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This paper discusses some simple practical advantages of Markov
chain Monte Carlo (MCMC) methods in estimating entry and exit
transition probabilities from repeated independent surveys. Simulated
data are used to illustrate the usefulness of MCMC methods when the
likelihood function has multiple local maxima. Actual data on the
evaluation of an HIV prevention intervention program among drug
users are used to demonstrate the advantage of using prior
information to enhance parameter identi®caiton. The latter example
also demonstrates an important strength of the MCMC approach,
namely the ability to make inferences on arbitrary functions of model
parameters.
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1 Introduction

PAAP (2002) has shown that MCMC methods are not just a new set of techniques

that exploit modern computing technology. Rather, they allow researchers to work

with statistical models (and data) previously considered intractable. These include

models with dynamics in latent variables, hierarchical, mixture, item-response and

nonresponse models and combinations of these model types (see CONGDON 2001).

While the main advantage is estimation in complex models, Bayesian simulation has

also some less sweeping but useful aspects. This short communication is concerned

with the problem of estimating binary transition probabilities from independent

repeated cross-sectional (RCS) data and aims to demonstrate some practical

advantages of Bayesian statistics based on the following issues.
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Any model that can be estimated by maximum likelihood can obviously also be

estimated by Bayesian simulation. However, when the likelihood function is

asymmetric or has multiple local maxima, evaluating the likelihood only around the

global maximum, as in ordinary maximum likelihood estimation (MLE), may

produce inaccurate information about the distributions of the parameters. Bayesian

simulation has an advantage in these circumstances because it is not concerned with

®nding the parameter values for which the likelihood reaches the global maximum. It

is primarily concerned with generating samples from the posterior distribution of the

parameters given both the data and a prior density and this distribution may be

asymmetric and multimodal. Simulated data will be used to illustrate this. Also,

identi®cation may be less of a problem in Bayesian analysis compared with classic

approaches such as MLE. While unidenti®ed parameters cannot be estimated in

MLE, in the Bayesian approach it is possible to use an `informative' prior that can

provide identi®cation. Our example below is concerned with a simple type of

Bayesian data combination, in which the posterior determined from a small sized

panel data set is used as the prior for a subsequent analysis of repeated cross-

sectional data to yield a set of identi®ed parameters. Finally, MCMC o�ers the

opportunity to make inferences on arbitrary functions of model parameters. We will

use this ability to derive samples from the posterior distribution of entry and exit

transition probabilities in RCS data.

2 Estimating binary transitions from RCS data

We will ®rst brie¯y present the model we use to estimate transition probabilities from

repeated cross sections. Consider a two-state Markov matrix of transition rates in

which the cell probabilities sum to unity across rows. For this 2� 2 table, we de®ne

the following three terms, were Yit denotes the value of the binary random variable Y

for observation i at time point t: pit � P�Yit � 1�, lit � P�Yit � 1jYitÿ1 � 0�, and
kit � P�Yit � 0jYitÿ1 � 1�: These probabilities give rise to the equation

pit � lit�1ÿ pitÿ1� � �1ÿ kit�pitÿ1 � lit � gitpitÿ1, where git � 1ÿ kit ÿ lit. If we let

the initial probability pi0 � 0 (or t!1), it is straightforward to show that the

reduced form for pit is

pit � lit �
Xtÿ1
s�1

lis

Yt

s�s�1
gis

 !
:

To estimate this equation with repeated independent cross-sectional data, current

and backcasted values of time-invariant and time-varying covariates Xit

�i.e.,Xit,Xitÿ1, . . . ,Xi1� are employed to generate backward predictions of the

transition probabilities �lit,litÿ1, . . . ,li1 and kit,kitÿ1, . . . ,ki2� and thereby of the

marginal probabilities �pit,pitÿ1, . . . ,pi1�. The transition probabilites themselves are

speci®ed as lit � F�Xitb� and kit � 1ÿ F�Xitb
��, where F is the logistic link function
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and b and b� are two potentially di�erent sets of parameters associated with two

potentially di�erent sets of covariates Xit. To incorporate `non-backcastable'

variables (i.e., time-dependent covariates for which past histories are unknown)

into the model, two di�erent sets of parameters are estimated for both lit and kit: one
for the current transition probability estimates and a separate one for the preceding

estimates. If we de®ne Zit as a vector of non-backcastable variables and f as the

