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Abstract. This paper proposes a dynamic Markov model for the estimation of binary state-to-state transition probabilities from a sequence of
independent cross-sectional samples. It discusses parameter estimation and inference using maximum likelihood (ML) methodology. The model
is illustrated by the application of a three-wave panel study on pupils’ interest in learning physics. These data encompass more information than
what is used to estimate the model, but this surplus information allows us to assess the accuracy and the precision of the transition estimates.
Bootstrap and Bayesian simulations are used to evaluate the accuracy and the precision of the ML estimates. To mimic genuine cross-sectional
data, samples of independent observations randomly drawn from the panel are also analyzed.
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The purpose of this paper is to present a nonstationary,
heterogeneous Markov model that affords a transitional
analysis of survey data from a time series of independent
cross-sectional samples. This model is most suitable for
examining individual-level binary transitions between states
over time, under first-order Markov assumptions, and the
effects of time-constant and time-varying covariates on the
transition intensities. We describe maximum likelihood
(ML) parameter estimation and illustrate the model with
an educational case study.

In its simplest formulation, the problem studied in this
paper is to estimate the cell probabilities in a series of 2 · 2
tables, when only marginal counts are observed and the
entries are unavailable. This problem has attracted the atten-
tion of researchers from various disciplines and the aspects
of the problem have recently become of increasing interest
in several literatures with varying concerns and
terminology. Many statisticians have considered the amount
of information that the marginal totals provide about the inte-
rior cells and have derived ML estimates of the cell probabil-
ities under different sampling schemes (e.g., Haber, 1989;
Hamdan & Nasro, 1986; Kocherlakota & Kocherlakota,
1992; McCullagh & Nelder, 1992; Plackett, 1977). There
has also been an upsurge of interest in the past several years
on the problem of making individual-level inference from
aggregate-level data or, more formally, on point identification
of P(y|x, z) from information on only P(y|x) and P(z|x). Vari-
ous inferential methods to aid in the solution of such ecolog-
ical inference problems have been proposed in many
disciplines, including political science (Achen & Shively,
1995; King, 1997; King, Rosen, & Tanner, 2003), epidemiol-
ogy (Richardson & Montfort, 2000), statistics (Wakefield,
2003), marketing (Böckenholt & Dillon, 2000), and econo-
metrics (Cross &Manski, 2002). See the special issue on eco-
logical analysis in the Journal of the Royal Statistical Society,
Series A (2001, volume 164, issue 1) for other application
areas. Further, there is a fair amount of recent activity in the

development of confidentiality protection and statistical data
disclosure limitation methods, and a central issue studied in
this area is the potential to infer microdata from the sets of
interlinked aggregate data (Dobra, Tebaldi, & West, 2003;
Fienberg, 1997; Tebaldi & West, 1998). An important role
in both disclosure limitation and ecological inference proce-
dures is played by the lower and upper (Fréchet) bounds on
cell counts in marginally constrained cross-classifications.
Finally, considerable attention has recently been given to
the use ofmaximum entropy procedures to recover the entries
from incomplete contingency table data (e.g., Golan, Judge,
& Miller, 1996; Golan, Judge, & Robinson, 1994; Judge,
Miller, & Tam Cho, 2003). The key feature of these informa-
tion theoretic approaches is to convert an ill-posed (underde-
termined) inverse problem into a well-posed one and to use
(Shannon’s) entropy as a decision criterion for estimation
and inference. Here, we restrict the attention to finding esti-
mates byML.Maximum entropy formulations for recovering
the unknown transitions unobserved and unobservable in
repeated cross-sections are addressed in a separate study.

In this paper we develop, apply, and verify a dynamic
Markov model that can be used to recover binary-state tran-
sition probabilities at the individual level from repeated
cross-sectional (RCS) sample survey data that lack direct
information on individual turnover. The estimated transitions
are allowed to vary over time and from subject to subject.
The model may circumvent the need for individual-level
panel data and their associated problems (e.g., nonrandom
attrition), and overcome some deficiencies in aggregate time
series (e.g., aggregation bias), by exploiting individual-level
information from independent samples of cross-sections of
the population collected over time. Also, a number of the
proposed approaches assume tables with large marginal
totals or population data, so that knowledge of P(y|x) and
P(z|x) implies a deterministic bound on P(y|x, z). We, in con-
trast, assume a sample situation and work with a series of
relatively small-sized samples, wherein the observed data
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are estimates of the true proportions. Throughout this paper
we shall restrict ourselves to a two-state transition model,
but this is not essential. Multi-state models can be developed
analogously, at the cost of some extra complexity in the
computations.

The remainder of this paper is organized as follows:
Section ‘‘Interior Cells and Likelihood’’ briefly considers
the wider statistical literature concerned with making infer-
ences about interior cell probabilities from marginal totals.
Section ‘‘Estimating Transitions From Repeated Cross-
Section’’ outlines our proposed two-state Markov model
for RCS data and discusses ML estimation and inference.
Section ‘‘Application’’ applies the model to a published
panel data set on pupils’ interest in learning physics and
verifies the results against the panel observations. Conclud-
ing remarks are offered in the ‘‘Discussion’’ section.

Interior Cells and Likelihood

Sampling Design and Likelihood
Specification

We first consider the case in which the interior cells are
observed. Assume that we are sampling (with replacement)
from a multinomial population and that the observed sample
is available in the form of a 2 · 2 contingency table with
completely classified observations: that is, all four cell counts
given and no margins fixed. The entries, yij, in each cell
denote the number of observations in row i and column j,
with i, j = 0, 1, and pij, the unknown parameters.

The probability distribution of yij obviously depends on
the sampling scheme that was used to generate the table.
With zero fixed margins and entries (Y00, Y01, Y10, and Y11)
as random variables, the exact model is the four-cell multi-
nomial distribution with parameters (p00, p01, p10, and p11).
If the Yij take non-negative integer values and sum to
(fixed) n, the probability is

P ðY 00 ¼ y00; . . . ; Y 11 ¼ y11Þ ¼
n!Q

i;j
yij!

Y
i;j

p
yij
ij ; ð1Þ

where pij 2 [0, 1] and
P

i,j pij = 1. Let yt�1 and yt denote
the sums of the multinomial variates y10 + y11 and
y01 + y11, respectively, and define the corresponding mar-
ginal probabilities by pt�1 = p10 + p11 and pt = p01 + p11.
The marginal distributions of the sums are binomial, here
Yt�1 � B(n, pt�1) and Yt � B(n, pt). This binomial distri-
bution also appears as the conditional distribution of a sub-
set of the components of the multinomial random variable,
given the values of the remaining components. Using this
result, we have

P ðY 00 ¼ y00; . . . ; Y 11 ¼ y11Þ¼
n

yt�1

� �
pyt�1

t�1 ð1� pt�1Þ
n�yt�1

�
n� yt�1

y01

� �
p01

1� pt�1

� �y01 p00

1� pt�1

� �y00
�

�
yt�1

y11

� �
p11

pt�1

� �y11 p10

pt�1

� �y10
�
: ð2Þ

Hence, the multinomial likelihood function for the 2 · 2
table factorizes into a marginal binomial random variable for
the row totals and two conditional binomials for the two
rows (Bishop, Fienberg, & Holland, 1975).

Now consider the situation where the two marginal totals
are observed, but the individual cell counts are unavailable
for some reason (e.g., sampling design and data security).
Then three types of sampling, depending on the number
of margins fixed by the sampling scheme (0, 1, or 2), give
rise to the observed table (Barnard, 1947). The case of
two fixed margins is relatively rare in applied statistics,
but the other two occur frequently.

