekend is (mogelijk spelen ze een rol bij acute toxische reacties). De uiteindelijke 

bloed concentratie van een orale dosis MDMA is mede afhankelijk van het 

lichaamsgewicht, waarbij er een negatief, lineair verband lijkt te zijn (Hoofdstuk 5, 

dit proefschrift). Doordat MDMA tevens de enzymen die MDMA afbreken zwak 

remt kan er, bij herhaalde of hogere doseringen, mogelijk een onevenredige stijging 

van de MDMA bloed concentratie optreden (de la Torre, Farre et al. 2004).  

De effecten van MDMA zijn kortdurend (2-4 uur) in vergelijking met de 

bloedconcentratie, waarschijnlijk door downregulatie van de heropname pomp en 
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uitputting van beschikbare serotonine (Hoofdstuk 4, dit proefschrift). Typisch 

recreationeel gebruik omvat dan ook het herhaald toedienen van MDMA (omstreeks 

1 x per 2-3 uur) om het effect gedurende langere tijd te behouden. Hierbij dient 

opgemerkt te worden dat de lange halfwaardetijd van MDMA ervoor zorgt dat 

herhaalde toediening resulteert in een sterk verhoogde MDMA bloedconcentratie, 

hetgeen het risico op toxische effecten verhoogt.  

 

Acute effecten 

De acute effecten van MDMA zijn relatief mild van aard. Het cognitief 

functioneren is grotendeels intact en het gedrag van personen onder invloed van 

MDMA kenmerkt zich door een grote mate van vriendelijkheid en medewerking 

(Hoofdstuk 2, 3 en 8, dit proefschrift). Indicatoren van MDMA gebruik zijn vergrote 

pupillen, abnormale kaakspanning (tandenknarsen) en algemene onrust. 

Het meest karakteristieke effect van MDMA is de verhoogde empathie: 

MDMA stelt de gebruiker in staat makkelijker contact te maken met - en zich beter 

in te leven in - anderen. De klinische relevantie van deze effecten wordt momenteel 

onderzocht (met name bij posttraumatische stress (Sessa 2007)). Het mechanisme 

achter deze effecten is weliswaar nog niet volledig opgehelderd, maar recent dieren 

onderzoek suggereert dat MDMA, via 5-HT1a receptoren, de neuronen van de 

parvo-ventriculaire (PVN) en supra optische kernen (SON) activeert. Deze neuronen 

stoten oxytocine en vasopressine uit. Deze neuropeptiden hebben sterke effecten op 

het sociaal gedrag (Baumgartner, Heinrichs et al. 2008;Domes, Heinrichs et al. 

2007;Guastella, Mitchell et al. 2008). Oxytocine remt de angst respons van de 

amygdala op nieuwe omstandigheden, die op zijn beurt de basale hersenkernen 

aanstuurt die de perifere symptomen van angst bewerkstelligen. Door de werking 

van de amygdala te remmen, zal dus ook de angstreactie op onbekende, mogelijk 

bedreigende, sociale interacties gedempt worden (Baumgartner, Heinrichs et al. 

2008;Huber, Veinante et al. 2005). Daarnaast sturen bovengenoemde neuronen ook 

projecties naar de hypofyse, die oxytocine en vasopressine uitstoot in het bloed. In 

Hoofdstuk 8 van dit proefschrift wordt aangetoond dat MDMA de bloedconcentratie 
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van oxytocine sterk verhoogd en dat dit samenhangt met de effecten van MDMA op 

het sociaal gedrag.   

MDMA verhoogt op soortgelijke wijze de bloed concentratie van 

vasopressine (Anti-Diuretisch Hormoon, ADH), waardoor water retentie optreed, 

een effect dat in combinatie met de al eerder genoemde stijging van hartslag en 

bloeddruk mogelijk tot  cerebro- en cardiovasculaire accidenten kan leiden 

(Hoofdstuk 5, dit proefschrift).   

De hallucinerende werking van MDMA is ook serotonerg gemediëerd en 

verloopt via 5-HT2 receptoren (Liechti and Vollenweider 2001). Alhoewel andere 

hallucinerende middelen ook via deze receptoren werken, heeft MDMA in 

vergelijking met andere hallucinerende middelen een relatief zwak hallucinerend 

effect aangezien het weliswaar de beschikbare hoeveelheid serotonine sterk 

verhoogt, maar geen directe agonist is van serotonine receptoren, zoals de meeste 

andere hallucinogenen (Nichols and Oberlender 1990). 

