Measurement of B_s^0 Mixing Parameters from the Flavor-Tagged Decay $B_s^0 \to J/\psi \phi$

(D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidad do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Fisica Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Center for Particle Physics, Charles University, Prague, Czech Republic
10 Czech Technical University, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPC, Univ Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
15 CPPM, IN2P3/CNRS, Université de la Méditerranée, Marseille, France
16 LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
17 LPNHE, IN2P3/CNRS, Universités Paris VI et VII, Paris, France
18 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
19 IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 III, Physikalisches Institut A, RWTH Aachen, Aachen, Germany
22 Physikalisches Institut, Universität Bonn, Bonn, Germany
23 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublin, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 SungKyunKwan University, Suwon, Korea

From an analysis of the flavor-tagged decay $B_0^s \to J/\psi \phi$ we obtain the width difference between the B_0^s light and heavy mass eigenstates, $\Delta \Gamma_s = 0.19 \pm 0.07 \text{(stat)} +0.02^{+0.01}_{-0.02} \text{(syst)} \text{ ps}^{-1}$, and the CP-violating phase, $\phi_s = -0.57^{+0.24}_{-0.30} \text{(stat)} +0.08^{+0.08}_{-0.02} \text{(syst)}$. The allowed 90% CL intervals of $\Delta \Gamma_s$ and ϕ_s are $0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1}$ and $-1.20 < \phi_s < 0.06$, respectively. The data sample corresponds to an integrated luminosity of 2.8 fb^{-1} accumulated with the D0 detector at the Fermilab Tevatron collider.

DOI: 10.1103/PhysRevLett.101.241801

PACS numbers: 13.25.Hw, 11.30.Er
In the standard model (SM), the light (L) and heavy (H) mass eigenstates of the mixed B^0_d system are expected to have sizeable mass and decay width differences: $\Delta M_L \equiv M_H - M_L$ and $\Delta \Gamma_L \equiv \Gamma_L - \Gamma_H$. The two mass eigenstates are expected to be almost pure CP eigenstates. The CP-violating mixing phase that appears in $b \rightarrow c\bar{c}\epsilon\bar{s}$ decays is predicted [1,2] to be $\phi_s = -2\beta_s = 2\arg[-V_{tb}V_{ts}/V_{cb}V_{cs}] = -0.038 \pm 0.002$, where V_{ij} are elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [3]. New phenomenology may alter the phase to $\phi_s = -2\beta_s + \phi_0^s$.

In Ref. [4], we presented an analysis of the decay chain $B^0_s \rightarrow J/\psi \phi$, $J/\psi \rightarrow \mu^+ \mu^-$, $\phi \rightarrow K^+ K^-$ based on 1.1 fb$^{-1}$ of data collected with the D0 detector [5] at the Fermilab Tevatron collider. In that analysis we measured $\Delta \Gamma_s$ and the average lifetime of the B^0_s system, $\tau_s = 1/\Gamma_s$, where $\Gamma_s = (\Gamma_H + \Gamma_L)/2$. The CP-violating phase ϕ_s was also extracted for the first time. The measurement correlated two solutions for ϕ_s with two corresponding solutions for $\Delta \Gamma_s$. Improved precision was obtained by refitting the results using additional experimental constraints [6]. Here we present new D0 results of an analysis that includes information on the B^0_s flavor at production time. Adding this information resolves the sign ambiguity on ϕ_s for a given $\Delta \Gamma_s$ and improves the precision of the measurement. The analysis is based on an increased data set, corresponding to an integrated luminosity of 2.8 fb$^{-1}$.

We reconstruct the decay chain $B^0_s \rightarrow J/\psi \phi$, $J/\psi \rightarrow \mu^+ \mu^-$, $\phi \rightarrow K^+ K^-$ from candidate $(J/\psi, \phi)$ pairs consistent with coming from a common vertex and having an invariant mass in the range 5.0–5.8 GeV. The event selection follows that in Ref. [4]. The invariant mass distribution of the 48047 candidates is shown in Fig. 1. The curves are projections of the maximum likelihood fit, described below. The fit assigns 1967 \pm 65 (stat) events to the B^0_s decay. The flavor of the initial state of the B^0_s candidate is determined by exploiting the properties of particles produced by the other b hadron (“opposite-side tagging”) and the properties of particles accompanying the B^0_s meson (“same-side tagging”). The variables used to construct the opposite-side tagging are described in Ref. [7] where we applied the “flavor tagging” to separate B^0_s and \bar{B}^0_s decays. The only difference to the description in Ref. [7] is that the events that do not contain either the opposite lepton or the secondary vertex, and that were not used for the flavor tagging before, are now tagged with the event-charge variable defined in Ref. [7].