If the data consist of only marginal information and none
of the margins is fixed, the bivariate binomial distribution
may be employed to investigate two-dimensional random
variables, where each of the marginal probability functions
is binomial. If we write g = y01 to indicate that the cell
counts are unobserved, the joint probability mass function
of Yt�1 and Yt is given by

P ðY t�1 ¼ yt�1; Y t ¼ ytÞ

¼
Xu1

g¼u0

n
g; n� yt�1 � g; yt � g; yt�1 � yt þ g

� �
� pg

01ð1� pt�1 � p01Þ
n�yt�1�gðpt � p01Þ

yt�g

� ðpt�1 � pt þ p01Þ
yt�1�ytþg

; ð3Þ

where u0 = max(0, yt � yt�1) and u1 = min(n � yt�1, yt).
Given the data for pairs of observations (yt�1, yt) from a
series of independent samples of size n (i.e., multiple
tables), the parameters pt�1, pt, and p01 may be estimated
by ML. Hamdan and Nasro (1986) and subsequently
Kocherlakota and Kocherlakota (1992) studied this distri-
bution in connection with 2 · 2 tables obtained by classi-
fying each of a sample of n objects according to the
presence or the absence of a pair of characteristics. They
also provide estimation details such as derivatives of the
likelihood with respect to the parameters.

Alternatively, with one margin fixed, inference can be
accomplished by restricting the parameter space to the set
of all 2 · 2 contingency tables that have the same fixed mar-
ginal sums as the observed table. Conditioning on the
observed margins of the table affords a convenient way to
eliminate nuisance parameters from the likelihood. Let
l ¼ p01=ð1� pt�1Þ and j ¼ p11=pt�1. In a comparative
study (e.g., prospective trial) with two independent samples,
the simplest model takes Y 01 � Bðn� yt�1; lÞ and
Y 11 � Bðyt�1; jÞ as the independent random variables.
The probability of observing Yt is then the convolution
(e.g., Woodward & Palmer, 1997) of two independent
binomials:
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P ðY t ¼ ytÞ ¼
X

g

n� yt�1
g

� �
lgð1� lÞn�yt�1�g

� yt�1
yt � g

� �
jyt�gð1� jÞyt�1�ytþg

; ð4Þ

where the summation is again over all g satisfying
maxð0; yt � yt�1Þ � g � minðn� yt�1; ytÞ. This double
binomial has, in the context of 2 · 2 tables with unknown
cell counts, been discussed by Eisinga (2008), Haber
(1989), McCullagh and Nelder (1992), and Plackett
(1977).McCue (1995) andWakefield (2003) explicitly con-
sidered working with the convolution likelihood in the con-
text of ecological inference analysis and presented normal
approximations for tables with large marginal counts.

We finally note that on some occasions we may observe
a 2 · 2 table where the row and column margins are both
fixed by design (Ronald Fisher’s hypothetical tea tasting
experiment is the classic example). The sampling distribu-
tion of Y01 given the marginal totals is then an extended
(or noncentral) hypergeometric (see, Agresti, 1992; Fisher,
1935; McCullagh & Nelder, 1992; Wakefield, 2003). Sup-
pose Y01 and Y11 are independent binomial random variables
with distributions Bðn� yt�1; lÞ and Bðyt�1; jÞ, respec-
tively, and w ¼ jð1� lÞ=lð1� jÞ is the odds ratio,
characterizing row-column nonindependence. Then the con-
ditional distribution of Y01 given Yt = yt and Yt�1 = yt�1
is an extended hypergeometric with target parameter w,
given by

P ðY 01 ¼ y01Þ ¼
wy01Q

i;j
yij!

X
y01

wy01Q
i;j

yij!

0
B@

1
CA
�1

¼ wy01 n� yt�1
y01

� �
yt�1

yt � y01

� �

�
Xu1

g¼u0

wg n� yt�1
g

� �
yt�1

yt � g

� �( )�1
y01 ¼ u0; . . . ; u1; ð5Þ

where the summation index g ranges from u0 ¼
maxð0; yt � yt�1Þ to u1 ¼ minðn� yt�1; ytÞ, that is, the
possible values for y01 gives the marginal totals. Note that
the distribution depends on the parameter w only.

An important factor for inference is whether it is admis-
sible, in the sense of losing no information, to specify the
sampling process only partially by treating part of the data
as if they were not random. If some of the margins were
not naturally fixed when the data were gathered, it may be
inappropriate to fix them for the purpose of inference. We
also note that no nondegenerate ML estimates exists for
the above likelihoods if information is available from a single
sample of size n (i.e., one table only). More specifically, for
one observation on two marginal totals, the ML estimates of
the cell probabilities always involve at least one cell whose
estimated probability is equal to zero. ML estimation of the
parameters thus requires information from multiple indepen-
dent samples (see, Haber, 1989; Hamdan & Nasro, 1986;
Kocherlakota & Kocherlakota, 1992; Plackett, 1977).

Repeated Cross-Sectional Design
and Likelihood Function

In an RCS survey, the samples are drawn anew at every
sampling occasion, making it impossible to observe lagged
values of yit for any individual over time. For the present
discussion this implies that only one transition table margin
is recorded in RCS data, the columns totals say, that the
other margin is unrecorded, as are the interior cells. Write
f = yt�1 to indicate that the row sums are unavailable in
repeated independent surveys. The joint probability function
of Yt�1 and Yt is then simply

P Y t�1 ¼ f ; Y t ¼ ytð Þ ¼ P Y t�1 ¼ fð Þ
� P Y t ¼ ytjY t�1 ¼ fð Þ; ð6Þ

where PðY t ¼ ytjY t�1 ¼ f Þ is the convolution distribution
of Y01 and Y11 given by equation (4). If we conjecture
that Yt�1 follows a binomial distribution, that is,
Y t�1 � Bðn; pt�1Þ, the marginal distribution of Yt becomes

P Y t ¼ ytð Þ ¼
Xn

f¼0

n
f

� �
pf

t�1ð1� pt�1Þ
n�f

�

�
X

g

n� f
g

� �
lgð1� lÞn�f�g

�

� f
yt � g

� �
jyt�gð1� jÞf�ytþg

��
; ð7Þ

and this corresponds to a binomial mass function. In other
words, if Y01, Y11, and Yt�1 are all binomially distributed,
the marginal distribution of Yt is also binomial, with index
parameter n and success probability pt.

It is informative to consider the conditional distribution
of Yt given Yt�1 = f. The probability generating function
(p.g.f.) of the distribution is given by

PY tðtjf Þ ¼ ð1� lÞ þ ltf gn�f ð1� jÞ þ jtf gf
; ð8Þ

and this is recognized to be the p.g.f. of the convolution of
Bðn� f ; lÞ and Bðf ; jÞ. Using this conditional distribu-
tion, the regression of Yt given Yt�1 = f is

EðY tjf Þ ¼ lðn� f Þ þ jf ¼ lnþ ðj� lÞf ; ð9Þ
which is linear in f with regression coefficient j � l. For
this regression, the conditional variance can be deter-
mined as

VarðY tjf Þ ¼ lð1� lÞnþ fjð1� jÞ � lð1� lÞgf ;
ð10Þ

which is also linear in f.
Further, lower and upper (Fréchet) bounds can be

derived that define a feasible region within which l and j
must lie. From equation (9), we have

l ¼ EðY tjf Þ
ðn� f Þ �

f
ðn� f Þ j and j ¼ EðY tjf Þ

f
� ðn� f Þ

f
l:

ð11Þ
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Since the left-hand sides of these identities are bounded
on the [0, 1] interval, we have l 2 ðLl;UlÞ and
j 2 ðLj;UjÞ, where the lower (L) and upper (U) bounds
are defined by the min and max operators:

Ll ¼ max 0;
yt � f
n� f

� �
� l � min 1;

yt

n� f

� �
¼ Ul

ð12Þ
and

Lj ¼ max 0;
yt � ðn� f Þ

f

� �
� j � min 1;

yt

f

� �
¼ Uj

ð13Þ
(see, Chambers & Steel, 2001; King, 1997). At least two
issues arise in computing lower and upper bounds from
RCS data. One is that f is not observed. However, it is often
not unreasonable to assume that the unknown yt�1 margin at
time point t is equal to the observed margin of the previous
sample at t � 1. To implement this assumption we may
impute at time point t the marginal frequencies (or propor-
tions) observed at t � 1. The other issue is that the lower
and upper bounds provide deterministic information about
l and j, conditional on the marginal data being correct. In
cross-section samples, however, the yt and imputed yt�1
are random observations. The lower and upper limits are,
therefore, stochastic rather than deterministic bounds. The
bounds obtained with RCS data may nevertheless provide
useful statistical information. They may be used, for exam-
ple, to get a preliminary impression of the range of estimates
of the transition intensities. Taken the observed and imputed
margins as given, we sometimes obtain sharp (albeit nonde-
terministic) bounds for l and j. Because the bounds are not
known with certainty, it is informative to construct confi-
dence intervals for the lower and upper limits, as will be
done in the example application given below. Finally, it is
important to note that our estimation procedure makes no
use of equations (12) and (13). However, it does implicitly
take into account the bounds and thereby restrict the ranges
of feasible estimates of l and j, simply by constraining the
estimated probabilities to lie within the unit interval.

Estimating Transitions From Repeated
Cross-Section

Dynamic Transition Model

The data considered so far were given in the form of aggre-
gate 2 · 2 tables. The problem of estimating transitions
rates from either aggregate frequency data or aggregate pro-
portions has been discussed extensively in several disci-
plines, particularly in statistics (e.g., Fingleton, 1997;
Hawkins, Han, & Eisenfeld, 1996; Kalbfleish & Lawless,
1984, 1985; Kelton & Kelton, 1984; Lawless & McLeish,
1984; Lee, Judge, & Zellner, 1970; Li & Kwok, 1990),
economics, and econometrics (e.g., Abowd & Zellner,
1985; Karantininis, 2002; Kelton, 1981; MacRae, 1977;

Zepeda, 1995). However, an important feature of the model
discussed here is that unlike these approaches, grouping of
either the population or the cross-sectional sample data into
aggregates (e.g., cohorts or other grouped data) need not be
done. In fact, the variation in the microdata is utilized as part
of the estimation procedure. For additional discussion of the
similarities and dissimilarities between the traditional
Markov chain aggregate data models and the current model,
see Pelzer, Eisinga, and Franses (2001, 2002).

The Markov transition model that we outline in this sec-
tion is designed to deal with individual-level observations.
However, we first present the model in terms of aggregated
data and subsequently explain the individual-level equiva-
lent. We assume that the observed aggregate data consist of
T independent cross-sections drawn at evenly spaced points
in time with each being a random sample of nt different indi-
vidual units of some underlying population. This population
is considered to be closed with respect to in- and out-migra-
tion and we assume that there are no births or deaths.

Let f again denote the unknown row count yt�1 of the
cross-sectional survey observed at time point t. We consider
f to be randomly drawn from B(nt, pt�1). The unknown cell
counts Y01 and Y11 of cross-section t are also assumed to be
binomially distributed: that is, Y 01;t � Bðnt � f ; ltÞ and
Y 11;t � Bðf ; jtÞ. For the resulting marginal distribution at
time point t it follows that Y t � Bðnt; ptÞ. Note that the
binomial parameters pt�1, pt, lt, and jt are probabilities that
apply to all individual units of cross-section t. The parame-
ters pt�1 and pt denote the probability to be in state 1 at
t � 1 and t, respectively, lt denotes the transition probabil-
ity to enter state 1 at t given state 0 at t � 1, and jt the prob-
ability to stay in state 1 at t given state 1 at t � 1. The
expectation of Yt is again given by EðY tjf Þ ¼ ntpt ¼
ltðnt � f Þ þ jtf and dividing this expression by nt leads
to the following relationship between state probabilities at
two consecutive points in time:

pt ¼ lt 1� pt�1ð Þ þ jtpt�1: ð14Þ

Because the 0–1 Markov states are mutually exclusive
and exhaustive and the row probabilities add to 1 in every
time period, we may recursively apply equation (14) to
get the following standard model:

pt ¼ lt þ
Xt�1
s¼1

ls

Yt

s¼sþ1
ðjs � lsÞ

( )
þ p0

Yt

s¼1
ðjs � lsÞ:

ð15Þ
Our aim is to establish consistent estimation of the unob-

served interior cell counts or, equivalently, to estimate the
underlying transition probabilities, given that the lagged
dependent variable is not observed. This goal poses two
challenges: (i) to overcome the identifiability problem inher-
ent in equation (15) by imposing identifying constraints on
the unobserved lt and jt transitions and (ii) to develop an
estimation technique that efficiently uses the information
we have and provides a basis for inference.

If equation (15) is estimated with independent data
samples, the parameters are clearly not identifiable.
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For a total of T cross-sections, equation (15) has
T � lt þ T � jt þ p0 ¼Þ 2 T þ 1ð unknown parameters
and T data points. Since the number of unknowns outnumber
the number of knowns, the problem is underdetermined (or
ill-posed). An obvious approach to overcome this ill-posed
problem is re-parameterization, using less number of param-
eters. For example, the restriction lt = l and jt = j for all t
reduces the number of unknowns to three and produces
estimates for p0, l, and j within the feasible range [0, 1].

Now suppose that instead of a single observed marginal
count, the data consist of multiple yit counts for each
transition from t � 1 to t and that each yit pertains to a differ-
ent group of nit individual units having a unique set of values
on a series of L covariates. The parameters in equations (14)
and (15) would then have to be indexed by i. In the most
extreme case of nit = 1 for all i and t, each individual unit i
has a unique set of covariate values and each observed yit
count is either 0 or 1, representing the observed value of Yit
for unit i. Equation (15) then becomes an individual-level
Markov transition model. Further, with multiple yit counts
(or values) observed for each transition, the problem of esti-
mating equation (15) becomes one of solving for 2t + 1
unknown parameters for each observed yit count. Because this
problem is ill-posed, restraints have to be enforcedon the tem-
poral distribution of the transitions, cross-sectional distribu-
tion of the transitions or on both, for example, the constraint
lit = l and jit ¼ j for all i and t. A serious drawback of such
homogeneous models is that they are based on the (often
untested) assumption that subjects make transitions between
states with common transition probabilities. When transition
probabilities differ among sampling occasions of the popula-
tion, among subsets of the population or among both, failure
to account for the differences can result in biased estimates. In
view of this, we adopt a remedy previously considered by
Moffitt (1990, 1993). He suggests to replace the unobserved
lagged dependent variable yit�1 by a predicted count nit pit�1,
with pit�1 obtained using the values of the covariates at time
period t – 1. The central idea behind this approach is that it is
often possible with RCS data to reconstruct past values of the
covariates xit by going back in time, starting from the cross-
section at which they were observed. If so, the backcasted
values may be used to predict pit�1. This requires that the
unit-specific covariates are either time-invariant (e.g., date
of birth, gender, race, and completed education) or that lagged
values of time-varying covariates can be obtained by retropo-
lation (e.g., age and number of children of different ages).
Macro-level aggregates may be used as well. If the repeated
surveys contain suchdata, and the current and lagged xit effec-
tively affect lit and jit, the covariates can be employed to
obtain current and backward predictions of the transition
probabilities and hence the marginal probabilities.

