The following full text is an author’s version which may differ from the publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/72457

Please be advised that this information was generated on 2017-12-15 and may be subject to change.
Search for $h_f \rightarrow \gamma\gamma$ with the D0 detector at $\sqrt{s} = 1.96$ TeV

(The DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo André, Brazil
5Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6University of Alberta, Edmonton, Alberta, Canada,
7University of Science and Technology of China, Hefei, People’s Republic of China
8Universidad de los Andes, Bogotá, Colombia
9Center for Particle Physics, Charles University, Prague, Czech Republic
10Czech Technical University, Prague, Czech Republic
11Center for Particle Physics, Institute of Physics, Academia of Sciences of the Czech Republic, Prague, Czech Republic
12Universidad San Francisco de Quito, Quito, Ecuador
13LP, Univ Blaise Pascal, CNRS/IN2P3, Clermont, France
14LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
15CPPM, IN2P3/CNRS, Université de la Méditerranée, Marseille, France
16LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
17LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
18DAPNIA/Service de Physique des Particules, CEA, Saclay, France
19IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
20IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
22Physikalisches Institut, Universität Bonn, Bonn, Germany
23Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24Institut für Physik, Universität Mainz, Mainz, Germany
25Ludwig-Maximilians-Universität München, München, Germany
26Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
27Panjab University, Chandigarh, India
28Delhi University, Delhi, India
We report the results of a search for a narrow resonance decaying into two photons in 1.1 fb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 2002-2006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of $m_{hf} > 100$ GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Tevatron and covers a significant region of the parameter space $B(h_f \to \gamma\gamma)$ vs. m_{hf} which was not accessible at the CERN LEP Collider.
In the standard model (SM), the Higgs field is responsible for both electroweak symmetry breaking and generating elementary fermion masses. And while the SM describes our world at current experimentally accessible energies, the exact mechanism for electroweak symmetry breaking remains a mystery.

Di-photon decays of the Higgs boson are suppressed at tree level, and in the SM such decays have a very small branching fraction, \(10^{-3} - 10^{-4}\). However, in a more general framework where the parameter content of the theory is richer, such decays can be enhanced. In the situation where the Higgs–fermion couplings are substantially suppressed, the full decay width of the Higgs boson would be shared mostly between the \(WW\), \(ZZ\), and \(\gamma\gamma\) decay modes. Such a scenario, the so-called “fermiophobic” Higgs boson, arise in a variety of models, e.g. [1, 2, 3]. In all these cases, for masses \(m_h < 100\) GeV, the Higgs boson dominantly decays to photon pairs.

Experimental searches for fermiophobic Higgs bosons \((h_f)\) at the CERN LEP Collider and the Fermilab Tevatron Collider have yielded negative results. Mass limits have been set in a benchmark model that assumes that the coupling \(h_f VV\) (\(V \equiv W^\pm, Z\)) has the same strength as in the SM and that all fermion branching ratios \((B)\) are exactly zero. Combination of results obtained by the LEP collaborations [4, 5, 6, 7] using the process \(e^+e^- \rightarrow h_f Z\), \(h_f \rightarrow \gamma\gamma\) yielded the lower bound \(m_h > 109.7\) GeV at the 95% C.L. [8]. In Run I of the Tevatron, lower limits on \(m_{h_f}\) from the D0 and CDF collaborations are respectively 78.5 GeV [9] and 82 GeV [10], using the processes \(q\bar{q}' \rightarrow V^* \rightarrow h_f V\), \(h_f \rightarrow \gamma\gamma\), with the dominant contribution coming from \(V = W^\pm\).

In this Letter we perform a search for the inclusive production of di-photon final states via the Higgsstrahlung and vector boson fusion processes: \(pp \rightarrow h_f V \rightarrow \gamma\gamma + X\) and \(pp \rightarrow VV \rightarrow h_f \rightarrow \gamma\gamma + X\), respectively. The total integrated luminosity of the data used for this search is \(1.10 \pm 0.07\) fb\(^{-1}\).

