Search for long-lived particles decaying into electron or photon pairs with the D0 detector

In this Letter we report on a search for long-lived particles that decay into final states with two electrons or photons. Such long-lived particles arise in a variety of theoretical models, like hidden valleys and supersymmetry with gauge-mediated breaking. By precisely reconstructing the direction of the electromagnetic shower we are able to probe much longer lifetimes than previously explored. We see no evidence of the existence of such long-lived particles and interpret this search as a quasi model-independent limit on their production cross section, as well as a limit on a long-lived fourth generation quark.
The standard model is surprisingly successful in describing phenomena observed at accelerators. One would expect, given its numerous theoretical shortcomings and the proliferation of searches for deviations from it, that a more general underlying theory would have been already revealed. It is therefore a possibility that the discovery of new physics eludes us because the new physics looks different from popular standard model extensions like minimal supersymmetry (SUSY).

In this Letter we search for pairs of electromagnetic (EM) showers from electrons or photons that originate from the same point in space, away from the pp interaction point. Such events can be a signature of a long-lived b' quark decaying into a Z boson and a jet $[1]$. In models with gauge-mediated SUSY breaking $[2]$ a long-lived neutralino with large higgsino component can decay into a Z boson and a gravitino. In the hidden valley models $[3]$, ν-mesons can decay into electron pairs. In all of the above examples, a significant imbalance in transverse energy can be present due to Z boson or ν hadron decays into neutrinos or lightest supersymmetric particles (LSP) that remain undetected.

A search for such long-lived particles at hadron colliders was performed by CDF $[4]$ based on the reconstruction of lepton tracks from a secondary vertex. The sensitivity to large lifetimes in that search is limited by the difficulties in reconstructing tracks that originate far from the interaction point. In our analysis, we use the fine segmentation of the D0 detector to reconstruct the directions of the EM showers and use that to reconstruct the common vertex. This method allows us to probe dramatically longer decay lengths, albeit at the price of lower sensitivity to short lifetimes. Since we do not require the electron track to be reconstructed, our search results are also applicable for long-lived particle decaying into photons.

The data in this analysis were recorded with the D0 detector $[5]$, which comprises an inner tracker, liquid-argon/uranium calorimeters, and a muon spectrometer. The inner tracker is located in a 2 T superconducting solenoidal magnet and consists of silicon microstrip and scintillating-fiber trackers. It provides measurements of charged particle tracks up to pseudorapidity $[6]$ of $|\eta| \approx 3.0$. The calorimeter system consists of a central section (CC) covering $|\eta| < 1.2$ and two endcap calorimeters extending the coverage to $|\eta| \approx 4$, all housed in separate cryostats $[7]$. The electromagnetic section of the calorimeter has four longitudinal layers and transverse segmentation of 0.1×0.1 in $\eta - \phi$ space (where ϕ is the azimuthal angle), except in the third layer, where it is 0.05×0.05. The central preshower (CPS) system is located between the solenoid and the CC calorimeter cryostat, covers $|\eta| \leq 1.2$, and provides measurement of EM shower position with a precision of about 1 mm. The data for this study were collected between 2002 and summer 2006 using single EM triggers. The integrated luminosity $[8]$ of the sample is $1100 \pm 70 \text{ pb}^{-1}$.

We select events with two EM clusters reconstructed in the central calorimeter with transverse momentum $p_T > 20$ GeV and $|\eta| < 1.1$, with the shower shape consistent with that expected of a photon. EM clusters are required to be isolated in the calorimeter and tracker $[9]$. Both EM clusters are required to have a matched CPS cluster. Only CPS clusters within a fixed $\eta - \phi$ window are considered for matching, limiting the electron or photon distance of closest approach (DCA) to the beam line at approximately 16 cm. Jets are reconstructed using the iterative midpoint cone algorithm $[10]$ with a cone size of 0.5. The missing transverse energy is determined from the energy deposited in the calorimeter for $|\eta| < 4$ and is corrected for the EM and jet energy scales.

