The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/72749

Please be advised that this information was generated on 2017-12-15 and may be subject to change.
Non-quasiparticle states in Co₂MnSi evidenced through magnetic tunnel junction spectroscopy measurements

L. Chioncel,1,2 Y. Sakuraba,3 E. Arrigoni,1 M.I. Katsnelson,4 M. Oogane,3 Y. Ando,3 T. Miyazaki,3 E. Burzo,5 and A.I. Lichtenstein6

1Institute of Theoretical Physics, Graz University of Technology, A-8010 Graz, Austria
2Faculty of Science, University of Oradea, RO-410087 Oradea, Romania
3Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
4Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
5Babeș-Bolyai University, RO-800084 Cluj-Napoca, Romania
6Institute of Theoretical Physics, University of Hamburg, DE-20355 Hamburg, Germany

In this Letter, we show the crucial importance of non-quasiparticle states for the finite-temperature depolarisation in Co₂MnSi. This is achieved by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements at different temperatures in a Co₂MnSi-based MTJ. Our combined experimental and theoretical analysis confirms...
the presence of NQP states and emphasizes their contribution to the finite temperature polarization in this material.

Band-structure calculations were performed for the half-metallic Co$_2$MnSi alloy for the experimental lattice constant $a = 5.65$ Å. Calculations were performed using a recently developed LSDA+DMFT scheme [19]. Correlation effects in the valence Co and Mn d orbitals are included via an on-site electron-electron interaction in the form $\frac{1}{2} \sum_{i,m,\sigma} U_{mm'm''m'''} c_{i,m\sigma} c_{i,m'\sigma} c_{i,m''\sigma} c_{i,m'''\sigma}$. The interaction is treated in the framework of dynamical mean field theory (DMFT) [15], with a spin-polarized T-matrix Fluctuation Exchange (SPTF) type of impurities solver [21]. Here, $c_{i,m\sigma}/c_{i,m\sigma}$ destroys/creates an electron with spin σ on orbital m on site i. The Coulomb matrix elements $U_{mm'm''m'''}$ are expressed in the usual way [21] in terms of three Kanamori parameters U, U' and J. Since the static part of the correlation effects is already included in the local spin-density approximation (LSDA), “double counted” terms must be subtracted. To obtain this, we replace $\Sigma(E)$ with $\Sigma(E) - \Sigma(0)$ [22] in all equations of the LSDA+DMFT procedure [15]. Physically, this is related to the fact that DMFT only adds dynamical correlations to the LSDA result. For this reason, it is believed that this kind of double-counting subtraction “$\Sigma(0)$” is more appropriate for a DMFT treatment of metals than the alternative static “Hartree-Fock” (HF) subtraction [22].

![Co$_2$MnSi](image)

FIG. 1: (Color online) Spin resolved density of states of the Co$_2$MnSi full-Heusler alloy obtained by LSDA and LSDA+DMFT. The LSDA+DMFT results are obtained for $U=3eV$ and $J=0.9eV$ (in both Co and Mn), and different temperatures.

Fig. 1 shows the results of DOS calculations using the LSDA and LSDA+DMFT schemes at different temperatures. Realistic values of U for all 3d metals are predicted to vary between 2 and 6-7 eV [13]. We have checked that for values of the U parameters between 2 and 4eV the spectral weight of NQP states is not significantly changed in agreement with recent calculations [11]. Here, we present results for $U = 3eV$ and $J = 0.9eV$. In order to resolve the LSDA minority-spin gap, a broadening of around 15K and a k-point mesh of 2304 points was used in the reduced Brillouin zone. The LSDA density of states, i. e. the $T = 0K$ result, confirms the existence of a minority-spin gap at E_F, in agreement with previous results [6]. In contrast, finite-temperature results obtained within LSDA+DMFT display a broadening of the NQP states across the Fermi energy (Fig. 1) in the minority spin channel, and a spectral weight redistribution for majority spins.

Static non-collinear spin configurations at finite temperatures, produce a homogeneous mixture of spin-up and spin-down density of states, in such a way that the proportionality relation between polarization and magnetization is roughly maintained as a function of temperature $\delta P(T) \propto \delta < S^z >$ [24]. Previously, this proportionality relation was reproduced in magnetic semiconductors [25], in qualitative agreement with experimental data [26]. In contrast, for some HMF materials, it was shown by model considerations [18] as well as direct numerical calculations [10, 11, 14], that the polarization displays a completely different temperature behavior in comparison with the magnetization.

In order to confirm experimentally the existence of NQP states in Co$_2$MnSi and to investigate their temperature dependence, we carried out tunneling spectroscopy measurements for Co$_2$MnSi-based MTJ. Specifically, the measurements were first carried out for Co$_2$MnSi/AlO/Co$_2$MnSi-MTJ, for which a TMR ratio of 570% at 2K was achieved in previous studies [5]. A positive bias voltage was applied to the upper Co$_2$MnSi electrode, in order to control the tunneling of electrons from the lower electrode to the upper one.

Figs. 2 (a) and (b) show the bias-voltage dependence of the differential tunneling conductance (dI/dV) in the anti-parallel (AP) configuration, and the normalized TMR ratio, respectively. The measurements were conducted at temperatures between 2K and 300K. At $T = 2K$, only a very small tunneling conductance is observed below the lowest bias voltage ($V \approx 1mV$). This is due to the half-metallicity of Co$_2$MnSi. However, the tunneling conductance rapidly increases in the low-bias region ($10mV < |V| < 150mV$), producing a rapid decrease of the TMR ratio as can be seen in Fig 2(b). With increasing temperature, the tunneling conductance around the zero-bias region gradually increases and the steep structure at low bias is gradually lost.