The D0 detector comprises a central tracking system in a 2 T superconducting solenoid, a liquid-argon/uranium sampling calorimeter, and a muon spectrometer. The calorimeter consists of a central section (CC) covering the pseudorapidity range \(|\eta| < 1.1\), which is defined as \(\eta \equiv -\log[\tan(\frac{\theta}{2})]\) where \(\theta\) is the polar angle with respect to the proton beam direction, and two endcaps (EC) extending coverage to \(|\eta| < 4.2\), each housed in a separate cryostat. The electromagnetic (EM) section of the calorimeter has four layers with longitudinal depths of \(2X_0, 2X_0, 7X_0,\) and \(10X_0\) that provide full containment of EM particles (photons and electrons). The calorimeter layers have transverse segmentation of \(\delta \phi \times \delta \eta = 0.1 \times 0.1\) (where \(\phi\) is the azimuthal angle), except in the third layer, where it is \(0.05 \times 0.05\), which allows for accurate determination of the position of EM particles. Immediately before the inner layer of the central EM calorimeter there is a central preshower detector (CPS) formed of \(2X_0\) of absorber followed by several layers of scintillating strips with embedded wavelength-shifting fibers. A complete description of the D0 detector can be found in [11].

We select events that satisfy single EM triggers which become fully efficient for EM showers with transverse momentum \(p_T > 30\) GeV. Photons and electrons are identified in two steps: the selection of EM clusters, and their subsequent separation into those caused by photons and those caused by electrons. EM clusters are selected from calorimeter clusters by requiring that (i) at least 97% of the energy be deposited in the EM section of the calorimeter, (ii) the calorimeter isolation be less than 0.07, (isolation is defined as \(|E_{\text{tot}}(0.4) - E_{\text{EM}}(0.2)|/E_{\text{EM}}(0.2)\)), where \(E_{\text{tot}}(0.4)\) is the total shower energy in a cone of radius \(R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4\), and \(E_{\text{EM}}(0.2)\) is the EM energy in a cone with \(R = 0.2\), (iii) the transverse, energy-weighted shower width be less than 0.04 rad (i.e. consistent with an EM shower profile), and (iv) the scalar \(p_T\) sum of all tracks originating from the primary vertex in an annulus of \(0.05 < R < 0.4\) around the cluster be less than 2 GeV. The cluster is then defined as an electron if there is a reconstructed track (or electron-like pattern of hits in the tracker) associated with it and a photon otherwise. We also consider EM jets (jets with a leading \(\pi^0\) or \(\eta\)) defined as EM clusters that pass all cuts required for photon candidates except the track isolation requirement. We will refer to them as “f” or “jet”.

We select events that have at least two photons in the central calorimeter \((|\eta| < 1.1)\) with transverse momenta \(p_T > 25\) GeV. Events are required to have the primary vertex close to the beam axis and within 60 cm of the geometrical center of the detector. Identification of the primary vertex in the event is important, as it affects the calculation of the \(p_T\) of a photon candidate and its track isolation. Despite the fact that photons do not leave tracks, the probability to reconstruct a primary vertex is high, 99.5%, due to the underlying event activity.

The Higgs boson produced in the models considered has higher transverse momentum \(q_T\) than that of the two-photon system of the backgrounds. Therefore, we select events with \(q_T^\gamma\gamma > 35\) GeV. For simplicity, we choose a fixed cut value which is below the optimal cut value for Higgs boson masses starting from 70 GeV. After all selection criteria, we are left with 196 (1509) di-photon events with \(q_T^\gamma\gamma > 35\) (\(q_T^\gamma\gamma < 35\)) GeV for invariant masses above 65 GeV.

The dominant background comes from direct di-photon production (DDP) processes. The other major background comes from events in which jets are misidentified as photons: \(\gamma j\) processes where a quark or a gluon
fragmented into an energetic π⁰ or η and is reconstructed as a photon, and the multijet background where two jets are mis-identified as photons.