While, in principle, lit and jit could be based on different
sets of time-invariant or time-varying covariates, it is nota-
tionally most convenient that the same variables affect both
transition processes, but with different parameters. With
this simplifying notational assumption, the transition
model has

lit ¼ F xitbtð Þ and jit ¼ F ðxitb
�
t Þ; ð16Þ

where F(Æ) – in this paper – is a logistic function, linking the
probabilities and the covariates. If we substitute these logit
models into equation (15), we obtain a Markov transition
model that can be used to estimate covariate-dependent
probabilities that vary across subjects and across time. Note
that the regression parameters in equation (16) are allowed
to vary over time, which in some applications may lead
to the presence of unidentifiable parameters. A restriction
is then needed to secure identification, for example,
the time-stationary assumption bt ¼ b and b�t ¼ b� for
all t.

The standard model equation (15) can be extended in
several ways to deal with the initial conditions problem,
covariates with unknown past history, and unobserved heter-
ogeneity. When using repeated cross-sections, we typically
start observing subjects when the process in question is
already in progress. Consequently, the first observation will
depend on the dependent variable in the period before the
sample starts. If we index equation (15) by i, pi1 refers to
the first observed outcome and pi0 to the value of the state
prior to the first outcome. While it is difficult to incorporate
the prior state, we may ‘‘solve’’ the initial conditions prob-
lem by assuming a flexible functional form for the distribu-
tion of the first observation. That is, we use a separate
logistic function, P ðY i1 ¼ 1Þ ¼ F ðxitdÞ, for the cross-
section at t = 1. In applications it may happen that some
covariates are not observable in the past by backcasting.
The model may then be modified to include two different
sets of parameters for both lit and jit, one for the current
transition probability estimates and the other for the preced-
ing estimates. We denote by vit the time-dependent covariate
having unknown past history, with parameter vector f
representing the effect on lit. We then have, assuming sta-
tionary parameters, logitðlitÞ ¼ xitb for the cross-sections
1, ..., t � 1 and logitðlitÞ ¼ xitb

�� þ vitf for cross-section
t, similarly for jit. This specification allows one to express
the current transition probability estimates as a logistic func-
tion of both backcastable and nonbackcastable covariates.
Further, we may attempt to account for time-invariant omit-
ted variables (i.e., unobserved heterogeneity) by including a
unit-specific random error term ei in the linear predictor of
lit and jit. In this logistic-mixture model, we have
logitðlitÞ ¼ xitbþ c0ei and logitðjitÞ ¼ xitb

� þ c1ei, where
c0 and c1 are the coefficients of the random variable ei with
zero mean and unit variance. The Gauss-Hermite quadrature
approach can be used to numerically integrate the marginal
likelihood with respect to the distribution of ei. For estima-
tion details, see Pelzer, Eisinga, and Franses (2002). Finally,
we note that the model can include unit-specific covariates
that, in principle, could have different values for all sampled
subjects. In this sense, the model has the potential to account
for individual-specific sources of heterogeneity that might
be ‘‘averaged out’’ when using aggregate data. However,
if all measured covariates are discrete, as in the empirical
illustration below, subjects may be segmented into groups
comprising individuals with identical observed characteris-
tics. Model construction and parameter estimation with
grouped frequency data proceed in the same way as in the
individual-level data context.
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ML Estimation

Assume that the data consist of T independent cross-
sectional drawings. Each cross-section t has mt different
groups of individual units with a unique pattern of values
on a set of L covariates and each group i has nit individual
units, with nit � 1. For each individual unit, Yit � Bern (pit)
with pit defined by equation (15). Under this sampling
scheme, the log likelihood function is

ll ¼
XT

t¼1

Xmt

i¼1
ln

nit

yit

� ��

þ yit ln pit þ ðnit � yitÞ lnð1� pitÞ
�
: ð17Þ

The maximum likelihood estimators (MLEs) of the
parameters, denoted by the vector h say, are obtained by
maximizing the probability (likelihood) of the sample data,
using the derivatives of equation (17) with respect to h.
Obtaining the log likelihood derivatives is conceptually
straightforward, but tedious. Let git = jit � lit. If we omit
index i for notational convenience, the first-order derivatives
can be expressed as

ollt=oh ¼ ðyt � ntptÞ=ptð1� ptÞ � opt=oh; ð18Þ

where opt=oh ¼ olt=ohþ ðopt�1=ohÞgt þ pt�1ðogt=ohÞ. If
h is used to estimate lt, then olt=oh ¼ xtltð1� ltÞ and
ogt=oh ¼ �olt=oh. If h is used to estimate jt, then
olt=oh ¼ 0 and ogt=oh ¼ xtjtð1� jtÞ. The derivative
values for opt=oh can be obtained by recursive substitu-
tion, setting p0 = 0 and op0=oh ¼ 0, and starting with
op1=oh ¼ ol1=oh ¼ x1l1ð1� l1Þ. The second-order
derivatives are given by

o2llt

ohoh0
¼ � ðyt � ntptÞ

2

p2
t ð1� ptÞ

2 �
opt

oh
� opt

oh0
þ yt � ntpt

ptð1� ptÞ
� o2pt

ohoh0
;

ð19Þ

where

o2pt

ohoh0
¼ o2pt�1

ohoh0
� gt þ

opt�1
oh0
� ogt

oh
þ o2lt

ohoh0
� ð1� pt�1Þ

� olt

oh0
� opt�1

oh
ð20Þ

and o
2lt=ohoh0 ¼ x0txtltð1� ltÞð1� 2ltÞ. Again, if we

set o2p0=ohoh0 ¼ op0=oh ¼ op0=oh0 ¼ 0, the values for
o2pt=ohoh0 can be obtained recursively, starting with
o
2p1=ohoh0 ¼ o

2l1=ohoh0. The MLEs can be estimated
in the usual way by Fisher’s method-of-scoring or
Newton’s method using the expected or the observed
Hessian matrix, respectively. This paper uses the expected
Hessian matrix for estimation and inference. An estimated
asymptotic variance-covariance matrix is given by the
inverse Fisher information matrix for h evaluated at the
ML parameter estimates.

An important justification for the use of ML estimation is
that asymptotically ML estimators are unbiased, consistent,
and efficient. Unfortunately, the size of the sample necessary

to closely approximate these asymptotic properties is essen-
tially unknown for the model in question. We, therefore, also
examine the sampling distribution of the parameters using
three simulation methods: parametric bootstrap, nonpara-
metric bootstrap, and Bayesian simulation. The parametric
bootstrap method uses the observed covariates and the
parameters of the fitted model to generate bootstrap replica-
tions of the original RCS data (Davison & Hinkley, 1997).
The nonparametric bootstrap uses repeated samples from
the RCS data. This is done by sampling with replacement.
Bayesian simulation is implemented by Markov chain
Monte Carlo (MCMC) sampling using the Metropolis
algorithm. The Metropolis sampler generates samples from
the multivariate posterior distribution of the parameters
given the data and a prior density, which is taken to be
noninformative in the application given below. For algo-
rithm details, see Pelzer et al. (2002, 2003). The results of
these simulations are used to empirically approximate the
probability distribution of the parameters and to examine
their standard deviation (i.e., estimated standard error) and
other distributional properties (e.g., bias, normality,
confidence, and credibility intervals).

Application

Data

We illustrate the Markov model with annual data from a
German three-wave panel survey on secondary school
pupils’ interest in learning physics, made available by
Vermunt, Langeheine, and Böckenholt (1999). The data
were assembled to study the effects of gender (0 = boys,
1 = girls) and school grade in physics (0 = low, 1 = high)
on the response variable interest in learning physics
(0 = low, 1 = high) at school. The sample available for
analysis consists of 541 pupils with complete measurements
on all variables in all waves. It is important to note that the
three-wave panel data are treated here as if they were three
independent cross-sectional samples. The complete data
analyzed in this paper are tabulated in Table 1.

