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This paper discusses a nonstationary, heterogeneous Markov model designed to estimate
entry and exit transition probabilities at the micro level from a time series of independent
cross-sectional samples with a binary outcome variable. The model has its origins in the
work of Moffitt and shares features with standard statistical methods for ecological infer-
ence. We outline the methodological framework proposed by Moffitt and present several
extensions of the model to increase its potential application in a wider array of research
contexts. We also discuss the relationship with previous lines of related research in po-
litical science. The example illustration uses survey data on American presidential vote
intentions from a five-wave panel study conducted by Patterson in 1976. We treat the panel
data as independent cross sections and compare the estimates of the Markov model with
both dynamic panel parameter estimates and the actual observations in the panel. The
results suggest that the proposed model provides a useful framework for the analysis
of transitions in repeated cross sections. Open problems requiring further study are
discussed.
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1 Introduction

Surveys that trace the same units across occasions provide the most powerful sorts of
data for dynamic analysis of political phenomena. However, repeated observations are
often unavailable, and many panel data sets that do exist are of limited time coverage.
This shortcoming combined with potential drawbacks such as nonrandom attrition and
conditioning restrict the use of panel data for the analysis of long-term political
change.

In the absence of suitable panel data, repeated cross-sectional (RCS) surveys carried out
with a regular periodicity may provide a viable alternative. These data do not suffer from
problems of selective attrition that often plague panel data. Moreover, there exists an abun-
dance of high-quality RCS data and many repeated cross-sectional surveys are available for
relatively long time periods, some of which continue to accumulate. Given the importance
of dynamics in political studies and the lack of panel data on many important issues, it would
be of great advantage if RCS data could somehow be used for the estimation of longitudinal
models with a dynamic structure. The objective of this paper is to explore those possibil-
ities. Specifically, our purpose here is to present a nonstationary, heterogeneous Markov
model for the analysis of a binary dependent variable in a time series of independent cross-
sectional samples. The model has its origins in the work of Moffitt (1990, 1993) and shares
features with standard statistical methods for ecological or cross-level inference as outlined,
for example, by Achen and Shively (1995) and King (1997). It offers the opportunity to
estimate individual-level entry and exit transition rates and to examine the effects of time-
constant and time-varying covariates on the transitions. Previous discussions of (aspects
of) the model include those by Felteau et al. (1997), Mebane and Wand (1997) and Pelzer
etal. (2001).

The following section first presents the basic Markov model for RCS data as proposed
by Moffitt and subsequently discusses several extensions of his approach and its rela-
tionship with related research in political science. Section 3 provides an example appli-
cation using panel data on American presidential vote intentions from a five-wave sur-
vey conducted by Patterson (1980) in 1976. We treat these data as independent cross
sections and compare (i) the parameter estimates obtained from the Markov model for
RCS data with the estimates obtained from a dynamic panel model and (ii) the transi-
tions predicted by the model with the actual transitions in the panel. We do not aim to
present a very detailed analysis of the electoral data here. The subject matter itself is
not the ultimate object and we also ignore the potential biases due to panel mortality.
Our interest here is to calibrate a rather unfamiliar statistical technique on a reasonably
well-understood set of data to increase the understanding of the model rather than offer
an immediate analysis of voter preferences and a detailed subject-matter interpretation.
Most of our substantive results correspond to well-accepted political science findings. Yet
more crucial to our topic is that the validation results suggest that the model can pro-
vide a useful tool for inferring individual-level transition probability estimates in the ab-
sence of transition data. We conclude with a discussion of open problems requiring further
study.!

1t is assumed in this paper that the responses are observed at evenly spaced discrete time intervals r =1, 2, .. .,
and that the samples at periods ¢; and #; are independent if j # k. The subscript 7¢ is commonly used to indicate
repeated observations on the same sample element i. However, to simplify notation, this paper uses the subscript
it to index nonpanel individuals in RCS samples.
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2 Estimating Transition Probabilities with RCS Data
2.1 Basic Model

Consider a two-state Markov matrix of transition rates in which the cell probabilities sum to
unity across rows. For this 2 x 2 table, we define the following three terms, where y;, denotes
the value of the binary random variable y for uniti attime ¢: p;; = P(y;; = 1), wir = P(yir =
1] yit—1 =0),and A;; = P(y;; =0 y;;—1 = 1). These marginal and conditional probabilities,
respectively, give rise to the well-known flow equation

E(Y;;)= pir = pir(1 = pir—1) + (1 — X)) pir—1 = Wit + Nit Pir—1, (D

where n;; =1 — X;; — w;;. This accounting identity—also used in Goodman’s ecological
regression (Goodman 1953; King 1997)—is the elemental equation for estimating dynamic
models with repeated cross sections as it relates the marginal probabilities p; att and — 1 to
the entry (u;,) and exit (A;,) transition probabilities. Clearly, a dynamic analysis of repeated
cross sections is difficult because the surveys are “incomplete” in the sense that they do
not assess directly the state-to-state transitions over time for each individual unit. That is,
there is no information on the temporal covariances (y;;, y;,—) available in the data, and this
information gap implies that some identifying constraints over i and/or ¢ must be imposed
to estimate the unobserved transitions uniquely.

Different types of restrictions may be called upon (see Moffitt 1990). A rather restrictive
approach frequently applied in the statistical literature is to assume a priori that the transi-
tion probabilities are time-invariant and unit-homogeneous, hence w;, = u and X;, = X for
all i and ¢. It is easy to show that in this case the long-run steady-state outcome of p;; is
pir = /(i + 1).2 Some early references relating to models of this type include those that
estimate transition rates from aggregate frequency data (e.g., Lee et al. 1970; Lawless and
McLeish 1984; Kalbfleish and Lawless 1984, 1985). The formulation has also been used in
applied economic studies (McCall 1971; Topel 1983), in the famous mover—stayer model
of intragenerational job mobility (Goodman 1961; Bartholomew 1996), and in electoral
studies on voter transitions (e.g., Firth 1982). The assumption, however, that individual
differences in transitions are not present in the population lacks plausibility in many em-
pirical applications. Many populations studied are heterogeneous in the sense that they
comprise variation in transitions between units within periods and within units over time.
Consequently, as noted by Hawkins and Han (2000), studies that assume a time-invariant
Markov model with a homogeneous transition probability matrix have typically found their
estimates to be highly inefficient.

Moffitt (1993) proposed a model that relaxes the assumption of a time-invariant and
unit-homogeneous population. If we define the model as in Eq. (1), it is straightforward to
show that the reduced form for p;; is

t—1 t
Dit = Wir + Z (Mir 1_[ 77is>» (2

=1 s=1+1

Let pj1 = + npio, piz = + Mpi1 = + N +l npio)= (1 + 1) + n?pio, where n=1 — A — 1. Hence
pir=p+n+- 40"+ pio=pn 1+ X2 ')+ pio= /(e + )1 = ") +n' pio. As 1 — oo,
the polynomial n’ tends to 0, thus p;; = /(i + A). Obviously, this equation holds for —1 < < 1, as there is no
steady-state outcome if || = 1 (see also Bishop et al. 1975, pp. 261-262; Ross 1993, pp. 152-153).
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where ;s =1 — A;; — s, assuming either p;o =0 or t — c0.? By explicitly allowing for
time dependence and unit heterogeneity, this dynamic version of Eq. (1) is better suited to
yield a more informative model, as it imposes no a priori homogeneous structure on the
transitions.