Same-side tagging is based on the sign of an associated charged kaon formed in the hadronization process. A $B^0_s(\bar{B}^0_s)$ meson is expected to be accompanied by a strange meson, e.g., $K^+(u\bar{s})$ meson that can be used for flavor tagging. Such a configuration is formed when the initial b antiquark picks up an s quark from a virtual $s\bar{s}$ pair and the \bar{s} antiquark becomes a constituent of an accompanying K^+ meson. Candidates for the associated kaon are all tracks with transverse momentum $p_T > 500$ MeV that are not used in the B^0_s reconstruction. We define the quantity $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi$ ($\Delta \eta$) is the distance in the azimuthal angle (pseudorapidity) between the given track and the B_s meson, and select the track with the minimum value of ΔR. The corresponding discriminating variable for the flavor tagging is defined as the product of the particle charge and ΔR. Another discriminating variable is Q_{jet}, the p_T-weighted average of all track charges q_i within the cone $\cos^{-1}(\sqrt{3}/3)$ around the B meson: $Q_{jet} = \sum_i q_i (p_T^i)^{0.6}/\sum_i (p_T^i)^{0.6}$. The same tagging technique has been successfully applied in the measurement of the B^0_s oscillation frequency [8].

The discriminating variables of both the same-side and opposite-side tagging are combined using the likelihood-ratio method described in Ref. [7]. The performance of the combined tagging is taken from a Monte Carlo (MC) simulation of the $B^0_s \rightarrow J/\psi \phi$ process and is verified with the $B^+ \rightarrow J/\psi K^+$ process for which we find the simulated tagging to be in agreement with data. The effective tagging power, as defined in Ref. [7], is $P = (4.68 \pm 0.54)\%$. The purity of the flavor tag as a function of an overall flavor discriminator is determined and parameterized, and the related probability $P(B_s)$ of having a pure state B^0_s at $t = 0$ is used event-by-event in the fit described below.

We perform an unbinned maximum likelihood fit to the proper decay time, three decay angles characterizing the final state, and the mass of the B^0_s candidate. The likelihood function L is given by

$$L = \prod_{i=1}^{N} [f_{sig} F_{sig}^i + (1 - f_{sig}) F_{bck}^i]$$

where N is the total number of events, and f_{sig} is the

FIG. 1 (color online). The invariant mass distribution of the $(J/\psi, \phi)$ system for B^0_s candidates. The curves are projections of the maximum likelihood fit (see text).
fraction of signal in the sample. The function F_{sig} describes the distribution of the signal in mass, proper decay time, and the decay angles. For the signal mass distribution, we use a Gaussian function with free mean and width. The proper decay time distribution of the L or H component of the signal is parametrized by an exponential convoluted with a Gaussian function. The width of the Gaussian is taken from the event-by-event estimate of the $c\tau$ uncertainty $\sigma(c\tau)$, scaled by an overall calibration factor determined from the fit to the prompt component of the background. F_{bck} is the product of the background mass, proper decay time, and angular probability density functions. Background is divided into two categories. “Prompt” background is due to directly produced J/ψ mesons accompanied by random tracks arising from hadronization. This background is distinguished from “non-prompt” background, where the J/ψ meson is a product of a B-hadron decay while the tracks forming the ϕ candidate emanate from a multibody decay of a B hadron or from hadronization.

The decay amplitude of the B^0_s and ${\bar B}^0_s$ mesons is decomposed into three independent components corresponding to linear polarization states of the vector mesons J/ψ and ϕ, which are either longitudinal (0) or transverse to their direction of motion, and parallel (||) or perpendicular (\perp) to each other. The time evolution of the angular distribution of the decay products, expressed in terms of the magnitudes $|A_0||, |A_\perp||, and |A_\parallel|| and two relative strong phases $\delta_1 = -\delta_\parallel + \delta_\perp$ and $\delta_2 = -\delta_0 + \delta_\perp$ of the amplitudes, is given in Refs. [9,10].