Another source of di-photon background comes from events in which electrons are misidentified as photons: the decay of a Z boson where electrons are reconstructed as photons if there are no associated tracks, and processes with one real electron coming from the decay of a W± boson produced in association with a real photon or a jet misreconstructed as a photon. The veto of electron-like patterns of hits in the tracker reduces electron backgrounds by a factor of five, while keeping the photon efficiency high. We measure that (91 ± 3)% of photon candidates in Z/γ* → e⁺e⁻γ data satisfy the anti-track requirement. The contribution of events with one or two real electrons is obtained by applying the probability for an electron to fail the track requirement and be reconstructed as a photon (1.5±1.5%) to the Z boson, Drell-Yan, and W± + X event yields. This background is estimated to be less than one event.

We estimate the relative contributions of the γγ, γj, and jj backgrounds using the difference in the energy weighted width of the energy deposition in the CPS, σE CPS. The width is generally narrower for photons than for jets. We construct one-dimensional templates as a function of x = σE CPS [for photons G(x)] and jets [J(x)]. The G(x) is constructed using radiative Z/γ* → ℓ⁺ℓ⁻γ (ℓ = e, μ) decays in data and the J(x) is taken from the jj data sample. From these we construct two-dimensional profiles for the three components γγ, γj, and jj, as follows: GG(x, y) = G(x) • G(y), GJ(x, y) = 0.5 • [G(x) • J(y) + J(x) • G(y)], and JJ(x, y) = J(x) • J(y). Further, using these two-dimensional templates we construct a fitting function: c₀ • [GG(x, y) + c₁ • JJ(x, y) + c₂ • GJ(x, y)]. The parameters are chosen so that c₀ is equal to the number of γγ events and responsible for the overall normalization, and c₁ and c₂ determine the contributions of jj and γj events relative to γγ.

For the di-photon candidate data sample, we make a two-dimensional distribution of σE CPS. For each event we randomly decide whether the leading photon is plotted along the x- or the y-axis. We fit this distribution with the function defined above to determine the individual components: c₀ = 131 ± 22 ± 7 events, c₁ = 0.35 ± 0.19 ± 0.06, and c₂ = 0.13 ± 0.28 ± 0.13, where the first error is the statistical error of the fit, and the second is the systematic uncertainty obtained from variations of the fitting range, binning of the templates, and the source of the photon template.

The next step is to use the derived fractions to model the mass distribution of the di-photon candidate data. For this we need three mass templates: Tγγ, Tγj, and Tjj. We take Tγγ from PYTHIA MC [12] corrected for detector effects and reweighted with the K-factor derived from ResBos [13] to account for the (next-to-)next-to-leading order, NLO (NNLO), effects. The other two templates are taken from γj and jj samples, where we relax the calorimeter isolation, EM fraction, and energy-weighted shower width requirements in the definition of a jet in order to increase statistics in these templates. We verify that relaxing the requirements do not alter the kinematics of the sample. We also correct the γj mass template for the admixture of jj events. We construct the background mass spectrum assuming the functional form Nγγ ∝ (Tγγ + c₁ • Tγj + c₂ • Tjj) where Tγγ, Tγj, and Tjj are mass distributions normalized to one (see Fig. 1), c₁ and c₂ are taken from the CPS fit above, and Nγγ is the expected number of DDP events from the MC. For the measured luminosity, we estimate Nγγ = 113 ± 3.5(stat) ± 24(syst) events, which is in agreement with the c₀ = 131 ± 22 ± 7 events derived from data. While these numbers, 113 and 131, are within the theoretical and experimental uncertainties, we choose to normalize the number of background events to the total number of events observed in the data (normalization events are counted outside of the signal region, defined as ±5 GeV window in diphoton mass centered at each hypothesized mh, value). By doing so we eliminate most of the background uncertainties, e.g. luminosity, renormalization scale.

Figure 2 shows the mass distributions in data with overlaid background predictions. The shaded regions correspond to the expected background error bands. The inner band represents the statistical uncertainty of the mass templates, while the outer corresponds to the systematics due to variation in the one-dimensional σE CPS templates. We assign an additional 100% uncertainty that includes any possible change in the shape of the mass templates due to the relaxed definition of a jet. Signal events are generated for a range of mass points from 70 GeV to 150 GeV in 10 GeV steps. We use the
FIG. 2: Di-photon mass distribution of the data (squares) with the overlaid background prediction (triangles), and the expected signal distribution for $m_{h_f} = 100$ GeV in the benchmark model.