De stimulerende effecten van MDMA zijn, analoog aan die van 

amphetaminen, dopaminerg en noradrenerg gemediëerd. MDMA verhoogt dan ook 

het uithoudingsvermogen en de snelheid van bewegen. De nauwkeurigheid van 

bewegingen verandert echter nauwelijks, hetgeen kan leiden tot een overschatting 

van de eigen prestaties ten opzichte van het objectief functioneren (Hoofdstuk 4, dit 

proefschrift).  

De sympatomimetische effecten van MDMA werden al eerder genoemd en 

induceren, naast de genoemde potente verhoging van hartslag en bloeddruk, de 

meest bekende bijwerking van MDMA: temperatuur stijging (Mills, Banks et al. 

2003). Alhoewel deze stijging onder laboratorium condities klinisch niet relevant is 

(een gemiddelde stijging van 0.4 graden Celsius bij 100mg MDMA, Hoofdstuk 5 en 

7, dit proefschrift), kunnen individuen die gevoelig zijn voor deze effecten onder 

ongunstige omstandigheden, zoals vaak voorkomend in uitgaansgelegenheden (hoge 

omgevingstemperatuur, drukte en intensieve beweging in de vorm van dansen) een 

lichaamstemperatuur van meer dan 40 graden Celsius bereiken die kan resulteren in 

spierafbraak, nierfalen en de dood (Brown and Kiyatkin 2004). Hierbij dient echter 

te worden opgemerkt dat ondanks het grote aantal ecstasy gebruikers deze 
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bijwerkingen slechts zelden voorkomen. Daarnaast is aangetoond dat MDMA acuut 

de immuniteit verminderd, al is de klinische relevantie van dit gegeven onbekend 

(Pacifici, Zuccaro et al. 2001). 

 

Subacute effecten 

Subacuut is er sprake van de 'drie dagen dip' na ecstasy gebruik, waarbij de 

gebruiker een (kortdurende) toestand ervaart met kenmerken van depressie. Dit is 

mogelijk gerelateerd aan een verlaagd functioneren van het serotonine systeem. 

Hierbij dient echter te worden opgemerkt dat de verschillen in omstandigheden 

(normaal gesproken gebruikt men ecstasy in een uitgaanssituatie in het weekend en 

valt de drie dagen dip dus in de werkweek, waarbij de uitgaanssituatie meestal als 

veel plezieriger word ervaren, ook wanneer er geen sprake is van drugsgebruik) 

mogelijk ook (een gedeelte van deze) symptomen kunnen verklaren (Parrott and 

Lasky 1998;Sumnall, Cole et al. 2006). 

 

Lange termijn effecten 

Doordat het effect van MDMA kortdurend is en sterk afneemt met 

regelmatig gebruik, waarschijnlijk gerelateerd aan neuro-adaptieve processen zoals 

down regulatie, heeft deze stof slechts een zeer beperkt verslavend effect. De meeste 

verslavende stoffen veroorzaken bovendien een veel sterkere afgifte van dopamine 

dan ecstasy, een belangrijk kenmerk voor verslavingspotentie (Adinoff 2004). 

In dierenonderzoek is aangetoond dat MDMA gebruik de axonen van 

serotonerge neuronen kan beschadigen, deze vertonen dan een 'pruning-effect': de 

normale lange axonen met weinig vertakkingen worden vervangen door sterk 

verkorte en vertakte uitlopers. In mensen is aangetoond dat na recent MDMA 

gebruik een down-regulatie van de serotonerge re-uptake pomp optreedt, mogelijk 

gerelateerd aan dit ‘pruning-effect’. Dit laatste effect is reversibel (McCann, Szabo 

et al. 2008). De functionele relevantie van deze veranderingen is vooralsnog 

onbekend en levert nog steeds discussie op. Slechts bij hoge en/of chronische 

blootstelling uit zich een cognitief disfunctioneren (Gouzoulis-Mayfrank and 
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Daumann 2006a;Sprague and Nichols 2005) en cardiovasculaire afwijkingen 

(Droogmans, Cosyns et al. 2007).  

 

 

Alcohol 

 

Alcoholische (ethanol bevattende) dranken worden vaak gebruikt in de 

westerse samenleving (meer dan 4 miljoen huidige gebruikers in Nederland). 