\[
\frac{d^4\Gamma}{dtd\cos\theta d\phi d\psi} \approx 2\cos^2\psi(1 - \sin^2\theta\cos^2\varphi)|A_0(t)|^2 + \sin^2\psi(1 - \sin^2\theta)^2|A_\parallel(t)|^2 + \sin^2\psi\sin^2\theta|A_\perp(t)|^2 + (1/\sqrt{2})\sin2\psi\sin2\varphi\text{Re}(A_0(t)A_\parallel(t)) + (1/\sqrt{2})\sin2\psi\sin2\varphi\text{Im}(A_0(t)A_\perp(t))
\]

\[
- \sin^2\psi\sin2\theta\sin2\varphi\text{Im}(A_\parallel(t)A_\perp(t)).
\]

Polarization amplitudes for B^0_s (upper sign) and \bar{B}^0_s (lower sign) are given by the following equations:

\[
|A_{0\parallel}(t)|^2 = |A_{0\parallel}(0)|^2[\mathcal{T}_+ \pm e^{-\Gamma t}\sin\phi_s \sin(\Delta M_s t)], \quad |A_{\perp}(t)|^2 = |A_{\perp}(0)|^2[\mathcal{T}_- \mp e^{-\Gamma t}\sin\phi_s \sin(\Delta M_s t)],
\]

\[
\text{Re}(A_0^*(t)A_\parallel(t)) = |A_0(0)||A_{\parallel}(0)|\cos(\delta_2 - \delta_1) \times [\mathcal{T}_+ \pm e^{-\Gamma t}\sin\phi_s \sin(\Delta M_s t)],
\]

\[
\text{Im}(A_0^*(t)A_\parallel(t)) = |A_0(0)||A_{\parallel}(0)| \times [e^{-\Gamma t}(\pm \sin\delta_2 \cos(\Delta M_s t) \mp \cos\delta_2 \sin(\Delta M_s t) \cos\phi_s) \]

\[
- (1/2)(e^{-\Gamma t} - e^{-\Gamma t}) \sin\phi_s \cos\delta_2],
\]

\[
\text{Im}(A_0^*(t)A_\perp(t)) = |A_0(0)||A_{\perp}(0)| \times [e^{-\Gamma t}(\pm \sin\delta_1 \cos(\Delta M_s t) \mp \cos\delta_1 \sin(\Delta M_s t) \cos\phi_s) \]

\[
- (1/2)(e^{-\Gamma t} - e^{-\Gamma t}) \sin\phi_s \cos\delta_1],
\]

where $\mathcal{T}_+ = (1/2)(1 \pm \cos\phi_s)e^{-\Gamma t} + (1 \mp \cos\phi_s)e^{-\Gamma t}$

For a given event, the decay rate is the sum of the B_s^0 and \bar{B}^0_s rates weighted by $P(B_s)$ and $1 - P(B_s)$, respectively, and by the detector acceptance.

In the coordinate system of the J/ψ rest frame (where the ϕ meson moves in the x direction, the z axis is perpendicular to the decay plane of $\phi \to K^+ K^-$, and $p_\gamma(K^+) \approx 0$), the transversity polar and azimuthal angles (θ, φ) describe the direction of the μ^+, and ψ is the angle between $\vec{p}(K^+)$ and $-\vec{p}(J/\psi)$ in the ϕ rest frame.

We model the acceptance and resolution of the three angles by fits using polynomial functions, with parameters determined using MC simulations. Events generated uniformly in the three-angle space were processed through the standard GEANT-based [11] simulation of the D0 detector, and reconstructed and selected as real data. Simulated events were reweighted to match the kinematic distributions observed in the data.

The proper decay time distribution shape of the background is described as a sum of a prompt component,

| TABLE I. Summary of the likelihood fit results. The first column shows the results of the fit with a Gaussian constraint on δ_s. The second column shows two solutions with $\Delta\Gamma_s > 0$ yielded by the fit with free δ_s. Each of the two solutions has a mirror solution with $\Delta\Gamma_s < 0$ as explained in the text. |
|---|---|---|
| δ_s, constrained | δ_s, free |
| $\bar{\tau}_s$ (ps) | 1.52 ± 0.06 | 1.52 ± 0.06 |
| $\Delta\Gamma_s$ (ps⁻¹) | 0.19 ± 0.07 | 0.20 ± 0.08 |
| $A_\perp(0)$ | 0.41 ± 0.04 | 0.41 ± 0.04 |
| $|A_0(0)|^2 - |A_{\parallel}(0)|^2$ | 0.34 ± 0.05 | 0.34 ± 0.05 |
| δ_1 | -0.52 ± 0.42 | -0.18 ± 0.90, 1.05 ± 0.59 |
| $\delta_1 - \delta_2$ | 2.59 ± 0.29 | 2.61 ± 0.28, -2.61 ± 0.29 |
| ϕ_s | -0.57^{+0.24}_{-0.20} | -0.59^{+0.31}_{-0.28} |
| ΔM_s (ps⁻¹) | 17.77 | 17.77 |
modeled as a Gaussian function centered at zero, and a nonprompt component. The nonprompt component is modeled as a superposition of one exponential for $t < 0$ and two exponentials for $t > 0$, with free slopes and normalizations. The distributions of the backgrounds in mass, $\cos \theta$, φ, and $\cos \psi$ are parametrized by low-order polynomials. We also allow for a background term analogous to the interference term of the A_0 and A_1 waves, with one free coefficient. For each of the above background functions we use two separate sets of free parameters for the prompt and nonprompt components.