The framework Moffitt (1993) uses to estimate Eq. (2) is based on the following ob-
servation. While RCS data lack direct information on transitions in opinions, preferences,
choices, and other individual characteristics, they often do provide a set of time-invariant and
time-varying covariates x;, that affect the hazards (i.e., the entry and exit transition prob-
abilities). If so, the history of these covariates (i.e., X;;, X;;—1, - - ., X;1) can be employed
to generate backward predictions for the transition probabilities (i, (Lir—1, - - -, 11 and
Aits Mit—1, - - ., Ai2) and thus for the marginal probabilities (p;;, pir—1, - - ., pi1)- Hence the
key here is to model the current and past u;; and X;; in a regression setting as functions of
current and backcasted values of time-invariant and time-varying covariates X;;. The param-
eter estimates of the covariates are obtained by substituting the hazards into Eq. (2). The
hazards themselves are specified as u;; = F(x;,3) and A;; =1 — F(x;;3%), where F—in
the current paper—is the logistic link function [Moffitt (1993) uses the probit]. Hence, it is
assumed that

logit (i) =x;, 3 and logit (1 — A;;) =x;, 3%, 3)

where 3 and 3* are two potentially different sets of parameters associated with two po-
tentially different sets of covariates x;,. This regression setup offers the opportunity to
estimate transition probabilities that vary across individuals and—if the model includes
time-varying covariates—time periods. Note that it is assumed that the regression coeffi-
cients are fixed over time. This is the fundamental restriction Moffitt (1993) imposes to
secure the identifiability of the parameters. There is, however, no need to invoke the as-
sumption of time-constant parameters if we have a sufficient number of cross sections. We
will return to this point momentarily. Maximum likelihood (ML) estimates of 3 and 3* can
be obtained by maximization of the log-likelihood function

T n; T n
LL= Z Z“n = Z Z[y” log(pir) + (1 — yi) log(1 — pis)l, )

t=1 i=lI t=1 i=1

with respect to the parameters, where T is the number of cross sections and 7, the number
of units of cross section #.* As Moffitt (1993) notes, obtaining p;; by means of Eq. (2) is
equivalent to “integrating out” over all possible transition histories for each individual i at
time ¢ to derive an expression for the marginal probability estimates. To convey this idea,
compare the contribution to the likelihood of the ith case at time ¢ in panel data with the
likelihood contribution of the same case in RCS data. For a first-order transition model of

3Let pi1 = i1 + Mi1 pios Pia = iz + M2 pit = iz + ni2(it + M1 pio) = iz + it niz + pionii nia- Hence pi =
Wir + (it Mir + Rir—2i—1Mis + -+ witniz - 0ie) + pionin - - e = i + 2oy tie([Togs Mis) + Pio
[T._y mir. Ast — 0o, T4, nis tends to O, thus p;; = uir + th;ll ir([T5—;41 Mis)- Obviously, we get the same
form for p;, if we let p;o =0.

“If the samples of the repeated cross-sectional surveys have an unequal number of observations, it may be desirable
to ensure a potentially equal contribution of the cross-sectional units to the likelihood by using the weighted log-
likelihood function LL* = Zthl oI, mll, where my =i /n;, with ii = Zthl n/T.
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binary recurrent events the contribution can be written as
L' _ Yir(1=yir—1) 1 — A Vit Yit—1 1 _ . (l—y,‘,)(l—y,‘,,l))\(l—yu)yiH 5
it = M, ( it) ( Mit) it (5)

(e.g., Stott 1997). Hence, conditional on y;,; and y;;_1, the likelihood contribution in binary
panel data simplifies to a single transition probability estimate. In the Markov model for
RCS data proposed by Moffitt (1993), however, the contribution of the ith case is given by

Lis = [ir(1 = pir—1) + (1 = Li)pir—1 [ = pir)(1 = pig—1) + ke pi—11"77". (6)

In this formulation the likelihood contribution is not a single hazard but, rather, a weighted
sum of two transition probabilities. Note that in the Markov model for RCS data the transition
probabilities are estimated as a function of all of the available cross-sectional samples rather
than simply the observations from the current time period (Mebane and Wand 1997). This
full information strategy expresses the notion that in RCS data different individuals are
observed over time, but individuals sharing the same covariate values are considered to be
exchangeable in the sense that their transition histories are assumed to be identical. Also,
note from the comparison that some efficiency is likely to be lost if we use RCS data instead
of a comparable panel data set with the same sample size. But too much should not be made
of mentioning differences in the efficiency of estimators since repeated cross-sectional
surveys typically have a larger effective sample size than pure panels (see Heckman and
Robb 1985; Moffitt 1990).

2.2 Modifications and Extensions of the Model
2.2.1 Infinite Time Horizon and Initial Condition

The Markov model presented in Eq. (2) assumes that either p;o =0 or t — oco. The latter
does not imply that the model is appropriate only in an infinite-horizon setting. Successful
application of the model, as our example shows, does not even require data from a large
number of time points. In fact, given good instrumental variables, two cross-sectional sam-
ples would be sufficient. Also, inferences in the model are not conditional on the observed
units and we do not want to make inferences to some notational or hypothetical population.
The model is used to make probability statements about a well-defined sample (or target)
population from which the purposive repeated samples were selected. The infinite-horizon
notation does imply, however, that there is a tendency as time passes for the probability of
being in a state to become independent of the initial condition at # = 0. For this reason the
initial condition is often regarded as a matter of minor importance in Markov modeling and
in many applications involving finite-horizon situations it is assumed that p;o =0 (Bishop
et al. 1975). It may be objected that this assumption is not very realistic for social and
political phenomena, which are often characterized by features such as inertia and state
dependence. It is clear, however, that when the number of time points grows large, the
weight of the initial observations in the likelihood becomes negligible and it is appropriate
to ignore this issue.