Ethanol is een sedatief middel, en remt de werking van de hersenen door de werking 

van de GABAa receptor te versterken middels allosterische modulatie (Suzdak, 

Schwartz et al. 1988). Aangezien deze receptor in vrijwel alle delen van het centraal 

zenuw stelsel voorkomt, heeft alcohol zeer diverse effecten die tevens ook 

afhankelijk zijn van de dosering. De meest bekende effecten van alcohol zijn een 

verminderd geheugen en verstoorde bewegingsfunctie (bijvoorbeeld wankel lopen 

en onduidelijk praten). De dempende effecten kunnen het algemeen functioneren 

drastisch beperken en in extreme gevallen ernstige bijwerkingen veroorzaken zoals 

ademdepressie. Omdat alcohol zo vaak gebruik wordt, komen ernstige bijwerkingen 

vaak voor. Er zijn in 2006 dan ook 1742 fatale accidenten met als hoofdoorzaak 

alcohol intoxicatie gemeld (Trimbos Instituut 2008). Naast de sedatieve effecten 

heeft ethanol relatief geringe effecten op het cardiovasculair systeem: ethanol 

veroorzaakt vaatverwijding en verhoogt de hartslag. De vaatverwijding in de huid 

kan leiden tot een daling van de lichaamstemperatuur en kan onder ongunstige 

omstandigheden leiden tot onderkoeling (Pohorecky and Brick 1988). De kinetiek 

van alcohol verschilt sterk tussen personen onderling en hangt ondermeer af van ras, 

geslacht, gewicht en gebruiksfrequentie. Gemiddeld zullen twee tot drie 

alcoholische dranken leiden tot een bloed concentratie van 0,6 promille, een 

concentratie waarbij men wettelijk gezien geen voertuigen meer mag besturen.  
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Cannabis 

 

THC (tetrahydrocannabinol), het meest actieve bestanddeel van cannabis, is 

een sederend/relaxerend middel met een zwak hallucinogene werking. In hogere 

concentraties kan THC angst opwekken (Block, Erwin et al. 1998). THC vermindert 

het geheugen en vertraagt de bewegingssnelheid. Daarnaast verhoogt THC de 

hartslag kortdurend maar zeer robuust en vermindert het de perifere vaatweerstand 

(Sidney 2002). THC is niet toxisch aangezien in de hersenstam, waar de vitale 

functies worden aangestuurd, vrijwel geen receptoren voor THC aanwezig zijn. 

THC is een agonist voor de CB1 en CB2 receptoren van het endocannabinoïd 

systeem (ECS). CB1 receptoren komen voornamelijk voor in het centraal zenuw 

stelsel, terwijl CB2 receptoren zich voornamelijk buiten het centraal zenuw stelsel 

bevinden (Ameri 1999). Het ECS wijkt af van klassieke neurotransmitter systemen 

aangezien de receptoren zich meestal pre-synaptisch bevinden terwijl de 

neurotransmitter zelf (bijvoorbeeld anandamide, een endogeen analoog van THC) 

post-synaptisch geproduceerd wordt. Het ECS bewerkstelligt op deze manier onder 

andere negatieve feedback van de neurotransmissie in de synaps. De 

endocannabinoïd produktie word voornamelijk gestart na prikkeling van het post-

synaptisch membraan door reguliere synaptische neurotransmissie, waarbij het 

gevormde endocannabinoïd terugdiffundeert naar de pre-synapstisch gelocaliseerde 

receptor. Prikkeling van deze endocannabionoïd receptor remt vervolgens de afgifte 

van neurotransmitter.  

THC is een lipofiel molecuul en wordt dan ook snel vanuit het bloed 

opgenomen in vet weefsel (waaronder het centraal zenuwstelsel). Slechts enkele 

minuten na inhalatie bereikt de THC bloed concentratie maximale waarden waarna 

deze zeer snel daalt. De cognitieve en subjectieve effecten zijn maximaal rond 15 tot 

30 minuten na inhalatie en duren enkele uren (Curran, Brignell et al. 2002;Strougo, 

Zuurman et al. 2008). 
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Dit proefschrift 

 