The D0 EM pointing algorithm fits five shower position measurements (one in the CPS and four in the four EM layers of the central calorimeter) to a straight line which is assumed to be the EM object direction. The electron trajectory for energies above 20 GeV, which are of interest to this analysis, is very close to a straight line, which is defined by the energy-weighted EM cluster position $(x^{\text{CAL}}, y^{\text{CAL}})$ and the DCA. The DCA reconstruction accuracy is about 2 cm. The common vertex position in the xy plane for two EM objects is the intersection of the two lines associated to them and is given by a solution of the system of two linear equations (see Fig. for definitions of the trajectory and quantities below):

$$
\begin{pmatrix}
-\Delta y_1 & \Delta x_1 \\
-\Delta y_2 & \Delta x_2
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= \begin{pmatrix}
y_1^{\text{CAL}} & \Delta x_1 - x_1^{\text{CAL}} & \Delta y_1 \\
y_2^{\text{CAL}} & \Delta x_2 - x_2^{\text{CAL}} & \Delta y_2
\end{pmatrix}.
$$

The determinant of this system, D, is proportional to the sine of the opening angle θ_{12} between the EM objects. The vertex transverse position resolution is inversely proportional to the determinant. Therefore, in the following we consider events with $|D| > 4000 \text{ cm}^2$, which roughly corresponds to $\sin \theta_{12} > 0.5$, and use the variable $R_S = \pm \sqrt{x^2 + y^2 \cdot (D/1000 \text{ cm}^2)}$, which, while related to the reconstructed vertex radius, also takes into account its uncertainty. The sign of R_S is given by the sign of the scalar product of the p_T of the pair of EM objects with the vector pointing from the origin to the vertex location of the two EM particles. To reduce the background we further require that at least one of the two EM objects has $\text{DCA} > 2$ cm.

For vertices that originate from real particle decays, R_S is positive, while its distribution for prompt electron or photon pairs is symmetrical around zero. The latter assumption was extensively checked with Monte Carlo (MC) simulation, a $Z \rightarrow e^+e^-$ data sample (both elec-
trons in the $Z \rightarrow e^+e^-$ sample were required to have reconstructed tracks originating from the primary vertex, and a control sample of multi-jet events which has been selected exactly as the signal events except with an inverted tracker isolation requirement. Therefore, we estimate the background for positive values of R_S by mirroring the negative part of the distribution.

The invariant mass M of the two EM objects is corrected for the reconstructed vertex position, and the data are divided into three bins: $20 < M < 40$, $40 < M < 75$, and $M > 75$ GeV. The last bin is used for searches for the fourth generation b'. The corresponding observed R_S distribution is shown in Fig. 2. All mass bins are used for a quasi model-independent search for long-lived particles. We also examine events with $E_T > 30$ GeV and $M > 20$ GeV. No excess of events with positive R_S values is present in data (see Table I), so we proceed to set limits on new physics.

We use PYTHIA 6.319 to generate events $p\bar{p} \rightarrow b'b' \rightarrow ZbZb \rightarrow e^+e^- + X$. PYTHIA calculates production cross sections varying from 79.4 to 3.6 pb as the b' mass changes from 100 to 190 GeV. The events are then processed through the GEANT-based MC simulation, electronics and trigger simulation, and are reconstructed with the same reconstruction program as collision data. The expected R_S distribution for a typical signal point is shown in Fig. 2. We use the efficiencies and acceptances obtained using this signal MC for the model-independent search as well. The significant jet activity in these events gives a conservative estimate of the efficiency for SUSY scenarios and should be adequate for hidden valley models. In order to study different masses of hypothetical resonances in addition to the samples above we also generated samples of $b' \rightarrow \nu b$ for ν masses of 30 and 50 GeV. We find that the efficiency and acceptance for the MC events have no significant dependence on the masses of the b' and ν. We set the b' mass to 150 GeV and vary its lifetime $c\tau$ between 2 and 7000 mm.