As noted by Moffitt (1993), the initial probability (i.e., p;o) refers to the value of the state
prior to the start of the Markov process (for example, the state of being below voting age at
the beginning of a vote/nonvote sequence) rather than to the first observed outcome (which is
pi1). If the initial states are known and fixed, they can be included in the model as additional
explanatory variables. For example, initial condition variables can be used to capture the
first entry into the vote/nonvote process at voting age 18 and, if appropriate, to capture the
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interaction of first entry with other characteristics such as race and education (see Moffitt
1993). To do so, one backcasts the individual observations until the minimum age of 18, at
which the first entry into the process is assumed to have occurred, and estimates p; for the
individuals aged 18 (which is not necessarily p;;). If for an individual the backcasted value
of age in a particular cross section is 18 or less, the entry and exit transition probabilities
at that time period are fixed to 0. So if it is appropriate to assume that an individual is at
the start of a new process, the initial state can be incorporated into the model. But for most
individuals in the samples we do not have access to the process from the beginning. The
first observed outcome for these individuals cannot be assumed fixed as it is determined
by the process generating the sample observations. Getting around this problem is difficult,
but it might be solved, at least in part, as follows. Moffitt (1993) assumes that p;o =0
and defines P(y;; =1) to equal the transition probability w;;. In many applications this
assumption is untenable and it seems more plausible simply to take P(y;; = 1) to equal the
state probability p;;. Thus for all of the cross-sectional samples the model starts with p;;
instead of u;;, invoked by the assumption that p;o = 0. That is, one assumes that the y;,’s are
random variables with a probability distribution P(y;; = 1) = F(x;,6), where § is a set of
parameters to be estimated and F is the logistic link function. The é parameters for the first
observed outcomes at r = 1 are estimated simultaneously with the entry and exit parameters
of interest at t =2, ..., T. Note, again, that the probability vector at the beginning of the
observed Markov chain, p;;, is estimated as a function of all cross-sectional data, rather
than simply the observations at t = 1.

2.2.2 ML Estimation

Maximum likelihood estimation requires the (analytic or numerical) derivatives of the log-
likelihood function with respect to the parameters. If we suppress the subscript i for the
moment to avoid cumbersome notation, the first-order partial derivatives of ¢¢ with respect
to the parameters 3 and 3* are

{124 aeL  op, V=D (3Pt1 n 0Ly p )>
oLt dtt opr _ . o).
B ap B p(-p) \ 98 BJe; '

oLl aet  dp, Yt — Di <8pt—l oA, )

Y A Ty - oy S

08 op 08*  p(l—py \ 9" gt

)

where 91, /03 =x, 1, (1 — ;) and 9A,/93* = —x,A,(1 — A;). Fisher’s method-of-scoring
(Amemiya 1981) may be used to obtain both the ML parameter estimates and an estimate of
the asymptotic variance-covariance matrix of the model parameters. Further details about the
method-of-scoring procedure, including the analytic derivatives of p, with respect to the
parameters, are provided by Pelzer et al. (2001).

2.2.3 Nonbackcastable Covariates

The estimation strategy proposed by Moffitt (1993) involves searching the cross-sectional
data files for variables taking known values in the past. Clearly, time-invariant character-
istics such as sex, race, cohort, and completed education are candidates, and time-specific
aggregates measurable in the past may also enter the model. But variables such as age are
usable too, as are age-related variables such as the number of children at different ages, since
knowledge of the current age implies knowledge of age in any past year. However, in many
application settings we have time-dependent covariates that the basic model would omit



Transition Probabilities from Repeated Cross Sections 119

because the past histories are unknown. To incorporate these “nonbackcastable” variables,
we may adopt a model with two different sets of parameters for both p;, and A;,, i.e., one for
the current transition probability estimates and a separate one for the preceding estimates.
Define v;; as a vector of nonbackcastable variables and ¢ as the associated parameter vector.
One can then write

X;: 3" 4+ v, ¢ for 2
logit (i) = °
ogit (i) {Xm@ for t—1,..., L ®

A similar model may be specified for 1;,. These specifications offer the opportunity to
express the current transition probability estimates as a logistic function of both the back-
castable and nonbackcastable variables. The expression also affords a test—useful for ef-
ficiency gains—of the hypothesis 3** = 3. Whether variables can be backcasted with rea-
sonable accuracy obviously also depends on the time span of the repeated cross-sectional
data. If, for example, the samples concern a limited number of consecutive week surveys,
even nonbackcastable variables such as income may reasonably be treated as time-constant.
Also, the model can easily be adjusted so that backcasting is performed for a limited number
of time periods. Restricted backcasting may be preferred if only the immediate history is
known or if covariates can safely be assumed to be constant only for a particular number
of time points.

2.2.4 Time-Varying Covariate Effects

Another drawback of the basic model is that it assumes that the parameters of the covariates
are fixed over the time period during which the repeated cross-sectional samples were ob-
tained. As indicated above, this is the critical identifying restriction Moffitt imposed to
estimate the parameters. However, the assumption of time-constant coefficients cannot be
expected to remain valid for long periods of time and thus potentially biases the estimated
effects. Relevant changes in the population and events that intervene in consecutive cross
sections induce variation in the population parameters. There are at least two approaches
to deal with time dependence. One is to use a fully parametric approach, not pursued in
this paper, and to allow the regression coefficients to become a specific function of time
using, for example, the polynomial function 8, =yy + yit + yat? + - -+ + yt?, where
the positive integer d specifies the degree of the polynomial. Alternatively, one may use a
partially parametric approach, as in this paper, divide the time axis into discrete time peri-
ods, and assume that the parameters are constant within but vary across time periods. An
advantage of the fully parametric approach is that it often requires that fewer additional
parameters be estimated, but in some applications it may not provide enough flexibility
and local adaptiveness. It will also be necessary in the fully parametric approach to have
models with low-degree polynomials to avoid nonexistence of unique ML estimates. The
partially parametric approach is particularly useful when little is known about the form of
the time dependence. Obviously, in this approach too, continually modifying the values of
the parameters so as to allow the model to adapt itself to local conditions produces problems
of overparameterization.

2.2.5 Unobserved Heterogeneity

The framework discussed by Moffitt (1993) assumes that the differences in transitions
within the population depend only on variation in the observed variables used as covariates
in the model. However, the assumption that the model includes all relevant variables is
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rarely even approximately true in social and political science practice. Therefore, another
useful extension of the basic model is to include an additional, individual-specific random
error term, &;, in the linear predictor of the transition probabilities to account for omitted
variables, at least insofar as the omitted variables are time-invariant for each individual. In
this so-called logistic-normal mixture model we have logit (},) = X;; 3+ yo&; and logit (1 —
Al =X B* + y1&;, where vy and y; are the coefficients of the random variable ¢; having
zero mean and unit variance (Collett 1991). Hence u, and (1 — A%,) have a logistic-normal
distribution, e.g., logit (u},) ~ N(x;;3, yoz). This model has the marginal log-likelihood

T 1t o0
LL=3"3" [ “butogi) + (1= yilogtl = il fe)der ©)

t=1 i=1

where p}, =u},(1 — p!_) + (1 — A})p},_, and f(e) is the probability density function
of the standard normal random variable ¢;. To integrate this likelihood with respect to the
distribution of ¢;, we approximate the integral by the Gauss—Hermite formula for numerical
integration, i.e., f_oooo f@ e dz~ 3:1 w; f(z;), where z; are the nodes of the quadrature
formula and w; the associated weights. The integrated log-likelihood then becomes