associated parameter vector representing the e�ect on lit, we can write

logit�lit� � Xitb
�� � Zitf for cross section t, and logit�lit� � Xitb for the cross

sections 1, . . . ,tÿ 1. In our applications below we assume that b�� � b. Also, we

de®ne the ®rst observed outcome of the process, P�Yi1 � 1�, to equal the state

probability pi1 (rather then the transition probability li1) and assume that the Yi1's

are random variables with a probability distribution Prob�Yi1 � 1� � F�Xitd�, where
F is the logistic function and d a set of parameters to be estimated. ML estimates

of b, b� and can be obtained by maximizing the log likelihood

LL �PT
t�1
Pnt

i�1 ``it �
PT

t�1
Pnt

i�1 �yit log�pit� � �1ÿ yit� log�1ÿ pit�� with respect

to the parameters, where nt is the number of observations of cross section t and T

is the number of cross sections. Fisher's method-of-scoring may be used for

maximum likelihood estimation. If we suppress the subscript i and de®ne p0 � 0, the

®rst order partial derivatives of `` with respect to the parameters b and b� are

@ll

@b
� @ll
@pt
� @pt

@b
� yt ÿ pt

pt�1ÿ pt� �
@ptÿ1
@b

gt �
@lt

@b
�1ÿ ptÿ1�

� �
and

@ll

@b�
� @ll
@pt
� @pt

@b�
� yt ÿ pt

pt�1ÿ pt� �
@ptÿ1
@b�

gt ÿ
@kt

@b�
ptÿ1

� �
;

where @lt=@b � xtlt�1ÿ lt� and @kt=@b� � ÿxtkt�1ÿ kt�. Further details about the
model are provided by MOFFITT (1993) and PELZER, EISINGA and FRANSES (2001,

2002). In the examples below, the ML estimates were used as starting values of the

Markov chain to reduce the period required for burning-in the sampler.

3 Multimodal likelihood function and Bayesian simulation

The likelihood function can have multiple local maxima with some distributions and

models and assuring oneself that a local maximum is indeed the global maximum can

be computationally di�cult or intensive. Also, if the likelihood function is not well

behaved around its maximum, standard errors produced by MLE can lead to

unreliable inferences. Markov chain algorithms for sampling from the posterior o�er

a more complete picture of the uncertainty in the estimation of the unknown

parameters. We will illustrate this with a simulated data set. For this simulation, we

generated data for T � 5 cross sections with nt � 2,500 observations each, using the

following equations and parameter values:
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pi1 � li1 for t � 1

pit � li�1ÿ pitÿ1� � �1ÿ ki�pitÿ1 for t � 2; . . . ; 5

logit�li1� � b1 � b2Xi b1 � ÿ0:69 b2 � 0:25

logit�li� � b3 � b4Xi b3 � ÿ1:09 b4 � 0:25

logit�ki� � ÿb�1 ÿ b�2Xi b�1 � 0 b�2 � 0:75:

The Xi values were drawn from the standard normal distribution and subsequently

rounded to the nearest integer. The values ranged from )4 to +4, with about 38% of

the observations having zero values. Note that the Xi values were ®xed over time.

Also note that the transition probabilities li and ki were taken to be time-constant.

The Yit values were sampled from a Bernoulli �pit� distribution, t � 1, . . . ,5.

The intercept values b1,b3 and b�1 were selected so that for observations with zero

Xi values the marginal probabilities equal pi1 � pit � li=�li � ki�, which is 0.334.

This steady state condition is re¯ected in the marginal distribution of the simulated

Yit, the proportions of Yit � 1 being 0.34, 0.35, 0.36, 0.37, and 0.34 for the respective

cross sections. In a steady state condition, di�erent sets of parameter estimates for b
and b� may yield an (almost) identical maximum likelihood, especially if the

covariate Xi has weak e�ects. If Xi has no e�ect at all, we may as well remove it from

the model. However, for a model with intercept parameters only, in®nitely many

estimates satisfy pi1 � pit � li=�li � ki� and thus produce an identical maximum

likelihood. The covariate Xi reduces the in®nitely many ML estimates to a single one,

but there still may be many sets of point estimates that yield nearly similar maximum

likelihood. MCMC techniques, which seek to characterize the posterior distribution

of the regression parameters, can be usefully applied here.

The Metropolis algorithm is often used to generate samples from the posteriors

(TANNER 1996). As is well known, this scheme is potentially ine�cient when

confronted with posteriors with multiple peaks, especially if they are well separated.