As can been seen, there is no information available in the
data used for analysis that allows lagged values of yit to be
identified. Gender is a time-constant and physics grade a
time-varying covariate. In the analysis below, only current
values of the covariate school grade in physics are used as
predictors. Further, the discrete variables gender and current
grade in physics are combined into composite indicators,
without the loss of information about these variables. The
result is a set of 12 predictor variables (four for each time
period) and a total of 20 (= 4 + 2 · 4 + 2 · 4) parameters
to be estimated in a nonstationary full model. Note that this
is a main-effect-only model and not a saturated one. A sat-
urated model also includes lagged values of physics grade as
predictors. The indicator variables are labeled by the letters
b (boys) or g (girls) followed by l (low grades) or h (high
grades) and a time index t. For example, gh1 refers to girls
with a high grade in physics at t ¼ 1. Using these labels, the
nonstationary full model can be represented as
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logitðp1Þ ¼ d1 þ d2bl1 þ d3gl1 þ d4gh1
logit l2ð Þ ¼ b1bl2 þ b2gl2 þ b3bh2 þ b4gh2
logit j2ð Þ ¼ b�1bl2 þ b�2gl2 þ b�3bh2 þ b�4gh2
logitðl3Þ ¼ b5bl3 þ b6gl3 þ b7bh3 þ b8gh3
logitðj3Þ ¼ b�5bl3 þ b�6gl3 þ b�7bh3 þ b�8gh3:

The constant term for logitðp1Þ designates the (omitted)
category of boys with a high grade at t = 1. The reason for
omitting this particular category will become evident below.
The other four equations have no constant term. The reason
for omitting them is that it admits an interpretation of the
parameters in terms of logits (i.e., log odds-ratios).

Model Selection and Parameter Estimation

The analysis consists of determining a parsimonious transi-
tion model that fits the observed data well. Prior to this
model selection process, two pre-analyses were performed.
One was to determine a parsimonious representation of
the data for cross-section t = 1. The following model
appears best fitting and the most parsimonious parameteriza-
tion to estimate p1: logitðp1Þ ¼ d1 þ d2bl1 þ 2 d2gl1þ
d2gh1. The model includes two parameters (d1 and d2)
and it selects (the most populated category of) boys with a
high grade at t = 1 as the reference category. The other data
exploration concerned the lower and upper bounds for lt
and jt for each gender-physics grade category at t = 2 and
t = 3. These (nondeterministic) bounds provide meaningful

support in the model selection process. To compute the
bounds, we assume that the unobserved marginal propor-
tions at t � 1 for cross-section t are equal to the observed
marginal proportions of the corresponding cases in cross-
section t � 1, where corresponding means the same
(lagged) covariate values at t � 1. For time-constant covar-
iates, f in equations (12) and (13) is taken to be
ðyt�1=nt�1Þ � nt, where nt and nt�1 are the number of cases
at t and t � 1, respectively, and yt�1, the observed counts
for cases with identical covariate values at t � 1. In this
application, the covariates are time-varying however, and
pupils with a particular covariate value at time point t have
either one of two covariate values at t � 1. We, therefore,
take f to be the weighted sum of the two observed marginal
proportions at t � 1, denoted by ðy0t�1=n0

t�1Þ and
ðy1t�1=n1

t�1Þ, where the weights are the number of cases at
t with identical covariate values at t � 1, denoted by n0

t�1
and n1

t�1. Thus, f ¼ ðy0
t�1=n0

t�1Þ � n0
t þ ðy1

t�1=n1
t�1Þ � n1

t .
For example, for boys with low grades at t = 2 (and either
low or high grades at t = 1) we have f ¼ ð19=50Þ�
27þ ð144=224Þ � 38 ¼ 35. Taken the observed and
imputed margins as given, bounds for l and j at t = 2
and t = 3 were obtained for each gender-physics grade cat-
egory. As indicated, we cannot be entirely confident that the
true lower and upper limits are being revealed by the sam-
ple. We, therefore, applied the bootstrap and generated
5,000 samples (by sampling with replacement) from the
observed margins. The resulting (observed and imputed)
marginal counts were then employed to construct bootstrap
confidence intervals for the lower and upper bounds using

Table 2. Lower and upper bounds for lt and jt

l2 l3 j2 j3

L U L U L U L U

Boys – low grade 0 0.73 0 0.70 0 0.63 0 0.56
[0 1] [0 0.97] [0 0.88] [0 0.77]

Girls – low grade 0 0.11 0 0.18 0 0.28 0 0.79
[0 0.19] [0 0.28] [0 0.53 [0 1]

Boys – high grade 0.23 1 0.02 1 0.52 1 0.44 1
[0 1] [0 1] [0.40 1] [0.33 1]

Girls – high grade 0.02 0.56 0.01 0.46 0 1 0 1
[0 0.69] [0 0.58] [0 1] [0 1]

Note. 95% bootstrap confidence intervals in brackets.

Table 1. Pupils’ interest in physics data (n of cases = 541)

Gender 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Physics grade at time t 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

n 12 15 9 14 18 20 35 151 39 15 12 26 22 15 27 111

yt 1 3 3 5 8 9 13 22 100 6 1 2 8 5 7 9 48
2 1 7 5 10 7 7 19 113 3 0 0 7 1 3 9 48
3 3 9 5 10 4 7 11 103 4 0 2 8 2 5 7 40

Note. Gender (0 = boys, 1 = girls), physics grade (0 = low, 1 = high) at time t = 1, 2, 3, n is the number of pupils, and yt the number of
pupils with high interest in physics at t. Reprinted in part from Vermunt et al. (1999) with permission.
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the percentile method. Table 2 reports the bounds observed
in the sample along with the endpoints of the 95% bootstrap
confidence intervals.

As can be seen, for a majority of the categories the inter-
vals are narrower than [0, 1]. Some of the intervals are sim-
ply too wide to provide useful information, but others are
narrow enough to provide meaningful support in model
selection. Note that for girls with a low grade in physics
at t = 2, samples’ lower and upper bounds for l2 are
[0, 0.11], implying a low 0–1 transition probability at
t = 2. Also note that for girls with low grades the interval
for j becomes substantially wider over time, even if we take
the bootstrap findings into account. This hints at the possi-
bility that the parameters for this category are time-varying.

After pre-processing, the data were submitted to a series
of analyses to select a parsimonious transition model. The
selection was carried out in a step-by-step fashion, begin-
ning with a time-stationary model with time-invariant
parameters for categories with the same gender-grade value
(b1 = b5, b2 = b6, etc.). We subsequently extended the
model to allow for time-varying coefficients by examining
the parameters one-by-one. The resulting nonstationary
model was then progressively simplified by fixing parame-
ters to zero or constraining them to be equal. The nested
model with fewer parameters was accepted if the increase
in deviance (i.e., �2D‘‘) was not statistically significant at
the 0.10 level. The results of this modeling process are
presented in Table 3.