T ny q

LL=Y 3" w7 7w;[yilog(p}) + (1 = yinlog(1 — pi;)]. (10)

=1 i=1 j=1

where p/; = uly + Y2 el Tlicorr (1= 2)) = ). logit(u) = xi0B + 10z v/2. logit
(11— k{:) =x; 8% + y12;+/2, w; are the fixed quadrature probabilities, and z, are the nodes
at the mass points j of the g quadrature. Their values are tabulated in standard tables for
specified numbers of quadrature points (e.g., Stroud and Secrest 1966). Our application
below uses a 20-point Gaussian quadrature and W jand z j«/i as fixed probabilities and
mass points, respectively. Note that the model employs a single random error term, ¢;, for
both 17, and A},. Additional insight into the nature of heterogeneity could be provided by
more general models that fit two independent Gaussian random variables or, preferably, a
bivariate normal random effect (see Cook and Ng 1997). Also, the model assumes that the
unmeasured variables for each individual are constant over time. For example, among the
unmeasured (or not accurately measured) factors determining voter preferences, character-
istics such as personality traits, political knowledge, and features of the local political system
are likely to differ considerably among voters and to remain reasonably stable over time.
Nevertheless, controlling for heterogeneity caused by unobserved time-invariant variables
may be insufficient in empirical applications. Further, although relatively little is known
about individual-specific heterogeneity in Bernoulli models of the kind considered here, our
limited Monte Carlo experiments indicate that a large quantity of individual observations
is needed to estimate the random effects accurately (see also Heckman 1981).

Our limited experience also supports the notion that ignoring heterogeneity in the current
model is unlikely radically to change parameter estimates, but it may lead to underestimation
of the standard errors and thus to misleading tests (Morgan 1992, p. 287). Traditional
likelihood-ratio testing should not be used to test for the significance of the ancillary variance
parameter y because the difference in deviance for a model including the random effect and
a (nested) model excluding the random effect (i.e., —2A LL) cannot be assumed to have a
x? distribution (Collett 1991). The hypothesis tested here is that = 0. Since variances are
by definition nonzero, positive quantities, the alternative is one-sided and the distribution of
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the likelihood-ratio test statistic under the null hypothesis is generally not known. For this
situation Snijders and Bosker (1999, pp. 90-91) suggested determining the tail probability
of —2ALL for the x? distribution with df equal to the number of additional parameters, and
then to halve this tail value to obtain the p value for testing the significance of the random
effect. Finally, as noted by Moffitt (1993), uncontrolled heterogeneity in the transitions
generates serial correlation in the model and thereby affects the form of the reduced-form
expression (2). Hence, the presence of such time-dependent structure complicates matters
considerably as p,_; influences p, in a nonlinear way.

2.3 Related Lines of Research
2.3.1 Shrinking Logical Bounds

The partition Eq. (1) implies the familiar restriction, customarily attributed to Duncan and
Davis (1953), that w;; = pi; /(1 — pir—1) — pir—1/(1 — pir—1)kis, where k;; =1 — A;;. This
identity is used by King (1997) in his ecological inference method to construct a so-called
tomography plot. The axes of this plot represent the parameters «;; and u;,, and the linear
constraint on each individual i inherent in Eq. (1) is represented by a tomography line with
intercept p;;/(1 — p;;—1) and slope —p;;—1 /(1 — pi;—1) that goes through the point (k;;, ti¢).
The lines have a limited range of angles (i.e., all have a negative slope) and they all intersect
the 45° line of w;; = k;; at (pis, pir)- Since the estimated probabilities are guaranteed to lie
in the (0, 1) range, we have w;; € (Lis, Upiy) and «;; € (Lk;;, Uk;y), where the lower (L)
and upper (U) bounds of these intervals are defined by the min and max operators

Ly = max (0, M) < pi; < min (Lv 1) = Uiz,
1 — pi_1 1 — pir1

(11)

(1= pi_ )
Lk;; = max (0, M) <kj; < min( Pit s 1) =Uk;;
Pit—1 Dit—1

(see King 1997). Hence the estimated values of u;, and «;; are constrained to lie on that part
of the tomography line that intersects the feasible region defined by the logical boundary
points. Since the limits are related (e.g., Ly = (pir/1 — pir—1) — (Pir—1/1 — pir—1)Ukir),
the tomography line corresponds to the main diagonal of the rectangular region defined by
the lower and upper bounds. Also, because the estimates produced are restricted to lie on the
diagonal, they satisfy u;, = a;; — bjsk;;, where a;; = (U iy Uk — Lini Lii )(U ki — Lici)™!
and b;; = (U iy — Li)(Uki; — Lii;)~" (see Chambers and Steel 2001).

The estimation procedure considered here implicitly takes into account the bounds and
thereby restricts the range of feasible estimates of u;, and «;,. This is accomplished simply
by constraining the individual probabilities to lie within the admissible range (0, 1). Clearly,
explicit assumptions about the relative magnitude of u;, and k;, would allow one to narrow
the bounds beyond the logical limits. For example, in studies of U.S. interparty electoral
transition it may be assumed, in the spirit of Shively (1991), that the probability that a
Democrat at t — 1 repeats a vote for that party at ¢ is greater than the probability that a
non-Democrat at ¢t — 1 shifts to the Democrats at ¢. This assumption translates into the
restriction that «;; > p;, (i.e., n;; > 0). Such a restriction is difficult to justify in general,
however, and we would not expect it to be the case for every single voter. Because there is
also no algebraic requirement in Eq. (1) that »;, > 0, we would not recommend using this
assumption universally. Finally, note that if the entry and 1-exit transitions are equal to each
other (i.e., u;; = k;;), identity (1) reduces to p;; = w;;-
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2.3.2 Ecological Panel Inference and Two-Stage Auxiliary Instrumental Variables