Multimodal target distributions (especially if the starting values trap us near one of

the modes) lead to a poorly mixing chain that stays in small regions of the parameter

space for long periods of time. The result is that a very large number of random

draws is needed to locate the modes. An algorithm that is more e�cient in these

circumstances is parallel tempering (LIU 2000). Parallel tempering uses a number of

chains to traverse the full parameter space, each chain being updated M times by the

Metropolis algorithm. AfterM updates, a swap of the states of two randomly chosen

adjacent chains is proposed and this swap is accepted with a particular probability.

This swapping mechanism enables parallel chains to explore the entire parameter

space, jumping over `narrow' bridges with low likelihood, from one modal area to an

other one. To promote a visit of all the modes, the Markov chains can be `heated' to

di�erent `temperatures': a `hot' chain is, when going through the M Metropolis

updates, more willing to accept parameter proposals with a low likelihood than a
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`cold' chain. Heating chains is especially e�ective when the modes are well separated.

If the modes are close, heating the chains may be super¯uous.

We started the analysis with ML estimation, using Fisher-scoring and the true

parameter values as starting values. The resulting parameter estimates were

b̂1 � ÿ0:70, b̂2 � 0:27, b̂3 � ÿ1:04, b̂4 � 0:28, b̂
�
1 � ÿ0:05, b̂

�
2 � 0:77, and the

corresponding log likelihood was )7729.72. These estimates are close to the true

values used in simulating the data. We subsequently performed a number of MCMC

analyses using di�erent heating schemes. The trace plots of b3,b4,b
�
1 and b�2 all showed

two sample bands, indicating that the posterior distributions are bimodal. However,

the unheated chain appeared to mix poorly. The `hotter' the heated chains, the poorer

the mixing of the unheated chain. We therefore decided to use multiple unheated

chains in our simulation. The ®nal analysis employed 20 unheated chains with

uninformative priors. Five million samples were run, discarding 50,000 samples for

initial settling. Figure 1 plots b4 against sample iteration number (the other

parameters are not displayed as their traces are very similar).

Figure 1 displays two well separated sample bands. The upper mode is located

near a value of approximately 0.90 and the lower mode is close to 0.25, i.e., the true

value of b4. The posterior probability distributions of the li and ki parameters are

shown in Figure 2. As can be seen, the distributions are all bimodal. Also note that

for all the parameters, the true values are located near the modes with the lowest

density. To verify additionally that the likelihood has two di�erent modes, ML

estimation was performed using the modes with the highest density as starting

values. The resulting parameter estimates were b̂1 � ÿ0:69, b̂2 � 0:27, b̂3 � ÿ2:30,
b̂4 � 0:92, b̂

�
1 � 1:50, b̂

�
2 � ÿ0:02. These estimates correspond with the high-density

Fig. 1. Trace of b4 (for visual clarity, every 100th sample from the chain is displayed).
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modes in Figure 2. The log likelihood obtained was )7728.47; hence slightly smaller

than the log likelihood of the previous analysis.

These results indicate that models and data with multimodal posteriors may easily

cause the unwary ML user to get misleading results. A properly implemented

MCMC method will produce the entire parameter distribution and thus reveal

asymmetric or multimodal posteriors. In addition, under ML estimation we would

compute the mode of the log likelihood function and use the local curvature to

construct con®dence intervals. Consider how odd it would be to use this procedure

here. Since standard con®dence intervals step on to some ®xed distance from the

mean and assume a normal parameter density, they completely ignore potentially

multimodal or asymmetric features of the distribution. An advantage of Bayesian

simulation is that it aims to recover the posterior density without the assumption of

normality.

Fig. 2. Posterior distributions of b3; b4; b
�
1, and b�2.

28 B. Pelzer and R. Eisinga

Ó VVS, 2002



4 Bayesian data combination

Likelihood-based estimation can be troublesome when the parameters are barely

identi®ed or unidenti®ed. In practice, however, additional knowledge may exist

about the parameters. This information can, when incorporated in a Bayesian

analysis as an informative prior, help to produce uniquely de®ned estimates. In the

example below previously estimated model parameters computed from a di�erent

data set are combined with new observations to yield an updated set of identi®ed

parameters.