Table 3. Model determination by forward selection and backward elimination

p1 lt jt

�‘‘ # d1 d2 b1 b2 b3 b4 b�1 b�2 b�3 b�4

Model b5 b6 b7 b8 b�5 b�6 b�7 b�8

1 Time stationary 963.64 10 0.63 �1.07 �1.36 �3.41 �0.37 �2.77 �0.37 �0.40 1.63 2.29
model �1.36 �3.41 �0.37 �2.77 �0.37 �0.40 1.63 2.29

2 b1 5 b5 963.63 11 0.63 �1.07 �1.26 �3.41 �0.38 �2.77 �0.38 �0.40 1.64 2.29
�1.42 — — — — — — —

3 b2 5 b6 961.86 11 0.63 �1.06 �1.36 �21.36 �0.38 �2.66 �0.37 �0.60 1.63 2.12
— �2.30 — — — — — —

4 b3 5 b7 962.50 11 0.60 �1.05 �1.38 �3.43 0.18 �2.78 �0.34 �0.39 1.47 2.38
— — �0.68 — — — — —

5 b4 5 b8 963.36 11 0.63 �1.09 �1.35 �3.58 �0.36 �2.20 �0.37 �0.29 1.62 2.16
— — — �3.69 — — — —

6 b�1 6¼ b�5 963.64 11 0.63 �1.07 �1.36 �3.41 �0.37 �2.77 �0.39 �0.40 1.63 2.29
— — — — �0.35 — — —

7 b�2 6¼ b�6 961.87 11 0.63 �1.05 �1.36 �3.42 �0.38 �2.50 �0.37 �1.10 1.64 1.87
— — — — — 0.61 — —

8 b�3 6¼ b�7 963.05 11 0.60 �1.05 �1.35 �3.43 �0.40 �2.82 �0.37 �0.39 2.07 2.37
— — — — — — 1.34 —

9 b�4 6¼ b�8 963.39 11 0.62 �1.08 �1.35 �3.42 �0.36 �2.66 �0.37 �0.39 1.62 3.33
— — — — — — — 1.49

10 b2 5 b6 960.31 13 0.60 �1.04 �1.39 �20.06 0.18 �2.58 �0.33 �0.80 1.47 2.02
b3 5 b7, b�2 6¼ b�6 — �2.69 �0.68 — — 0.17 — —

11 b2 = 5b6 960.31 12 0.60 �1.04 �1.39 * 0.18 �2.58 �0.33 �0.80 1.47 2.02
— �2.69 �0.68 — — 0.17 — —

12 b3 = 0 960.34 11 0.60 �1.04 �1.34 * 0 �2.58 �0.35 �0.80 1.60 2.01
— �2.69 �0.78 — — 0.17 — —

13 b�6 ¼ 0 960.37 10 0.60 �1.04 �1.34 * 0 �2.58 �0.35 �0.80 1.60 2.02
— �2.59 �0.78 — — 0 — —

14 b6 = b4 960.37 9 0.60 �1.04 �1.34 * 0 �2.59 �0.35 �0.80 1.60 2.03
— �2.59 �0.78 — — 0 — —

15 b7 = b1 960.52 8 0.60 �1.03 �1.01 * 0 �2.59 �0.51 �0.80 1.67 2.04
— �2.59 �1.01 — — 0 — —

16 b�2 ¼ b�1 960.63 7 0.60 �1.03 �0.93 * 0 �2.65 �0.62 �0.62 1.64 2.12
— �2.65 �0.93 — — 0 — —

17 b�4 ¼ b�3 960.82 6 0.60 �1.04 �0.94 * 0 �2.44 �0.64 �0.64 1.69 1.69
— �2.44 �0.94 — — 0 — —

Note. # is the number of parameters. Long dashes (—) denote parameter values identical to the estimate given immediately above.
Asterisks (*) for b2 denote parameter values five times to the estimate given immediately below. Zeros in italic (0) indicate parameters
fixed to 0 (implying a probability of 0.5).
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The table reports the minus log likelihood values (�‘‘),
the number of parameters (#), the estimated effects on the
marginal probability at t = 1 (d1 and d2), the transition prob-
ability from low to high interest in physics (b1–b8), and the
probability to stay in the high interest state (b�1–b�8). The top
row refers to the time stationarymodel (model 1). The figures
for p1 indicate that boys with high grades at t = 1 are more
likely to show high interest in physics than both boys with
low grades and girls. Girls with low grades at t = 1 are least
likely to be highly interested in learning physics (recall that
the parameter pertaining to this category is 2d2). The results
for lt imply that boys with high grades in physics are most
likely to change from low to high interest. The estimated
logits are the smallest for girls with low grades. The para-
meter estimates with respect to jt reveal that the probability
of 1–1 transition is high for pupils with a high grade in phys-
ics and relatively low for pupils with a low grade. It is also
useful to note that the time-stationary transition model 1,

which yielded ‘‘ = �963.64, is superior to a marginal model
of the data, which has a log likelihood value of �971.88.

Models 2–9 test for nonstationarity of the parameters
one-by-one. The test results show that removing the restric-
tion of time-invariance does not significantly improve the fit
of the model compared to model 1, except for three equality
constraints (models 3, 4, and 7). The assumptions b2 = b6,
b3 = b7, and b�2 ¼ b�6 significantly deteriorate the fit,
although not substantially. These findings imply that both
l and j are constant over time for all groups, except for l
of boys with high grades and l and j of girls with low
grades. The latter comes as no surprise given the lower
and upper bounds for this category.

Models 10–13 further examine the three sets of time-
varying parameters. Model 10 removes the restrictions
simultaneously, with equivalent results. The findings show
that the estimate for b2 has a (arbitrary) large negative value,
implying (near) zero probability. In model 11, b2 is set equal

Table 4. Estimated expected total (top) and conditional (bottom) probabilities

l�2 l�3 j�2 j�3

Model bl gl bh gh bl gl bh gh bl gl bh gh bl gl bh gh

1 0.09 0.02 0.15 0.04 0.10 0.03 0.16 0.04 0.22 0.11 0.52 0.31 0.21 0.08 0.51 0.29
2 0.10 0.02 0.15 0.04 0.09 0.03 0.16 0.04 0.22 0.11 0.52 0.31 0.21 0.08 0.51 0.29
3 0.09 0.00 0.15 0.04 0.10 0.07 0.16 0.04 0.22 0.10 0.52 0.31 0.21 0.07 0.51 0.28
4 0.09 0.02 0.21 0.04 0.09 0.02 0.12 0.04 0.22 0.11 0.50 0.31 0.23 0.08 0.52 0.29
5 0.09 0.02 0.16 0.07 0.10 0.02 0.16 0.02 0.22 0.11 0.52 0.31 0.21 0.09 0.51 0.30
6 0.09 0.02 0.15 0.04 0.10 0.03 0.16 0.04 0.22 0.11 0.52 0.31 0.22 0.08 0.51 0.29
7 0.09 0.02 0.15 0.05 0.10 0.03 0.16 0.05 0.22 0.07 0.52 0.30 0.21 0.12 0.51 0.27
8 0.09 0.02 0.15 0.04 0.09 0.02 0.15 0.04 0.22 0.11 0.55 0.32 0.22 0.08 0.50 0.29
9 0.09 0.02 0.16 0.04 0.10 0.02 0.16 0.04 0.22 0.11 0.52 0.33 0.21 0.09 0.51 0.27
10 0.09 0.00 0.21 0.05 0.09 0.05 0.12 0.05 0.23 0.08 0.50 0.31 0.23 0.10 0.52 0.27
11 0.09 0.00 0.21 0.05 0.09 0.05 0.12 0.05 0.23 0.08 0.50 0.31 0.23 0.10 0.52 0.27
12 0.10 0.00 0.19 0.05 0.09 0.05 0.11 0.05 0.22 0.08 0.51 0.31 0.22 0.10 0.53 0.27
13 0.10 0.00 0.19 0.05 0.09 0.06 0.11 0.05 0.22 0.08 0.51 0.31 0.22 0.09 0.53 0.27
14 0.10 0.00 0.19 0.05 0.09 0.06 0.11 0.05 0.22 0.08 0.51 0.31 0.22 0.09 0.53 0.27
15 0.12 0.00 0.19 0.05 0.12 0.06 0.09 0.05 0.20 0.08 0.52 0.31 0.21 0.09 0.54 0.27
16 0.13 0.00 0.19 0.04 0.13 0.05 0.10 0.05 0.19 0.09 0.52 0.31 0.19 0.09 0.54 0.28
17 0.13 0.00 0.19 0.05 0.13 0.07 0.10 0.06 0.19 0.09 0.52 0.29 0.19 0.09 0.54 0.26