In Fig. 3 we display the limits on the production cross section of a long-lived particle times its branching fraction to decay into a pair of electrons. Limits were obtained from the R_S distribution using the modified frequentist approach as implemented in . This method is based on a log-likelihood ratio (LLR) test statistic, and involves the calculation of confidence levels for the signal plus background and background-only (null) hypotheses (denoted by CL_{s+b} and CL_b, respectively) by integrating the LLR distributions resulting from simulated pseudo-experiments. The upper limit on the cross section at the 95% C.L. is defined as the cross section value for which the ratio $CL_s = CL_{s+b}/CL_b = 0.05$. The systematic uncertainties were taken to be flat as a function of R_S. They include the uncertainty in electron or photon identification and triggering (15%), uncertainty on Monte Carlo simulation (5%), and uncertainty on luminosity (6.1%). At the $c\tau$ value of 100 mm we exclude at the 95% C.L. the production cross section times branching fraction of long-lived particles that decay into a pair of electrons or photons above 1.9 pb, 10.2 pb, 7.1 pb, and 4.4 pb for $E_T > 30$ GeV and $M > 20$ GeV, $20 < M < 40$ GeV, $40 < M < 75$ GeV, and $M > 75$ GeV, respectively (see Fig. 3).

Intersecting the cross section upper limits shown in Fig. 3d with the theoretical cross section of the production of the fourth generation b' quark we compute limits on its lifetime as a function of its mass assuming it decays only into Zb. The limits are presented in Fig. 4 together with the exclusion region from the track-based CDF search. The two search methods are complementary to each other.

To summarize, we have performed a search for long-lived particles decaying into electron or photon pairs using a new method that allowed us to explore previously unreachable portions of the parameter space. We find no evidence for such particles and present the results as model-independent limits on their production cross section and interpret them in the framework of a model with a long-lived b' quark.

We would like to thank Matt Strassler for many fruitful

TABLE I: Observed number of events ($R_S > 0$ cm) and estimated background ($R_S < 0$ cm) for different selections.

<table>
<thead>
<tr>
<th>Selection</th>
<th>$R_S > 0$</th>
<th>$R_S < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20 < M < 40$ GeV</td>
<td>38</td>
<td>47</td>
</tr>
<tr>
<td>$40 < M < 75$ GeV</td>
<td>191</td>
<td>190</td>
</tr>
<tr>
<td>$M > 75$ GeV</td>
<td>49</td>
<td>45</td>
</tr>
<tr>
<td>$M > 20$ GeV, $E_T > 30$ GeV</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
FIG. 2: Observed R_S distribution for di-EM pairs with mass greater than 75 GeV (black points), expected distribution from prompt sources with its uncertainty (shaded rectangles) and the expected distribution in presence of b' quark with mass of 130 GeV and lifetime $c\tau = 300$ mm (solid line).

FIG. 3: Expected (white triangles) and observed (black squares) 95% C.L. upper limits on the cross section of a long-lived particle times the branching fraction of its decay to either a pair of electrons or photons for (a) $E_T > 30$ GeV and $M > 20$ GeV, (b) $20 < M < 40$ GeV, (c) $40 < M < 75$ GeV, and (d) $M > 75$ GeV. All observed upper limits are within one standard deviation (shaded band) from the expected limits.

FIG. 4: 95% C.L. exclusion region of b' lifetime ($c\tau$) vs. mass for CDF Run I [4] and current D0 result.

discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); COLCIENCIAS (Colombia); CONACYT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
[‡] Deceased.

the D0 detector utilizes a right-handed coordinate system with the z-axis pointing in the direction of the proton beam and the y-axis pointing upwards. The azimuthal angle ϕ is defined in the xy plane measured from the x-axis. The pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where $\theta = \arctan(\sqrt{x^2 + y^2}/z)$.

for a description of the standard photon identification at D0 see, for example, V.M. Abazov et al. (D0 collaboration) Phys. Lett. B 659, 856 (2008).