Zoals al eerder genoemd zijn ecstasy gebruikers vaak recreationele drugs 

gebruikers die allerlei psychoactieve middelen gebruiken, waaronder ecstasy, 

alcohol en cannabis. In de praktijk worden deze drugs ook gecombineerd gebruikt 

om gewenste effecten te versterken en/of ongewenste effecten af te zwakken. Dit 

proefschrift beschrijft de effecten van ecstasy in combinatie met alcohol of cannabis, 

de meest gebruikte drugscombinaties met ecstasy. Om deze effecten in kaart te 

brengen hebben wij twee studies, waarin telkens zestien gezonde vrijwilligers getest 

werden, uitgevoerd met een dubbel blind, placebo gecontroleerd en gerandomiseerd 

crossover design. Studie 1 betrof de interactie tussen MDMA en alcohol. MDMA 

werd in capsule vorm toegediend in een dosering van 100 mg, wat bij benadering 

overeenkomt met de gemiddeld gebruikte dosering bij recreationeel ecstasy gebruik 

(Tanner-Smith 2006). Aangezien oraal toegediende alcohol een grote kinetische 

variatie kent, is de alcohol intraveneus toegediend, waarbij de infusiesnelheden 

dusdanig werden aangepast dat gedurende drie uur een stabiele bloed alcohol 

concentratie (BAC) van 0,6 promille (vergelijkbaar met de BAC na 2-3 alcoholische 

consumpties) bereikt werd (Zoethout, van Gerven et al. 2008). De resultaten van 

studie 1 worden besproken in de Hoofdstukken 3 tot en met 5. Studie 2 betrof de 

interactie tussen MDMA (wederom 100 mg oraal) en THC (4, 6 en 6 mg, waarbij 

vergelijkbare effecten worden bereikt als na het roken van een joint). THC werd 

toegediend middels een verdamper, waarbij de THC, opgelost in ethanol, op een 

gecontroleerde manier werd geïnhaleerd door de proefpersoon (Zuurman, Roy et al. 

2008). De resultaten van studie 2 worden beschreven in de Hoofdstukken 6 en 7. 

Deze studie leverde tevens het mogelijk mechanisme achter MDMA's 

karakteristieke pro-sociale effecten op, deze resultaten worden in Hoofdstuk 8 

besproken. 
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Samenvatting van de Hoofdstukken  

 

Hoofdstuk 2 A review of acute effects of 3,4 -

methylenedioxymethamphetamine in healthy volunteers beschrijft de kennis 

omtrent de acute effecten van MDMA in gezonde vrijwilligers. Alle 

literatuur binnen dit thema is systematisch gecategoriseerd en samengevat. 

Hieruit blijkt dat er een grote verscheidenheid aan cognitieve testen is 

gebruikt waardoor er geen definitieve uitspraken over specifieke cognitieve 

effecten van MDMA gedaan kunnen worden. Deze studies rapporteerden in 

het algemeen milde cognitieve beperkingen, sterke subjectieve effecten en 

een (dosisgerelateerde) verhoging van de hartslag.  

Hoofdstuk 3 Acute neuropsychological effects of MDMA and ethanol (co-) 

administration in healthy volunteers beschrijft de piek effecten van (de interactie 

tussen) MDMA en alcohol. De resultaten tonen aan dat de combinatie van 100 mg 

MDMA met een bloed alcohol concentratie van 0,6 promille geen versterking van 

de effecten van deze stoffen apart geeft. Tevens toont deze studie aan dat de 

cognitieve beperkingen van een gemiddelde dosis ecstasy vergelijkbaar zijn met de 

beperkingen na twee tot drie glazen alcohol.  

Hoofdstuk 4 Acute psychomotor effects of MDMA and ethanol (co-) 

administration over time in healthy volunteers beschrijft de effecten van 

bovenstaande combinatie op het psychomotore functioneren over de tijd. Uit de 

resultaten blijkt dat MDMA de snelheid, maar niet de nauwkeurigheid, van het 

psychomotore functioneren verbetert, terwijl alcohol beide aspecten verslechtert. De 

combinatie van deze stoffen liet additieve effecten zien. Alcohol verminderde nog 

steeds de nauwkeurigheid van bewegingen, maar het stimulerende effect van 

MDMA nam de sedatie door alcohol weg. Dit kan leiden tot overmoedig gedrag van 

mensen die onder invloed zijn van deze combinatie, aangezien zij geen beperking in 

hun bewegingssnelheid ervaren, terwijl zij onverminderd beperkt zijn in de 

nauwkeurigheid van diezelfde bewegingen. Aangezien een substantieel percentage 

van deelnemers aan feesten onder invloed van deze combinatie naar huis rijd, kan dit 

tot gevaarlijke situaties leiden. 
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Hoofdstuk 5 Ethanol co-administration moderates MDMA effects on human 

physiology beschrijft de fysiologische effecten van MDMA in combinatie met 

alcohol. De resultaten tonen aan dat MDMA water retentie en verhoging van de 

temperatuur en de hartslag induceert. Alcohol, dat zelf nauwelijks effecten liet zien 

op deze maten, verminderde deze effecten van MDMA, met uitzondering van de 

hartslagverhoging. Gelijktijdig gebruik van een lage dosis (2-3 glazen) alcohol en 

MDMA kan dus de bijwerkingen van ecstasy beperken. 