The signal efficiencies, ϵ^{signal}, are derived from the MC. Table I lists signal efficiencies after correction for trigger inefficiency and scaling by the ratio of efficiencies in data and MC ($\approx 95\%$ per photon) obtained from the electron reconstruction efficiency in $Z \rightarrow e^+e^-$ events. Note that the photon requirements are chosen in such a way that the MC correctly reproduces differences between electrons and photons as confirmed in $Z \rightarrow e^+e^-\gamma$ events. Table I also shows the number of observed di-photon candidate events in data in 10 GeV mass windows and the corresponding background estimates with associated uncertainties. The width of the mass peak is dominated by the detector resolution and varies between 2.8 GeV and 5.2 GeV. The size of the optimal mass window varies between 8 GeV and 15 GeV, but for simplicity we use a fixed value of 10 GeV. The acceptance of the mass window cuts varies between 94% and 66% for $m_{h_f} = 70-150$ GeV. In the same table we provide the theoretical benchmark branching ratio, $B(h \rightarrow \gamma\gamma)$ [15], and the NLO cross section, σ^{NLO}, for the sum of the signal processes $pp \rightarrow VV \rightarrow h_f$ and $pp \rightarrow h_f V$ obtained with VV2H and V2HV [16].

We perform a counting experiment in the 10 GeV mass windows, and in the absence of an excess of di-photon events, we set an upper limit on the product of the Higgs boson production cross section and di-photon branching to date at a hadron collider. In Fig. 3 we present our results as limits on the branching ratio in the parameter space $B(h_f \rightarrow \gamma\gamma)$ vs. m_{h_f}, obtained from a ratio of the above limits and σ^{NLO}. The regions above the experimental points correspond to the excluded values of the branching ratio. This study significantly improves the LEP limits at intermediate mass values, e.g. by more than a factor of four at $m_{h_f} = 120$ GeV, and extends sensitivity into the region not accessible at LEP, $m_{h_f} > 130$ GeV.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
m_{h_f} (GeV) & data background & e^{signal} (%) & expected limit & observed limit & Run I limit & $\sigma_{h_f \rightarrow \gamma\gamma}^{\text{NLO}}$ (pb) & $B(h_f \rightarrow \gamma\gamma)$ (pb) \\
\hline
70 & 35 & 24.5 ± 4.6 & 6.9 ± 0.5 & 0.15 & 0.29 & 0.46 & 1.5 & 0.81 \\
80 & 33 & 27.2 ± 5.0 & 7.9 ± 0.6 & 0.14 & 0.20 & 0.44 & 1.0 & 0.70 \\
90 & 24 & 27.4 ± 5.4 & 9.8 ± 0.8 & 0.11 & 0.089 & 0.37 & 0.75 & 0.41 \\
100 & 24 & 23.7 ± 4.8 & 10.3 ± 0.8 & 0.10 & 0.10 & 0.35 & 0.55 & 0.18 \\
110 & 14 & 17.7 ± 4.4 & 11.2 ± 0.9 & 0.085 & 0.061 & 0.34 & 0.42 & 0.062 \\
120 & 11 & 13.4 ± 3.7 & 11.3 ± 0.9 & 0.070 & 0.058 & 0.33 & 0.32 & 0.028 \\
130 & 9 & 11.7 ± 3.3 & 11.2 ± 0.9 & 0.065 & 0.053 & 0.33 & 0.25 & 0.019 \\
140 & 8 & 9.5 ± 2.8 & 11.7 ± 0.9 & 0.058 & 0.052 & 0.32 & 0.19 & 0.0061 \\
150 & 12 & 6.3 ± 2.1 & 11.7 ± 0.9 & 0.051 & 0.10 & 0.32 & 0.15 & 0.0020 \\
\hline
\end{tabular}
\caption{Input data for limit calculation and 95\% C.L. limits on cross section times branching fraction. Quoted are the total uncertainties that are used in the limit calculation.}
\end{table}