The framework considered here is related to both the ecological panel inference (EPI)
method of Penubarti and Schuessler (1998) and the two-stage auxiliary instrumental vari-
ables (2SAIV) approach of Franklin (1989). The EPI method and the one presented here are
the same in that both intend to derive micro-level conclusions from repeated cross sections,
but they are methodologically quite different in their strategy. The former uses a cross-
sectional data set to construct a limited number of demographic profiles, which amounts to
grouping the individual data according to the values of the observed covariates and aggregat-
ing within the groupings (i.e., summing counts and totals to obtain proportions). If one has
available two consecutive cross sections, this aggregate information can be used to obtain
the margins of the 2 x 2 transition table for each profile that—using King’s (1997) method
of ecological inference—allows one to track changes in the dependent variable of interest.
As Penubarti and Schuessler (1998) note, the number of possible combinations of values
of the covariates should not be too large relative to the sample size to obtain reasonably
reliable aggregates. Hence the method has a problem with sparse data, where sparse means
that for every pattern of covariate values we have only a small number of observations.
Also note that inferences in EPI are at the level of profiles (based on individuals sharing the
same values of the observed covariates) rather than at the level of individuals. The method
allows one to trace demographic profiles over time rather than individuals as their profiles
might change. In the instrumental variable method presented here actual grouping of the
cross-sectional data in observed covariate patterns need not be done. In fact, in the extreme
case each individual observation may have its own pattern of covariates. Hence what is
special for the current model is that the variation and information in the individual data
is fully exploited. Further, while it might be possible to extend the EPI approach to more
complex situations involving multiple surveys, the method is likely to face difficulties if the
number of cross sections and the number of time-varying covariates become large and if
we have important nonbackcastable covariates. Our procedure is also closely related to the
intriguing framework presented by Franklin (1989), who proposed a two-stage auxiliary
instrumental variables (2SAIV) method of estimating across (panel and other) data sets. It
differs, however, in at least three ways. First, while the two-stage instrumental variables
method uses auxiliary data to generate predicted values for a right-hand-side variable in the
equation of interest in a main data set, the current model is full information in the sense
that all subsequent data sets are used in the ML estimation. Second, 2SAIV estimators
assume that the (auxiliary and main) data sets derive from the same underlying population.
In the current model important events and relevant population changes can in principle be
included in the model as additional covariates. Of course, if these events and changes are
not in any way related to the variables included, there is no reason to adjust the model.
Third, the 2SAIV method as presented by Franklin (1989) assumes that the relationships
between the auxiliary measures and the measures of interest are time-invariant. Given a
sufficient number of cross sections, the procedure presented here offers the opportunity to
verify and, if needed, to relax the assumption of time invariant relationships.

2.4 Quantities of Interest and Potential Applications

The model presented above may be used for different purposes. One is to understand
the individual-level relation between covariate effects and transitions in a binary response
variable, under Markov assumptions. Another potential goal is to estimate transition prob-
abilities when individual sequence information is not available. The empirical application
below illustrates how the model can be used to provide information on individual electoral
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transitions and the role of voting-related covariates when exact voting sequences are
unknown. While our illustration example uses bimonthly data, the model is typically de-
signed to estimate transition probabilities from repeated cross sections covering long-term
periods. An example is the analysis of labor force participation decisions of Dutch women
over the 1986-1995 period by Pelzer et al. (2001).° Probably the most obvious application
in political science is the examination of voter transitions. However, all kinds of political
science research problems concerning transitions and involving a binary outcome could
benefit from the proposed model, provided that one has available good instruments to pre-
dict the unobserved transitions. It may also be noted that not only is the model suitable
for examining transitions over historical or calendar time, but also it can be used to study
changes in developmental time over age, i.e., to study life cycle history issues (see Moffitt
1990). Our program CrossMark may be used to do the computations.®

3 Application
3.1 Data

The empirical illustration employs election-year panel data on U.S. presidential vote inten-
tion drawn from the campaign study conducted by Patterson (1980) in Erie, PA, and Los
Angeles, CA, in 1976. These five-wave bimonthly panel data were also used by Sigelman
(1991) in his panel ecological inference study. As indicated above, the purpose of this exam-
ple is to illustrate the model rather than to provide a definitive analysis of the data. The panel
data were treated as if they were a temporal sequence of cross sections of the electorate.
That is, no information on the cov(y;, y,_1) is available in the data file used for the Markov
analysis. The application uses panel data because they provide a check of the ability of the
Markov approach to recover known party-switching transitions. Some caution is warranted
in interpreting the results, however, as the individual transition probability estimates are
based on observations that are not independent. The binary outcome variable y;, is defined
to equal 1 if the voter i prefers the Democratic party or candidate (i.e., Carter) at time period
t and 0 otherwise [i.e., Republican party or candidate (Ford) and others].

Table 1 provides some summary descriptive statistics. It gives the number of observa-
tions including panel inflow and outflow, the marginal distribution of y;; over time, and the
observed entry and exit transition rates in the panel. The table shows that, despite substantial
bimonthly turnover, with values ranging from 0.138 to 0.248, almost half of the respon-
dents continue to prefer the Democratic presidential candidate over time. It is important
to note that across the five waves of data a substantial number of sample members attrites
from the panel. Because some nonrespondents from one wave are recruited back into the
sample at subsequent waves, both monotone and nonmonotone participation patterns occur.
The current model is special in that it includes all respondents, i.e., both nonattritors and
attritors.

3See Felteau et al. (1997) for an application to the marriage and fertility decisions of Canadian women using data
from the Survey of Consumer Finances of Statistics Canada consisting of 15 repeated cross sections of the years
1975 to 1993.

5The program CrossMark is free software and can be freely used and distributed. The main characteristic of
the program is the implementation of the Fisher-scoring estimation algorithm. The software is programmed in
Delphi but distributed as a compiled version running independently from Delphi or any software on the Windows
platform. CrossMark does all of the computations reported here including ML estimation, weighting, fixing
probabilities, random effect parameter estimation, and (by tricking the program) dynamic panel analysis. The
software is available at the Political Analysis Web site. Those interested in SPSS Matrix or Gauss versions of the
program (with fewer options) should contact the authors.
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Table 1 Marginal fraction of Democratic vote intention and observed entry
and exit transition rates

Year. month  n, Inflow  Outflow ¥y Vel y-1=0 ¥ |y1=1

1976.02 856 0.384
04 790 142 208 0.460 0.248 0.178
06 792 153 151 0.471 0.170 0.176
08 727 90 155 0.465 0.203 0.229
10 691 80 116 0.457 0.140 0.138

The survey also provides information on sociodemographic characteristics and attitudes
toward the presidential candidates. The analysis presented here uses only variables that
would generally be available in repeated cross-sectional surveys. As backcastable variables,
the analysis employs vote choice at the preceding election (i.e., whether the respondent voted
for either Nixon or Ford in 1972), race, education, age, and sex. All of these covariates are
assumed to be fixed over the survey’s duration. In addition to these time-constant variables,
the analysis also includes several nonbackcastable covariates. These include (i) whether the
respondent identifies him/herself as Democrat or not, (ii) responses to the statements “It
doesn’t make much difference whether a Republican or a Democrat is elected President”
and “All in all, Gerald Ford has done a good job as President,” (iii) measures of (un)favorable
feelings toward the candidates Ford and Carter, and (iv) opinions about their specific qualities
[i.e., very (un)trustworthy, excellent/poor leader, and great deal of/almost no ability]. The
responses to the two statements and the candidate images were all registered on 7-point
Likert-type scales, running from “strongly disagree” to “strongly agree” and “unfavorable”
to “favorable.”