These results are consistent with the temperature dependence of the TMR ratios and the saturation magnetization for Co$_2$MnSi plotted in Fig. 3. Here, the theoretical TMR ratio was obtained from the LDA+DMFT polarisation by using Julliere’s formula and assuming a
temperature-independent value of 0.5 for the spin polarisation of FeCo, as obtained independently from other measurements \cite{27}. Despite its approximate character, this formula reproduces correctly the temperature dependence of the spin-polarization as was previously seen in detailed theoretical investigation of the tunneling current in the Half-metallic ferromagnets \cite{17, 18}. Moreover, this is the standard formula used to extract the spin-polarization from TMR data \cite{28}. The saturation magnetization (M_S) was measured using a SQUID magnetometer for a MgO-sub./Cr/Co$_2$MnSi film having the same bottom electrode structure as the MTJs. As one can see, M_S values change little in the temperature range $2K \leq T \leq 300K$ (since $T_c \approx 985K$ this corresponds to $0.002 \leq T/T_c \leq 0.3$). In contrast, the spin polarization (and thus the TMR ratio) decrease drastically in the same temperature range. As can be seen from Fig. 3, the experimental temperature dependence of the TMR ratio and of the magnetisation is in rather good agreement with our LSDA+DMFT calculation. Moreover, for $T \lesssim 200K$, the experimental polarisation curve (obtained from the TMR data by inversion of Julliere’s formula) is quite well reproduced by the analytic expression $1 - P(T)/P(0) \propto T \ln T/T^*$ predicted in Ref. [18]. Here, T^* represents a crossover temperature $\approx (\Delta/W)^2T_c$, below which the $\delta P(T)/P(0) \propto T^* \ln T/T^*$ behavior is expected. \(\Delta = 0.4eV\) is the minority spin gap, $W \approx 8eV$ the bandwidth and $T_c \approx 985K$. The value of T^* estimated by this expression ($T^* \approx 2.5K$) is in good agreement with the value $T^* = 2.7K$ obtained from a fit to the experimental data. These facts, combined with the strong temperature dependence of the differential tunneling conductance shown in Fig. 2, clearly support the existence of minority-spin NQP-states above the Fermi level.

The behavior of dI/dV as a function of bias voltage V and temperature can be understood by using the schematic picture shown in Fig. 4. Here, the crucial role of NQP states is apparent. In the case of an ideal half-metal at $T \approx 0K$, no tunneling process can occur in the AP state, as there are no electronic states which can contribute to the tunneling. Upon applying a finite bias voltage ($e|\Delta V| > \hbar \omega_m$) to the tunnel junctions, a conducting channel for the minority spins opens due to the nonvanishing NQP density of states (Fig. 4(a)). Here, $\hbar \omega_m$ is the anisotropy gap in the magnon spectrum, below which the density of non-quasiparticle states vanishes \cite{16}. At finite temperatures ($k_B T > \hbar \omega_m$), NQP states are expected to broaden and to extend across E_F as shown in Fig. 4. Therefore, a finite tunneling conductance occurs even at vanishing bias voltage (Fig. 4(b)), producing a rapid decrease of spin polarization.

The NQP picture suggests that in order to improve the performances of Co$_2$MnSi-based MTJ, a special attention should be paid to magnon excitations. This suggests a strategy to improve the performances of Co$_2$MnSi-based MTJ. The idea is to modify the magnon excitations, while at the same time preserving the electronic properties, i.e. maintaining the gap in the minority chan-
FIG. 4: (Color online) Schematic representation of an electron tunneling process at $\Delta V \approx 0$ and at finite bias voltage in a Co$_2$MnSi/Al-O/Co$_2$MnSi magnetic tunnel junction. At $T \approx 0 \text{K}$ (a), NQP states vanish at E_F, while for $T > 0$ (b) (see text) NQP states extend across E_F and an additional tunneling channel opens.

nel. One possibility would be to increase the magnetic anisotropy and thus the magnon gap $[29]$. This can be achieved by a proper doping with rare-earth atoms in the half-metallic material $[29]$. Experimental work is in progress.

Finally, let us comment on alternative depolarisation mechanisms. Dowben et. al. $[24]$ showed that finite-temperature non-collinearity produces a spin mixing which ultimately leads to a nonvanishing but symmetric DOS around the Fermi level in the gap of the insulating spin channel. In contrast, as discussed above, the low-energy DOS within the minority gap induced by many-body effects (NQP states) appears only above the Fermi level, and is thus strongly asymmetric. In addition, its low-energy part is strongly temperature dependent, and much larger in magnitude than the one produced by non-collinear or spin-orbit effects. Therefore, we expect depolarisation due to NQP states to be dominant in comparison with other effects, such as the static non-collinearity $[24]$ or spin-orbit coupling.

In summary, we carried out a combined theoretical and experimental study of depolarisation effects in half-metallic Co$_2$MnSi. Our tunneling conductance measurements in Co$_2$MnSi-based magnetic tunnel junctions showed for the first time the existence of NQP states above the Fermi level in the minority spin channel. The behavior of the finite-temperature conductance demonstrates the important role played by NQP states in inducing depolarization, an effect which should be carefully considered in designing Co$_2$MnSi-based MTJ devices. The drastic reduction of the TMR ratio from low to room temperatures is a clear evidence of the detrimental effect played by the NQP states on the electron spin polarization. A possible strategy to improve the performances of the Co$_2$MnSi-based MTJ by increasing the magnon anisotropy was also discussed.

This study was supported by the IT Program of the RR2002, the CREST program of the JST and the NEDO. L.C. and E.A. acknowledge financial support by the FWF P18505-N16, M.I.K. acknowledges financial support from FOM (The Netherlands). A.I.L. acknowledge financial support from the DFG (Grants No. SFB 668-A3). Useful discussion with Prof. R.A. de Groot are appreciated.