l2 l3 j2 j3
1 0.20 0.03 0.41 0.06 0.20 0.03 0.41 0.06 0.41 0.40 0.84 0.91 0.41 0.40 0.84 0.91
2 0.22 0.03 0.41 0.06 0.19 0.03 0.41 0.06 0.41 0.40 0.84 0.91 0.41 0.40 0.84 0.91
3 0.20 0.00 0.41 0.07 0.20 0.09 0.41 0.07 0.41 0.35 0.84 0.89 0.41 0.35 0.84 0.89
4 0.20 0.03 0.55 0.06 0.20 0.03 0.34 0.06 0.42 0.40 0.81 0.91 0.42 0.40 0.81 0.91
5 0.21 0.03 0.41 0.10 0.21 0.03 0.41 0.02 0.41 0.43 0.83 0.90 0.41 0.43 0.83 0.90
6 0.20 0.03 0.41 0.06 0.20 0.03 0.41 0.06 0.40 0.40 0.84 0.91 0.41 0.40 0.84 0.91
7 0.20 0.03 0.41 0.08 0.20 0.03 0.41 0.08 0.41 0.25 0.84 0.87 0.41 0.65 0.84 0.87
8 0.21 0.03 0.40 0.06 0.21 0.03 0.40 0.06 0.41 0.40 0.89 0.91 0.41 0.40 0.79 0.91
9 0.21 0.03 0.41 0.07 0.21 0.03 0.41 0.07 0.41 0.40 0.84 0.97 0.41 0.40 0.84 0.82
10 0.20 0.00 0.54 0.07 0.20 0.06 0.34 0.07 0.42 0.31 0.81 0.88 0.42 0.54 0.81 0.88
11 0.20 0.00 0.54 0.07 0.20 0.06 0.34 0.07 0.42 0.31 0.81 0.88 0.42 0.54 0.81 0.88
12 0.21 0.00 0.50 0.07 0.21 0.06 0.31 0.07 0.41 0.31 0.83 0.88 0.41 0.54 0.83 0.88
13 0.21 0.00 0.50 0.07 0.21 0.07 0.31 0.07 0.41 0.31 0.83 0.88 0.41 0.50 0.83 0.88
14 0.21 0.00 0.50 0.07 0.21 0.07 0.31 0.07 0.41 0.31 0.83 0.88 0.41 0.50 0.83 0.88
15 0.27 0.00 0.50 0.07 0.27 0.07 0.27 0.07 0.38 0.31 0.84 0.88 0.38 0.50 0.84 0.88
16 0.28 0.00 0.50 0.07 0.28 0.07 0.28 0.07 0.35 0.35 0.84 0.89 0.35 0.50 0.84 0.89
17 0.28 0.00 0.50 0.08 0.28 0.08 0.28 0.08 0.35 0.35 0.84 0.84 0.35 0.50 0.84 0.84

Note. bl = boys with low grades, gl = girls with low grades, bh = boys with high grades, gh = girls with high grades;
l�t ¼ n�1t

P
ð1� pt�1Þlt and j�t ¼ n�1t

P
pt�1 jt .
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to 5b6, without any loss in log likelihood. Both model 12
and model 13 constrain one element of the pair of time-
varying parameters to zero. The findings reveal that the
restricted models fit the data equally well.

Models 14–17 additionally reduce the number of esti-
mated parameters using equality constraints. For example,
model 14 tests the assumption that l3 for girls with a low
grade equals l2 = l3 for girls with a high grade (i.e.,
b6 = b4). Looking at the log likelihood changes that result
from removing parameters from themodel, it can be seen that
none of the increments in ‘‘ is significant. The finally selected
model (model 17) has only six parameters to be estimated.
Elimination of any of the remaining model parameters would
result in a significant increase in deviance, except for one
equality constraint, namely b�1 ¼ �b1. This constraint was
not imposed because it concerns a cross-restriction between
elements of two different parameter sets (i.e., lt and jt). Also,
the presence of this restriction has hardly any effect on the
results reported here. The inclusion of two random residual
effect parameters, c0 and c1, to account for lack of fit due to
extra binomial variation does not significantly change the
results either. The difference in deviance between the
(selected) model that includes and the model that excludes
the ancillary variance parameters is �2D‘‘ = 0.441.
Although traditional likelihood-ratio testing should not be
used to test the significance of the randomeffects – as it cannot
be assumed to have a v2 distribution – the improvement in fit
is not worth the increase in model complexity.

Also note, from Table 3, that adding parameters to the
model (models 1–9) has almost no effect and eliminating
them (models 10–17) has only small effect on the other
parameter estimates. This can also be seen by examining
the estimated expected probabilities given in Table 4.

Data in Table 4 monitors the total and conditional esti-
mated expected probabilities of all models. The total proba-
bilities are given by l�t ¼ n�1t

P
ð1� pt�1Þ lt and

j�t ¼ n�1t

P
pt�1 jt. Simplifying the model produces no sub-

stantial changes in the predicted transition probabilities,
either in the total or in the conditional probabilities, except
perhaps for j2 and j3 for girls with a low grade in physics.

Bootstrap and MCMC Simulation

TheMLparameter estimates of the selectedmodel (model 17)
and the standard deviations are presented in the second
column of Table 5. To empirically approximate the probabil-
ity distribution of the parameter estimates 5,000 parametric
bootstrap samples were obtained from the data using the
selected parametric model. These replicate data sets were
subsequently analyzed, using ML. The third column of
Table 5 provides the mean and the sample standard deviation
of the parametric bootstrap estimates for each parameter.

As shown in Table 5, the mean values are close to the
Markov parameter estimates for the RCS data and the sam-
ple standard deviations are similar to the Fisher information-
based standard errors. The RCS Markov estimates appear to
be only slightly biased, with the largest absolute value being
0.055 for b4. A frequently applied rule of thumb is that a
good estimator should be biased by less than 25% of its

standard deviation (Efron & Tibshirani, 1993). The ratios
of estimated bias to standard deviation are all (much) less
than 0.25. The fourth column of the table presents the non-
parametric bootstrap findings obtained by drawing (with
replacement) 5,000 samples from the data. One can note
from this table that the means and standard deviations of
the parameter estimates are roughly similar to both the para-
metric bootstrap and the RCS Markov results. The MCMC
findings were obtained using the Metropolis sampler,
wherein the regression parameters were assumed to follow
a multivariate normal distribution with diffuse or noninfor-
mative priors. In the Markov chain sampling, we ran the
algorithm 1,000,000 times excluding an initial burn-in of
4,000 samples. Several diagnostics were used to assess con-
vergence to the posterior, using a thinning interval of 10
(Geweke Z-test, Heidelberg and Welsh stationarity and inter-
val halfwidth tests, Raftery and Lewis convergence diagnos-
tic). None of these diagnostics indicates convergence failure
for any of the sampled parameters. The posterior estimates
are shown in Table 5. Inspection of the mean of the 106 sam-
ples reveals that there are no gross discrepancies in magni-
tude compared to the ML estimates for the original sample.
The MCMC standard deviations and the RCS Markov
standard errors are also similar to one another. Thus, both
Bayesian and frequentist methods for obtaining estimates
seem to indicate that the ML point estimates of the para-
meters are rather accurate in this application and that the
inverse of the Fisher information matrix may be used as a
good estimate of the covariance matrix of the parameter
estimates.