Table 1. Repeated cross-section and partial-transition data.*

Repeated cross-section data (n = 1,337)

u = 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Area = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Sex = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Talk = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

time (t) Likely = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 11 28 12 18 5 29 6 15 7 46 9 29 5 18 4 13

2 14 28 15 32 7 29 11 29 8 54 12 23 6 40 6 19

3 7 31 3 20 2 34 4 9 5 40 6 35 1 31 1 12

4 10 38 6 23 7 35 5 14 2 33 6 24 0 32 7 22

5 9 36 7 22 2 36 4 11 2 34 4 16 3 36 0 22

Partial-transition data (n = 215)

time u = 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

(t, t + 1) u¢ = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1, 2 1 0 1 1 1 2 0 0 2 1 0 0 0 11 0 0

2, 3 1 1 0 0 0 1 0 0 0 0 0 0 1 10 0 2

3, 4 0 0 0 0 0 4 0 2 0 1 0 0 0 4 0 4

4, 5 0 1 0 0 1 5 2 3 0 1 0 0 0 3 0 1

u = 3 3 3 3 4 4 4 4 3 3 3 3 4 4 4 4

u¢ = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1, 2 1 0 0 0 0 2 1 3 0 0 1 0 0 2 0 1

2, 3 0 0 0 1 0 0 0 2 0 2 0 0 0 1 1 4

3, 4 0 0 0 0 0 1 0 5 0 1 0 0 0 3 0 3

4, 5 0 0 1 0 1 3 0 0 0 0 0 0 0 2 1 2

u = 5 5 5 5 6 6 6 6 5 5 5 5 6 6 6 6

u¢ = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

1, 2 1 0 0 0 0 3 0 0 0 0 0 0 2 6 1 1

2, 3 0 1 0 0 1 6 0 0 0 1 0 0 0 9 0 0

3, 4 0 1 0 0 0 4 0 1 0 0 0 0 0 7 0 1

4, 5 0 1 0 0 1 6 1 2 0 0 0 0 0 10 0 1

u = 7 7 7 7 8 8 8 8 7 7 7 7 8 8 8 8

u¢ = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

1, 2 0 0 1 1 0 2 0 2 0 0 0 0 0 1 0 1

2, 3 1 0 1 0 0 1 1 3 0 0 0 0 0 3 0 1

3, 4 0 0 0 1 0 1 1 3 0 0 0 0 0 1 0 1

4, 5 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1

Source: Reprinted with permission of the International Biometric Society from HAWKINS and HAN (2000).
*The index u is used to present the partial-transition data economically.
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Table 1 is based on data presented by HAWKINS and HAN (2000) taken from an

evaluation study of an HIV prevention±intervention program among drug injectors

attempting to modify high-risk behaviors such as sharing unbleached needles to

inject drugs. The study consisted of repeated independent surveys conducted at ®ve

consecutive time-points in two geographical areas, i.e., an intervention area which

underwent various intervention e�orts and a comparison area which underwent no

intervention. The variable of interest was knowledge of the risk of the transmission

of HIV through sharing unclean needles, as measured by responses to the question

``How likely is it that you will get AIDS if you share, but don't clean with bleach,

drug needles?'' The responses of the 1,337 drug users were one of two categories of

LIKELY (0 � not likely, 1 � very likely). Explanatory variables include the time-

constant covariates AREA (0 � comparison, 1 � intervention) and SEX (0 � male,

1 � female) and the time-varying covariate TALK (0 � no, 1 � yes). The latter

variable records responses to the question ``In the last 2 months, has anyone talked

to you about AIDS, HIV, or cleaning needles with bleach?'' In addition to the

independent cross-sectional data, shown in the top part of Table 1, the study also

collected partial-transition data (for pairs of consecutive waves) from a small sample

of 215 drug users. The partial-transition data obtained by haphazard recaptures are

shown in the bottom part of Table 1.

The repeated cross-sectional data alone can be used to estimate relatively simple

transition models such as those with both time-constant intercepts and time-constant

covariate e�ects. But models that drop this assumption are likely to produce

problems of overparameterization. That is, it seems impossible to estimate more

complex models without the partial-transition data. Several methods can be used to

combine the two types of data. The procedure pursued here is based on the idea that

the partial-transition data set provides useful auxiliary information about the

behavior of the parameters in the repeated cross-sectional context. We therefore ®rst

analysed the partial-transition data separately using the Metropolis sampler with a

non-informative prior for the regression parameters. The non-informative prior was

approximated by a normal distribution with zero mean and variance 106. The means

and the variance±covariance matrix of the estimated model parameters were

thereupon transferred into the analysis of the repeated cross-sectional data. That is,

they were used to construct a multivariate normal prior. Without this prior the

problem would be overparameterized and the parameters would be unidenti®able.