In the following, we fix ΔM_s to 17.77 ± 0.12 ps$^{-1}$, as measured in Ref. [12]. The phases analogous to δ_i have been measured for the decay $B^0_s \to J/\psi K^*$ at the B factories. We allow the phases δ_i to vary around the world-average values [13] for the $B^0_s \to J/\psi K^*$ decay, $\delta_1 = -0.46$ and $\delta_2 = 2.92$, under a Gaussian constraint. The width of the Gaussian, chosen to be $\pi/5$, allows for some degree of violation of the $SU(3)$ symmetry relating the two decay processes, while still effectively constraining the signs of $\cos \delta_i$ to agree with those of Ref. [13]. The mirror solution with $\cos \delta_1 < 0$ is disfavored on theoretical [14] and experimental [15] grounds.

Results of the fit are presented in Table I. The fit yields a likelihood maximum at $\phi_s = -0.57^{+0.24}_{-0.30}$ and $\Delta \Gamma_s = 0.19 \pm 0.07$ ps$^{-1}$, where the errors are statistical only. Confidence-level contours in the ϕ_s - $\Delta \Gamma_s$ plane are shown in Fig. 2. Studies using pseudoexperiments with similar statistical sensitivity indicate an expected statistical uncertainty in ϕ_s of 0.33 and no significant biases. The test finds allowed ranges at the 90% CL of $-1.20 < \phi_s < 0.06$ and $0.06 < \Delta \Gamma_s < 0.30$ ps$^{-1}$. To quantify the level of agreement with the SM, we use pseudoexperiments with the “true” value of the parameter ϕ_s set to $\phi_s = -2\beta_s (= -0.04)$ predicted by the SM. We find the probability of 6.6% to obtain a fitted value of ϕ_s lower than -0.57. With this input ϕ_s, we obtain $\Delta \Gamma_s = 0.14 \pm 0.07$ ps$^{-1}$. This is consistent with the theoretical prediction of 0.088 ± 0.017 ps$^{-1}$ [1].

The fit results for the case of free δ_i are shown in the second column in Table I. The maximum likelihood occurs at two sets of phases δ_i. In addition, the signal probability distribution is invariant under the simultaneous transformation $(\Delta \Gamma_s \to -\Delta \Gamma_s, \phi_s \to \pi - \phi_s, \delta_1 \to \pi - \delta_1, \delta_2 \to \pi - \delta_2)$. There are two allowed ranges of ϕ_s and $\Delta \Gamma_s$ at the 90% CL, $(-1.22 < \phi_s < -0.08, 0.05 < \Delta \Gamma_s < 0.33$ ps$^{-1}$), and $(-3.06 < \phi_s < -1.92, -0.33 < \Delta \Gamma_s < -0.05$ ps$^{-1}$). For the SM hypothesis, we find a probability of 8.5% to obtain a likelihood ratio higher than that observed in the data.

The measurement uncertainties are dominated by the limited statistics. Uncertainty in the acceptance as a function of the transversity angles is small, the largest effect is on $|A_0(0)|^2 - |A_{11}(0)|^2$. Effects of the imperfect knowledge of the flavor-tagging purity are estimated by varying the flavor purity parametrization within uncertainties. The likelihood definition does not include the differences between the distributions of the flavor-tagging probability for various components of the sample. We find the effect of adding this dependence small, and assign an appropriate systematic uncertainty. The “interference” term in the background model accounts for the collective effect of various physics processes. However, its presence may be partially due to detector acceptance effects. Therefore, we

TABLE II. Sources of systematic uncertainty in the results for the case of free ϕ_s.