3.2 Model Estimation

First, a time-stationary Markov model with constant terms only was applied to the data.
This model produced the parameters B3(ii;~1) = —0.238 and 3*();~1) = 0.034 and a corre-
sponding maximum log-likelihood value of LL = —2643.56. These estimates imply con-
stant transition rates of . =0.44 and A =0.51, hence implausibly high values that amply
exceed the observed rates as reported in Table 1. The model was then extended to a non-
stationary, heterogeneous Markov model by including the backcastable covariates reported
above. The results are shown in Table 2. The parameters in the second column show the
effects of the backcastable variables on the probability of a Democratic vote at t =1 (i.e.,
pi1) estimated for all cases. As can be seen, the parameters are well determined, with a
Democratic preference positively affected by being black and a vote for McGovern in 1972
and negatively by education and a vote for Nixon at the prior election. The third column in
Table 2 presents the effects of the variables on the transitions from non-Democratic (i.e.,
Republican and others) to Democratic. Whereas a previous vote for McGovern is signifi-
cant in encouraging entry into a Democratic preference, the entry decisions are negatively
affected by education, age, and a 1972 vote for Nixon. The last column gives the effects on
the transitions into non-Democratic. We find that the exit rates are negatively affected by a
vote for McGovern in 1972, being black, and age and positively by sex (female).

Table 3 reports the regression estimates of a transition model that has all of the variables
(including those with unknown history) along with the random effects to account for
potential overdispersion. Wald and likelihood-ratio tests revealed no significant difference
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Table 2 Markov repeated cross-section parameter estimates of backcastable
variables only for transitions into and out of Democratic vote intention

6(pi=1) B(r) —B*(A.)

Voted Nixon in 1972 —1.14 (0.03) —1.36(0.04)
Voted McGovern in 1972 1.30 (0.03) 1.58 (0.11)  —0.56 (0.28)
Black 0.96 (0.07) —2.29(0.38)
Education —0.29 (0.00) —0.23 (0.01)
Age —0.01 (0.00)  —0.08 (0.00)  —0.10(0.02)
Female 0.73 (0.21)
Constant 0.82 (0.09) 3.47 (0.45) 2.67 (0.65)

Number of observations 3856

Log likelihood —2142.48

Note. Standard errors in parentheses. The 3 parameters represent the effect on w,, B*
the effect on (1 — A,), and thus —(3* the effect on A,.

between the effects of the backcastable variables on the current transitions and their effects
on the past transitions. The table therefore presents a single parameter for the backcastable
covariates. Further, because there are reasons to believe that the effects of the nonback-
castable covariates may vary over the period leading up to the election, several tests with
different time-varying coefficient models of varying degrees of simplicity were applied
to the data. The model shown in Table 3 best describes the data in terms of goodness of
fit. The likelihood-ratio statistic may also be computed to assess the statistical significance
of the improvement in fit that results from including the nonbackcastable variables and the
random effects. But it is clear from the log-likelihood values reported in Tables 2 and 3 that
the enlarged model provides a much better fit. The second column in Table 3 again shows
the estimated effects on the state probability p;;. Whereas the effects of a 1972 vote for
McGovern and identification with the Democrats turn out to be positive, the effects of a vote
for Nixon, favorable feelings toward Ford, and indifference toward the future president’s
leaning are negative. The third and fifth columns provide the effects on the entry and exit
rates, respectively, with respect to a Democratic vote. The columns labeled “Time” indi-
cate the time periods pertaining to the (time-varying) parameters. For example, favorable
feelings toward Carter have an effect on w, of 0.38 at time =2, 3 and an effect of 1.23 at
time =4, 5. Most of the parameters are again well determined and consistent with those
commonly reported in the literature. In short, a positive attitude toward the Republican
(Democratic) candidate Ford (Carter) decreases (increases) the entry rates and increases
(decreases) the exit rates. The stronger respondents think of themselves as being Democrat,
the higher (lower) their entry (exit) transition rates. The two random effect parameters, y,
are insignificant. The difference in deviance between the model in question and the model
that omits the random effects is —2A L L = 0.262, which is obviously not significant even if
we were to halve the p value. For the analyses reported below the parameters were therefore
estimated anew with the ancillary parameters y restricted to O.

The tomography lines for one time period are singled out for discussion purposes. Figure 1
shows for alli atz =5 the lines ;5 = (pis/1 — pia) — (pia/1 — pia)kis, where k;s = 1 — X;s.
The 691 lines all have a negative slope, and they all intersect the 45° line of ;s =«;5 at
(pis, pis). The permissible range of the parameters for an individual can be obtained by pro-
jecting the line onto the horizontal (for «;5) and vertical (for 1;5) axes. Note that while most
of the point estimates are below the 45° line, for a substantial number of cases u;5 exceeds
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Table 3 Markov repeated cross-section estimates of backcastable and nonbackcastable variables

6(pi=1) B(r) Time - B () Time
Backcastable variables
Voted Nixon in 1972 —0.93 (0.23) —0.61(0.35) 2,4 1.47 (0.71) 2,4
Voted McGovern in 1972 0.57(0.21)  0.96 (0.32) 2
Black 1.39 (0.59) 2
Education 0.71(0.19) 2,3,4
Constant —1.37 (0.18) —1.09 (0.33) 2,3,4,5 —4.58(1.06) 2,3,4,5

Nonbackcastable variables
Self-identification as Democrat ~ 1.87 (0.19) 2.59 (0.54) 2,3 —3.15(0.79) 3

1.58 (0.70) 5 —2.85(0.79) 4
Indifferent toward Democratic
or Republican president —0.19 (0.05) 0.43(0.12) 2,3,4
Ford
— Good job as president —0.39 (0.18) 4,5 0.63 (0.16) 2,3,4
— Favorable feelings —0.28 (0.05) —0.31(0.10) 2 0.97 (0.21) 5
—1.34 (0.38) 4
— Trustworthiness —1.12 (0.34) 5 1.40 (0.40) 4
— Leadership —0.39(0.13) 3
— Ability 1.35(0.33) 2,5
Carter
— Favorable feelings 0.38 (0.11) 2,3 —0.69 (0.18) 3,4
1.23 (0.31) 4,5 —1.81 (0.35) 5
— Trustworthiness 1.36 (0.16) 4,5
— Leadership —0.75 (0.31) 4
— Ability —1.24 (0.53) 2
Constant —1.28 (0.56) 2,3 3.19 (0.73) 3
—1.86 (0.82) 4 2.80 (0.84) 4
—1.69 (0.88) 5
y 0.71 (0.86) 2,3,4,5 0.12(1.90) 2,3,4,5
Number of observations 3856
Log likelihood —1431.04

Note. Standard errors in parentheses. The columns labeled Zime indicate the discrete time periods pertaining to
the parameters.

kis. In fact, almost 25% of the observations fail to conform to the restriction that «;; > ;.
Hence, incorporating the external assumption that party loyalty rates exceed entry rates
would most likely lead to incorrect conclusions. Visual inspection of Fig. 1 also suggests a
strong relationship between ;s and «;s, with low (high) entry rates corresponding with high
(low) exit rates. Also note that most of the predictions tend to approach the basically ideal
situation of either extremely high or extremely low transition probability estimates. The
estimates themselves clearly exhibit a bimodal distribution. Had the instrumental variables
been weaker, the two modes would be less well separated or even unimodal.