The regression parameters at t � 1 were assumed to follow independent normal

distributions with zero mean and variance 106 (i.e., di�use or non-informative

priors). In the Markov chain sampling, we run the Metropolis algorithm 100,000

times excluding an initial burn-in of 5,000 samples. The posterior estimates are

shown in Table 2.

One notes from this table that the entry decisions are a�ected by SEX. That is, the

transition probabilities from the `unlikely' to the `very likely' response are higher

among females than they are among males. Both AREA and TALK a�ect the

probability of staying in the `very likely' category (i.e., the (1ÿ kt) transition). Hence
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these probabilities are higher in the intervention area and among those reporting

TALK � `yes'.

Of course, other methods could be used to analyse these data. One is simply to

pool the two data sets and to analyse the combined data using either maximum

likelihood or Bayesian analysis with uninformative priors. When the same model is

speci®ed under these approaches, estimates from the ML and Bayesian procedures

are close (even with these relatively small samples) and they would converge

asymptotically. However, sometimes external constraints prohibit explicit data

pooling. In many instances previous observations will not be available and even if

they were, estimating the whole data might be so time-consuming that shortcut

procedures using only the new data, and the estimates of the old as priors, would be

appealing. Also, in many research problems data acquisition and data evaluation

proceed in stages. Bayesian updating±the transfer of previously estimated model

parameters to a new context±can reduce the need for a large data collection in the

next stage.

A ®nal issue we would like to address is that MCMC can be employed to obtain

inference reaching beyond point estimates and approximate standard errors. A

particular strength of the Markov chain Monte Carlo approach is the ability to make

inferences on arbitrary functions of model parameters. Moreover, anything we wish

to know about this function can be discovered up to any degree of accuracy via

random sampling from the density distribution. We may, for example, obtain a

sample from the posterior distribution of the mean entry and exit transition

probabilities.

Table 2. Metropolis sampler posterior estimates.*

d�pt�1� t b�lt� t b��1ÿ kt�
Area 0.504 (0.287) 2±5 0.661 (0.734) 2±5 0.667 (0.337)

[)0.052, 1.071] [)0.669, 2.195] [0.025, 1.350]

Sex 0.186 (0.302) 2±5 1.430 (0.633) 2±5 )0.082 (0.333)

[)0.390, 0.798] [0.206, 2.696] [)0.777, 0.555]

Talk 0.490 (0.300) 2±5 )0.449 (0.693) 2±5 1.133 (0.329)

[)0.089, 1.085] [)1.929, 0.811] [0.505, 1.799]

Constant 0.690 (0.272) 2 )0.686 (0.794) 2 1.046 (0.425)

[0.148, 1.222] [)2.279, 0.846] [0.257, 1.919]

3±5 1.123 (0.682) 3 1.436 (0.449)

[)0.097, 2.571] [0.621, 2.378]

4 0.975 (0.363)

[0.299, 1.727]

5 1.190 (0.367)

[0.499, 1.937]

*The mean of the last 100,000 samples is reported as the point estimate. The
standard deviation is reported in parenthesis and the limits of the 95% credibility
interval in brackets.
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The top part of Figure 3 shows the mean posterior �1ÿ kt� transition probabilities

for the two study areas. The distributions illustrate the bene®cial e�ect of the

intervention program on �1ÿ kt�. The two densities presented in the bottom part of

Figure 3 display the mean lt for males and females in the experimental area. These

®gures indicate considerable gender di�erences and they also show that the

distribution for females is asymmetric.

5 In conclusion

We have presented two simple examples to illustrate the strengths of modern tools

for Bayesian simulation. A straightforward advantage of the MCMC approach is

that it provides estimates when traditional maximum likelihood struggles. Bayesian

λ λ

Fig. 3. Posterior distributions of average transition probabilities in comparison and intervention area

(normal curve superimposed).

32 B. Pelzer and R. Eisinga

Ó VVS, 2002



simulation recovers the posterior precisely, without any need to rely on assumptions

about the shape of the likelihood function. This feature may help one to arrive at a

deeper understanding of the problem of interest.
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