| Source | $\tilde{\tau}_s$ (ps) | $\Delta \Gamma_s$ (ps$^{-1}$) | $A_\perp(0)$ | $|A_0(0)|^2 - |A_{11}(0)|^2$ | ϕ_s |
|-----------------|------------------------|-------------------------------|-------------|----------------------------|----------|
| Acceptance | ± 0.003 | ± 0.003 | ± 0.005 | ± 0.03 | ± 0.005 |
| Signal mass model | -0.01 | $+0.006$ | -0.003 | -0.001 | -0.006 |
| Flavor purity estimate | ± 0.001 | ± 0.001 | ± 0.001 | ± 0.001 | ± 0.01 |
| Flavor purity model | $+0.003$ | $+0.003$ | <0.001 | $+0.002$ | $+0.04$ |
| Background model | $+0.003$ | $+0.02$ | -0.02 | -0.01 | $+0.02$ |
| ΔM_s input | ± 0.01 | ± 0.001 | ± 0.001 | ± 0.001 | $+0.06, -0.01$ |
| Total | ± 0.01 | $+0.02, -0.01$ | $+0.01, -0.02$ | $+0.03$ | $+0.08, -0.02$ |

FIG. 2 (color online). Confidence-level contours in the $\Delta \Gamma_s - \phi_s$ plane for the fit with the Gaussian constraint on the phases δ_1 and δ_2. The curves correspond to expected CL = 68.3% (dashed) and 90% (solid). The cross shows the best fit point and one-dimensional uncertainties. Also shown is the SM prediction, $\phi_s = -2\beta_s = -0.04$, $\Delta \Gamma_s = 0.088 \pm 0.017$ ps$^{-1}$ [1] and the expected behavior [10] of possible deviations from SM, $\Delta \Gamma_s = \Delta \Gamma_s^{SM} \times |\cos(\phi_s)|$.

241801-6
interpret the difference between fits with and without this term as a contribution to the systematic uncertainty associated with the background model. The main contributions to systematic uncertainties for the case of free ϕ_s are listed in Table II.

In summary, from a fit to the time-dependent angular distribution of the flavor-tagged decays $B_s^0 \rightarrow J/\psi \phi$, with Gaussian constraint on the strong phases, we have measured the average lifetime of the (B_s^0, \bar{B}_s^0) system, $\bar{\tau}(B_s^0) = 1.52 \pm 0.05 \pm 0.01$ ps, the width difference between the light and heavy B_s^0 eigenstates, $\Delta \Gamma_s = 0.19 \pm 0.07 \text{(stat)}^{+0.02}_{-0.01} \text{(syst)}$ ps$^{-1}$, and the CP-violating phase, $\phi_s = -0.57^{+0.24}_{-0.30} \text{(stat)}^{+0.08}_{-0.02} \text{(syst)}$. The allowed 90% CL intervals of $\Delta \Gamma_s$ and of ϕ_s are $0.06 < \Delta \Gamma_s < 0.30$ ps$^{-1}$ and $-1.20 < \phi_s < 0.06$. The SM hypothesis for ϕ_s has a P-value of 6.6%.

For the case of free δ_t, no unique parameter values can be reported due to unresolved ambiguities. The allowed ranges of ϕ_s and $\Delta \Gamma_s$ at the 90% CL are $(-1.22 < \phi_s < -0.08, \ 0.05 < \Delta \Gamma_s < 0.33$ ps$^{-1}$), and $(-3.06 < \phi_s < -1.92, -0.33 < \Delta \Gamma_s < -0.05$ ps$^{-1}$). The SM hypothesis for ϕ_s has a P-value of 8.5%. The quoted intervals and P-values do not include the effect of systematic uncertainties, whose impact is nevertheless expected to be negligible. Detailed information on the likelihood variation in the multidimensional parameter space is available elsewhere [16].

The results supersede our previous measurements [4] that were based on the untagged decay $B_s^0 \rightarrow J/\psi \phi$ and a smaller data sample. They are consistent with the recently published CDF results [17].

We thank U. Nierste for useful discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBAcYT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

*Visitor from Augustana College, Sioux Falls, SD, USA.
†Visitor from The University of Liverpool, Liverpool, UK.
‡Visitor from ICN-UNAM, Mexico City, Mexico.
§Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
‖Visitor from Helsinki Institute of Physics, Helsinki, Finland.
¶Visitor from Universität Zürich, Zürich, Switzerland.
**Deceased.