3.3 Model Validation

It may be of interest to report how the parameter estimates compare to the estimates we
would get using a standard dynamic panel estimator. This comparison indicates how much
is lost by modeling the panel data as an RCS data set. Most closely related to the RCS
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Fig. 1 Tomography lines (691) for current entry and 1 — exit transitions at sample period ¢ =5.

transition model is a first-order Markov model for panel data as discussed, for exam-
ple, by Amemiya (1985), Diggle et al. (1994), and Hamerle and Ronning (1995). Their
model uses a separate logistic regression for P(y;; =1|y;;—; =0, 1) and can be written
logit P(y;; =1]yi;_1=0,1)=x;,8 + yi,_1X;;, where = (3* — 3. This equation thus
expresses two regressions as a single dynamic logistic model that includes as predictors both
the previous response y;;—; and the interaction of y;,_; and the covariates x;;. Because y,;_;
is missing for some respondents, the estimates of the two models reported in Table 4 were
obtained from an analysis of the respondents with a valid score on both y; and y,_;. As can
be seen, the parameter estimates of the two models are rather similar, except for the constant
terms. The signs are all identical and there are no gross discrepancies in magnitude. Also
note that, again except for intercepts, the ratio of the parameter estimates to the standard
errors is very much alike for the two models, implying that they lead to similar test statistics.
Hence the RCS estimators compare rather favorably with the dynamic panel estimators in
the sense that a panel analysis of the data would not markedly alter the substantive results.

To understand how well the RCS Markov model reproduces the actual observations in
the panel, we may examine its efficacy in various ways. One is to assess the fit of the model
in terms of prediction errors, using the mean squared error (MSE).The error measures are
given in Table 5. The MSE tends to zero if ;, (A;,) tends to approach O or 1, and the lower the
error rate, the better the model predicts. Table 5 indicates that the MSEs are remarkably low
and that over time they gradually lean to the ideal situation of perfect separation between the
vir =0 and the y;; = 1 groups. Also note that the summary measures suggest that the model
does somewhat better in terms of predicting entry than it does in predicting exit. Another
way to examine the performance of the model is to compare the actual sample frequency
of all possible bimonthly (0,1) voting sequences with the estimated expected frequency of
each sequence.’

"The estimated expected frequencies were computed as follows. With 7 sample periods, we have
ZrT=1 2! different (0,1) sequences (which in the present application equals 62) ranging in length from 1 (e.g., “0”)
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Table 4 Markov repeated cross-section (RCS) and standard dynamic panel estimates

B(e) _IB*()W)
RCS Panel Time RCS Panel Time
Voted Nixon in 1972 —0.43 (0.40) —0.67 (0.26) 2,4 1.83(0.73) 0.67 (0.29) 2,4
Voted McGovern in 1972 0.58 (0.46) 0.29 (0.35) 2
Black 0.77 (0.72) 0.26 (0.75) 2
Education 0.46 (0.15) 0.04 (0.08) 2,3,4
Self-identification 2.94(043) 1.75(0.21) 2,3 —-2.43(0.71) —1.78 (0.37) 3
as Democrat
1.09 (0.59) 1.05 (0.50) 5 —2.42 (0.75) —0.75 (0.39) 4
Indifferent toward 0.38 (0.10) 0.29 (0.05) 2,3,4
Democratic or
Republican president
Ford
— Good job as president —0.41 (0.16) —0.54 (0.13) 4,5 0.43(0.13) 0.20(0.07) 2,3,4
— Favorable feelings —0.26 (0.10) —0.20 (0.08) 2 2.91 (0.88) 1.17(0.23) 5
—1.32 (0.29) —1.06 (0.22) 4
— Trustworthiness —0.99 (0.26) —0.87 (0.21) 5 1.27 (0.36) 0.41(0.14) 4
— Leadership —0.38 (0.12) —0.31 (0.10) 3
— Ability 1.33(0.34) 0.24(0.11) 2,5
Carter
— Favorable feelings 0.26 (0.09) 0.46(0.08) 2,3 —0.75(0.18) —0.43 (0.09) 3,4
1.02(0.21) 1.12(0.18) 4,5 —3.10(0.86) —1.02 (0.20) 5
— Trustworthiness 1.13(0.26) 0.67 (0.18) 4,5
— Leadership —0.71 (0.33) —0.48 (0.16) 4
— Ability —1.41 (0.33) —0.46 (0.12) 2
Constant —2.45(0.64) —3.04 (0.58) 2,3,4,5 —5.92 (1.58) —2.40 (0.68) 2,3,4,5
0.35 (0.78) —0.06 (0.67) 3 5.07 (1.59) 2.36(0.87) 3
—1.56 (1.63) 0.18 (1.24) 4 2.64 (2.31) 2.58(1.19) 4
—2.77 (1.79) —0.59 (1.34) 5
Number of observations 2572
Log likelihood RCS?* —885.97
Log likelihood panel —798.66

Note. Standard errors in parentheses. The columns labeled Time indicate the discrete time periods pertaining to

the parameters.

4The log likelihood of the RCS Markov model is obtained after excluding the contribution of the 856 observations

attr =1 of —381.44.

Before discussing the findings it is important to note that while the model predicts the

current probabilities at time point ¢ (i.e., p;;, i, and A;;) very well, it does not in general
reproduce the past probabilities at t — 1, t — 2, etc., equally well. The reason is that the past
probabilities are predicted by the backcastable variables only, and they are not very good
predictors. This obviously hampers the estimation of the expected frequencies. We therefore

to T (e.g., “11111”) . We define the probability of a sequence of length ¢ for observation i of cross section ¢ as
Pi(¥1, -, ¥) =Py =510+ -Nyir = §), where 3y, ..., ; =0, 1. Hence p;(§1) = P(yi1 = F1) =1 pi1 +(1—
$1)(1—=pi1), where p;y is P(y;; = 1). Fort > 1, we have p; (31, ..., 50 = P [ 1% —» (oo + Po1 + pro + p11),
where poo = (1 — 1)1 — $:)(1 — piz), por =(1 jyr—l)ytﬂit’ P10=Yr—1(1 = Jr)Air, and pi1 = Jr—1 (1 —
Aiz). The estimated expected absolute frequency f (31, ..., §i) of each participation sequence was obtained by
evaluating f(31. .., 5= 2L, Bi(F1s -, Jo)-



Transition Probabilities from Repeated Cross Sections

Table 5 Mean squared errors

t

2 3 4 5
win Y (vh — wi)? 0146 0123 0.068  0.049
)L:nl’l ;“:1 O = ri)? 0155 0121  0.126  0.069
Note. y}, = (yir | yir—1 =0), and y}* = (yir | yir—1 = 1).