Table 5. ML and MCMC estimates (n of obs = 1,623)

RCS
Markov

Parametric
bootstrap

Nonparametric
bootstrap MCMC

Cross-section
subsamples

p1
d1 0.599 0.604 0.603 0.593 0.604

(0.127) (0.128) (0.128) (0.127) (0.105)
d2 �1.036 �1.042 �1.043 �1.029 �1.047

(0.126) (0.127) (0.128) (0.127) (0.102)
lt

b1 �0.941 �0.973 �0.970 �0.991 �0.973
(0.368) (0.391) (0.399) (0.393) (0.316)

b4 �2.437 �2.492 �2.498 �2.539 �2.523
(0.355) (0.397) (0.419) (0.564) (0.345)

jt
b�1 �0.636 �0.655 �0.658 �0.619 �0.693

(0.319) (0.330) (0.316) (0.318) (0.264)
b�3 1.689 1.702 1.704 1.725 1.711

(0.242) (0.245) (0.248) (0.252) (0.204)

Note. The standard error (RCS Markov) and standard deviation
(others) are reported in parentheses. The parametric and non-
parametric bootstrap findings are based on 5,000 samples from
the data and the MCMC findings on 106 Metropolis sampler
posterior estimates. The mean of the parameter estimates is
reported as the point estimate. The rightmost column summarizes
the results of the ML analyses of 5,000 ‘‘cross-sectional’’ sub-
samples from the data. The figure in parentheses in this column is
the standard deviation divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 623=540

p
.
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Independent Cross-Sectional Subsamples

It is also informative to report how the parameter estimates
compare to the estimates we get from the independent
samples. As indicated, the original data were treated here
as a sequence of independent cross-sections. Nevertheless,
to eliminate the possibility that the findings are artificially
induced by the panel nature of the data, we randomly drew
(without replacement) samples of 540 different pupils from
the 1,623 panel observations, where each sample consists of
three sets – one for each time period – of 180 pupils, and
where each pupil is selected only once per sample. The total
number of possible ‘‘cross-sectional’’ drawings in this appli-
cation is on the order of 10255. Since this is beyond any cur-
rent ability to analyze, we randomly drew 5,000 samples
and analyzed each data set separately using ML. The right-
most column of Table 5 reports the average value of the
parameters across the samples along with the standard
deviations divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 623=540

p
. We note that the mean

values of the parameters are close to the ML estimates
obtained for the original data and that the standard devia-
tions agree well with the estimated standard errors. The
results thus demonstrate that the RCS Markov findings are
not due to the panel character of the data.

Expected Probabilities and Observed
Proportions

To understand how well the model recovers the transitions in
the panel, we compare the estimated expected transition
probabilities with the observed transitions in the panel. The

top part of Table 6 provides the total probabilities and the
observed proportions for each gender-physics grade category.

As can be seen, the model recovers the marginal proba-
bilities at t = 1 and the total transition probabilities at both
t = 2 and t = 3 quite precisely. The bottom part of Table 6
reports the estimated expected conditional probabilities
and the observations in the panel for each of the four cate-
gories of gender and current physics grade. The results indi-
cate that the model reproduces most of the prominent
features in the data well, despite the small-sized categories.
For many categories, the conditional probabilities predicted
by the model match with the observations in the panel. An
exception is the probability to stay in the high interest state
for some categories. The model underestimates j2 = j3 for
boys with low grades in physics and it overestimates
j2 = j3 for girls with high grades. However, the findings
overall illustrate that in this application at least the model
is well able to recover the panel data observations.

Discussion

This paper is not intended to suggest that a series of one-shot
surveys is as informative about longitudinal changes as
repeated measurements. Quite obviously, it is not. When
we are given the opportunity to choose, individual panel
observations are surely to be preferred to repeated cross-
sections for analyzing 0–1 transitions over time. The model
elaborated here is useful for the situation where we find
ourselves unable to obtain serial yit�1 observations, and
cross-sectional drawings are the only available data source.

Table 6. Estimated expected total (top) and conditional (bottom) probabilities and observed panel proportions

bl gl bh gh tot bl gl bh gh tot

p1
exp 0.39 0.19 0.65 0.39 0.46
obs 0.38 0.19 0.64 0.39 0.46
n 50 92 224 175 541

l�2 l�3
exp 0.13 0.00 0.19 0.05 0.10 0.13 0.07 0.10 0.06 0.08
obs 0.11 0.01 0.18 0.14 0.13 0.04 0.06 0.10 0.10 0.09
n 65 91 209 176 541 74 100 200 167 541

j�2 j�3
exp 0.19 0.09 0.52 0.29 0.34 0.19 0.09 0.54 0.26 0.33
obs 0.23 0.07 0.52 0.22 0.31 0.27 0.09 0.55 0.22 0.32
n 65 91 209 176 541 74 100 200 167 541

l2 l3

exp 0.28 0.00 0.50 0.08 0.24 0.28 0.08 0.28 0.08 0.18
obs 0.19 0.01 0.51 0.23 0.24 0.07 0.07 0.32 0.16 0.15
n 37 72 74 109 292 42 87 63 109 301

j2 j3

exp 0.35 0.35 0.84 0.84 0.71 0.35 0.50 0.84 0.84 0.73
obs 0.54 0.32 0.81 0.58 0.68 0.63 0.69 0.80 0.62 0.73
n 28 19 135 67 249 32 13 137 58 240

Note. bl = boys with low grades, gl = girls with low grades, bh = boys with high grades, gh = girls with high grades, tot = total;
exp denotes the estimated expected probabilities, obs the observed proportions in the panel data, n is the number of cases;
l�t ¼ n�1t

P
ð1� pt�1Þlt and j�t ¼ n�1t

P
pt�1 jt .
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Although the results of this paper seem promising, they
are not conclusive. Obviously, one can draw no firm conclu-
sions about the general properties of models from one par-
ticular application. The small-sized data file to which we
have applied the model is not representative of the popula-
tion of data sets to which it might be applied (for additional
applications, see Moffitt, 1993; Pelzer & Eisinga, 2002;
Pelzer et al., 2001, 2002, 2003). A valuable alternative to
the approach presented here would be to carry out an exten-
sive Monte Carlo simulation study in which the ML estima-
tors are compared to the known (true) values under a variety
of conditions. Another avenue of further inquiry is
maximum entropy estimation (Golan et al., 1996). When
using ML some simplifications or approximations are
required to make the analysis tractable. This is accomplished
by using a pre-specified likelihood function that is based on
assumptions about the underlying data-generating process.
Also, a parametric structure is imposed here through the
choice of a logistic function for l and j, although the under-
lying distribution is rarely, if ever, known in practice.
Further, in some applications the model may have to be sim-
plified to secure parameter identification by reducing the
number of unknowns. This may affect the usefulness of
the model and lead to unfavorable estimation and inference
consequences. The principle of maximum entropy offers an
alternative method of statistical inference for which such a
priori assumptions are not required. It aims at assigning val-
ues to probability distributions using minimal distribution
assumptions. In maximum entropy estimation, the role of
the data is restricted only to the provision of constraints
on the set of allowed probability distributions.

Finally, there has been a tremendous accumulation of
data obtained from the repeated surveys over the past several
decades, but we rarely find models specially designed to
analyze these data. We believe that the potential for analysis
inherent in the clustering of repeated cross-section with
independent samples has not been fully exploited. It is
hoped that the present contribution will serve to partly
rectify this situation.
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