Hoofdstuk 6  Acute psychomotor, memory and subjective effects of MDMA 

and THC (co-) administration over time in healthy volunteers beschrijft de 

cognitieve effecten van (de combinatie van) MDMA en THC, het actieve 

bestanddeel van cannabis. Deze studie toont aan dat THC het cognitief functioneren 

sterker beperkt dan MDMA. De combinatie van MDMA en THC verergerde deze 

effecten echter niet. De combinatie van cannabis met ecstasy versterkte tevens de 

subjectieve gewenste effecten van ecstasy, wat de populariteit van deze drug 

combinatie kan verklaren.  

Hoofdstuk 7 Cannabis co-administration potentiates ecstasy effects on 

heart rate and temperature in humans beschrijft de effecten van MDMA en THC op 

de fysiologie en laat zien dat sommige schadelijke effecten van MDMA, nl. 

temperatuursstijging en een verhoogde hartslag, versterkt worden door toevoeging 

van THC. De combinatie van deze stoffen kan leiden tot een gevaarlijke stijging van 

de hartslag, wat in combinatie met de ongunstige omstandigheden (intensieve 

lichaamsbeweging), mogelijk tot acute en/of langdurige gezondheidsproblemen kan 

leiden. 

Hoofdstuk 8 Increased oxytocin concentrations and prosocial feelings in 

humans after ecstasy (3,4-methylenedioxymethamphetamine) administration 

beschrijft een plausibel mechanisme van de typische pro-sociale effecten van 

MDMA. Deze studie laat zien dat MDMA de bloedconcentratie van oxytocine sterk 

verhoogt, en dat deze stijging samenhangt met de stijging in gevoelens van 

vriendelijkheid en gezelligheid. In andere studies is aangetoond dat exogeen 

toegediend oxytocine mensen 'socialer' maakt: ze kunnen zich beter inleven in 

andermans gevoelens en zijn eerder geneigd tot vriendelijk gedrag. Verder 
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onderzoek naar de sterke toename van de endogene oxytocine afgifte door MDMA 

kan bijdragen aan de ontwikkeling van nieuwe therapieën bij ziektebeelden met 

afwijkingen in het sociale gedrag, zoals autisme of angststoornissen. 

 

 

Conclusie 

 

De doseringen van MDMA, alcohol en cannabis in deze studies zijn 

vergelijkbaar met gemiddeld doseringen tijdens recreationeel gebruik. Elke stof 

afzonderlijk had daarbij verschillende maar beperkte effecten op het cognitieve 

functioneren. De combinatie van MDMA met alcohol of cannabis had weinig extra 

invloed op het cognitief functioneren ten opzichte van deze drugs alleen. De 

combinatie met alcohol verminderde de mate waarin de proefpersonen zich van deze 

beperkingen bewust waren, terwijl cannabis de gewenste subjectieve effecten van 

MDMA versterkte. De effecten van de twee verschillende combinaties op de 

fysiologie waren deels tegengesteld: de combinatie van alcohol met MDMA 

verminderde de (potentieel gevaarlijke) bijwerkingen van MDMA terwijl de 

combinatie van THC met MDMA de bijwerkingen soms aanzienlijk versterkte. 

Daarnaast heeft dit onderzoek aangetoond dat MDMA de bloedconcentratie van 

oxytocine verhoogt, wat samenging met de entactogene (verhoogd sociaal gedrag) 

effecten van MDMA. Deze bevindingen dienen gebruikt te worden in de 

voorlichting van gebruikers van deze combinaties, alsmede bij de rationele aanpak 

van intoxicaties met deze combinaties. Tevens kan het verder bestuderen van het 

mechanisme van de unieke sociale effecten van MDMA leiden tot nieuwe inzichten 

en farmacotherapieën voor psychiatrische stoornissen, zoals bijvoorbeeld 

angststoornissen, post-traumatische stress stoornis en autisme. 
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