Table 6 Frequencies of observed (Obs) and estimated expected (Exp)
(non-)Democratic vote intention sequences

Sequence*  Obs  Exp A Sequence*  Obs  Exp A

0 527 524 -3 00001 7 9 2
1 329 332 3 00010 9 3 -6
00 309 296 —13 00011 14 13 -1
01 102 104 2 00100 9 13 4
10 46 50 4 00101 2 2 0
11 213 219 6 00110 2 3 1
000 223 207 -16 00111 11 8 -3
001 37 40 3 01000 8 10 2
010 26 20 -6 01001 5 1 —4
011 66 69 3 01010 3 0 -3
100 25 26 1 01011 4 2 -2
101 13 14 1 01100 10 7 -3
110 20 20 0 01101 4 3 —1
111 160 174 14 01110 4 5 1
0000 160 157 -3 01111 33 29 —4
0001 30 24 —6 10000 9 18 9
0010 12 18 6 10001 3 2 —1
0011 14 14 0 10010 1 1 0
0100 13 13 0 10011 4 1 -3
0101 10 4 -6 10100 3 5 2
0110 15 12 -3 10101 2 1 —1
0111 43 40 -3 10110 0 2 2
1000 12 19 7 10111 4 2 -2
1001 5 2 -3 11000 9 6 -3
1010 5 6 1 11001 0 1 1
1011 4 5 1 11010 1 0 -1
1100 12 11 -1 11011 3 3 0
1101 4 6 2 11100 9 7 -2
1110 23 13 —10 11101 11 3 -8
1111 114 132 18 11110 9 12 3
00000 140 138 -2 11111 91 114 23

4A binary digit represents a spell occurring over the sample periods ¢, where 1
refers to Democrat and 0 to non-Democrat. The first spell starts at # =1 and the
sequences end at the observation period ¢. The frequencies were obtained only for
respondents with a valid score on y; through y; in the panel.

129
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decided to “backcast” the nonbackcastable variables a single time period (by assuming them
to be constant for two consecutive time periods ¢ — 1 and ¢) and subsequently computed the
expected frequencies. Table 6 compares the estimated expected and the actually observed
absolute frequencies of all 62 (0,1) voting sequences. The longitudinal voting profiles indi-
cate that both the observed and the predicted frequencies are concentrated in the continuous
Democratic and the continuous non-Democratic vote categories. Hence most voters remain
loyal to their initial preference and proportionally few change their vote intention frequently.
What is encouraging is the ability of the model to recover sequence membership, even in
the presence of recurrent vote switching. Table 6 indicates quite clearly that for most se-
quences the estimated expected frequency predicted by the RCS transition model matches
the observed frequency in the panel data well. The only notable exceptions are the highly
populated consecutive Democratic vote categories (i.e., the arrays of 1s). However, even
for these sequences the model performance is quite good. Hence these findings illustrate
that, in this application at least, the model is well able to recover the actual transitions in
the panel.

4 Conclusion

The benefits of repeated cross sections for longitudinal analysis of social and political
phenomena have long been understated. Moreover, they are generally regarded as inferior
to panel data. It is often thought, for example, that it is inherently impossible to estimate
micro-level dynamic models with independent cross sections. As Moffitt (1990, 1993) and
others (e.g., Heckman and Robb 1985) have shown, however, this is not correct. Obviously,
the estimation of dynamic models with cross-sectional samples is hampered by the lack of
information about lagged variables, but these data can nevertheless sometimes be used to
identify longitudinal estimators. One important advantage to using panel data is that they
provide a measure of gross individual change for each sample unit. However, panel data are
often not available and they may also be inferior to the available repeated cross sections in
terms of sample size, time period covered, and representativeness.

There has been a considerable expansion in the availability of repeated cross-sectional
surveys in the past few decades. This accumulation not only provides researchers with
a growing opportunity to analyze over-time change, but also raises questions about new
analytic methodology for exploiting the properties of RCS data for longitudinal study.
The Markov model for cross-level inference presented here can help us estimate binary
transitions when it is either impossible or impractical to collect panel information on these
events. Our example application shows that the model captures voters with very differ-
ent entry and exit transition probabilities. More important, it yields parameters that are
fairly consistent with those of a dynamic panel model and it produces transition frequency
estimates that are remarkably consistent with the actual observations in the panel. The
results thus demonstrate that the proposed model can be used to identify transition prob-
abilities accurately solely on the basis of repeated cross sections and hence to coax panel
conclusions out of nonpanel data.

Obviously, generalizing from one particular example is hazardous and there are certainly
caveats in applying the model. The prerequisite for adequate application is to have good
instruments for the unobserved transitions. In the example reported above the covariates
predict the transitions very well but the poor predictions of the past probabilities may serve
as a cautionary tale. Uncritical application of the method with weak instrumental variables
has the very real danger of leading to incorrect inferences. Hence cautious application and
careful data analysis seem warranted.
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This warning also implies that the model is not ready for prime-time application. The
most prominent subject for future work concerns an examination of the importance of the
quality of the instrumental variables by Monte Carlo simulation study. In addition, although
the current model promises to be useful in different settings, there are some extensions that
we are currently exploring that may further enhance its applicability. One is to use multistate
models. Although no essential new theory is involved in such an extension, these models
may have too many parameters unless there are some structural constraints imposed on
the transitions. A computationally tractable way is to consider three-state models with one
absorbing or death state implying that once this state is entered it is never left (Andersen
1980, p. 304). Further, our approach to imposing restrictions on time-varying parameters
is to use a fully or partially parametric strategy. In some applications these parametric
bases may not provide enough flexibility. It would therefore seem important to study the
minimal requirements needed for a varying-coefficient model to yield uniquely identified
parameters. We can prove that under relatively mild conditions there always exists exactly
one solution for the parameters, but we can verify this only for relatively simple Markov
models with constant terms only. Unfortunately, no complete set of identification rules has
yet been found guaranteeing unique solutions in more complex models with continuous
covariates. It is worthwhile to pursue this thorny problem further.

Another next step is to use Bayesian methods, similar to King et al. (1999) and Rosen
etal. (2001), next to ML estimation. A limitation of ML is that it is basically a large-sample
inferential approach. With small or moderate-sized data sets, the log likelihood may have a
nonnormal shape and asymptotic theory may not work well. It is unknown, however, how
large the sample should be for the standard errors based on the information matrix of the
current model to yield reliable inferences. One approach to study this small sample problem
is to analyze the data by Markov chain Monte Carlo (MCMC) methods. An initial study of
this problem is reported by Pelzer and Eisinga (2002).

Finally, it has frequently been argued that King’s ecological inference solution can
fruitfully be adapted to repeated cross sections (e.g., King et al. 1999; Davies Withers 2001).
Despite the steady development in ecological analysis toward more sophisticated statistical
modeling, little has been done to date on developing models that draw panel inference from
nonpanel data [Franklin (1989), Sigelman (1991), and Penubarti and Schuessler (1998)
are notable exceptions]. It is our belief that the approach presented here, when properly
enhanced, has the potential to make a significant contribution to political (and other) inquiry.
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