PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/61334

Please be advised that this information was generated on 2017-10-01 and may be subject to change.
Finite Comment Clauses in Dutch: A Corpus-based Approach
Abstract

The present paper presents the results of a corpus-based study into the form and distribution of finite comment clauses in Dutch. More specifically, it was investigated where in the sentence such clauses can occur. For the analysis of the data, a topological descriptive model was used. While in the literature an extraction analysis has been suggested in order to account for finite comment clauses in English and German, our findings lead us to challenge this type of analysis and argue that a parenthetical analysis is to be preferred.

\[1 \text{Thanks are due to Antal van den Bosch and Hans van Halteren for their help in tagging the corpus and to Toni Rietveld for his statistical advice.}\]
1. Introduction. This study is part of a larger research program aimed at the automatic syntactic analysis of interruption constructions in Dutch. The type of interruption constructions we are aiming at, called intercalations in Schelfhout et al. (2003a), is defined as the interruption of a running sentence by syntactic material that cannot be analyzed directly as (an) immediate constituent(s) of that sentence. After this interruption the sentence continues without experiencing syntactic or prosodic consequences of the intercalation. More specifically, intercalations seem to be set apart from the sentence with respect to prosody: the sentence prosody stops when the interruption is reached and continues at the point where it had stopped after the interruption. Besides, intercalations do not seem to have a syntactic influence on the clause, which can for instance be seen when they occur before the finite verb in Dutch. When an adjunct like an adverbial occurs there, it causes inversion of verb and subject, but intercalations can occur between subject and verb, without causing inversion. Examples are interjections, vocatives, reporting clauses and parenthesized clauses, but also nonrestrictive appositives, transparent free relatives (Wilders (1999), Schelfhout et al. (to appear)) and certain types of conjunction reductions can be argued to be intercalations.

In this paper, we are concerned with finite comment clauses, or: parentheticals, i.e. interruptions like the following.\(^1\)

(1) Dat is erg belangrijk, denk ik, voor de ontwikkeling van onze theorie.

\begin{quote}
that is very important think I for the development of our theory
\end{quote}

‘That is very important, I think, for the development of our theory.’

(2) Ze waren bang zo lijkt het voor de gevolgen.

\begin{quote}
they were afraid so seems it of the consequences
\end{quote}

‘They were afraid, or so it seems, of the consequences.’

Our concern is mainly the analysis of finite comment clauses in Dutch. From time to time, however, we discuss English and German literature as well. It is our contention that reference to these other languages helps to gain insight into the phenomenon we are investigating while our conclusions with respect to Dutch largely carry over to these adjacent languages.
Since we aim at an analysis that can be used for Natural Language Processing (NLP) applications, it is important that we arrive at a description that accounts for real language use. In order to obtain information about the actual distribution of comment clauses we conducted a corpus study.

The present article is structured as follows: first, we describe our corpus study and the results. Next, we discuss how these results are interpreted when analyzing the comment clause in Dutch. Finally, our conclusions are demonstrated to be in line with the analysis of other interruption constructions as they have emerged from previous studies.

2. Corpus results. Intercalations are often tacitly assumed to occur at any syntactic position. Finite comment clauses, however, are often expected at only one or two positions, according to the discussions in the literature (cf. section 3). In view of a search for the correct analysis of finite comment clauses, this makes the question Where do finite comment clauses occur? a legitimate one.

In this study, we addressed this question by conducting a corpus study into the distribution of finite comment clauses in both written and spoken Dutch. A corpus was compiled comprising some 1.5 million words. The written component is constituted by some 1 million words with their origin in print. The 478 documents in this component were taken from the Internet. The spoken component consists of 930 files that were derived from the Spoken Dutch Corpus (Corpus Gesproken Nederlands or CGN; cf. Oostdijk (2000)). The composition of the corpus is displayed in Table 1.

Table 1: Corpus composition

(INSERT TABLE 1 HERE)

We conducted a qualitative investigation into the variation within comment clauses. This implies that we started from the canonical examples as discussed in the literature and then looked at randomly selected parts from the corpus to spot similar constructions. We then decided whether they were indeed comparable constructions, a.o.
by seeing if they could be replaced by canonical finite comment clauses or not. Hence it turned out that finite comment clauses appear in two forms.

1. A main verb expressing an opinion (denken 'think', veronderstellen 'suppose', etc.), followed by a subject, (an) optional modifier(s) and possibly preceded by the adverbial zo 'so'.

2. A finite copula (zijn 'be', lijken 'seem', etc.) followed by a subject or an indirect object, (an) optional modifier(s) and possibly preceded by the adverbial zo 'so'.

The variation found in comment clauses is exemplified in examples 3-6 below, which are all derived from the corpus.

(3) Een doffe tik van metaal op metaal, dat was denk ik de beste omschrijving.
 a dull tap of metal on metal that was think I the best description
 'A dull tap of metal on metal, that was the best description, I think.'

(4) Het was, zo herinneren zijn vriendinnen en minnaressen zich, alsof hij geen innerlijk bezat
 it was so remember his girlfriends and lovers PRT like he no inner self had
 'It was, his girlfriends and lovers remember, as if he did not possess an inner self.'

(5) 't Is heel wat werk lijkt me als ik het 'ns zo hoor.
 it is quite some work seems me if I it once so hear
 'It's quite a lot of work I guess, judging from what you say.'

(6) Jozua trekt als een dolle stier door het beloofde land om het te ontdoen, zo lijkt het van de oorspronkelijke bewoners zodat het volk van Israel er onbekommerd kan leven
 Joshua travels like a wild bull through the promised land in order it to strip so seems it of the original inhabitants so that the people of Israel there carefree can live
 'Joshua rages through the promised land like a wild bull in order to strip it, so it seems, of the original inhabitants, so that the people of Israel could live there carefree.'
With the insights gained into the nature of comment clauses, we semi-automatically searched the material for comment clauses. The CGN material was already preprocessed in so far that it was split up into sentences of which each word was given a word class tag and the appropriate lemma. We used the CGN tools and procedures to repeat this for the written part of the corpus, so that both kinds of material had a comparable annotation. This allowed us to write a Perl program selecting all sentences that contained a verb of the interesting kind and/or the word zo 'so', not occurring at the very first position of the clause. Of course this resulted in too many sentences being selected, but the real finite comment clauses were then selected by hand. The results are summarized in Table 2.³ The first column records the number of instances found, in the second column the numbers have been standardized and represent the number of instances per 10,000 words.

Table 2: Instances of comment clauses found in the corpus

(INSERT TABLE 2 HERE)

Next we investigated the positions where the comment clauses occurred; to this end we analyzed the corpus sentences according to the standard topological model used in Dutch traditional grammar (as described in the authoritative Dutch grammar Algemene Nederlandse Spraakkunst (ANS; Haeseryn et al. (1997))). This model distinguishes two verbal poles in the Dutch sentence (the left and right bracket, LB and RB), with a middle field (MI) in between. The left bracket contains the finite verb in main clauses and the subordinator in subordinate clauses, the right bracket contains remaining verbs (if any) in main clauses and all verbs in subordinate clauses. Preceding the first pole the PRE field can be found, which is used for topicalized elements, possibly preceded by a left dislocation field (LD). Following the second verbal pole is the POST field (for extraposed elements), possibly followed by a right dislocation field (RD).⁴ Any of these fields can be empty. In Table 3, some example analyses are displayed.

Table 3: Examples of a topological analysis

(INSERT TABLE 3 HERE)

Translated to generative analyses, the PRE field would be the Spec CP, LB is C, RB is V/I, MI is everything in IP/VP except V/I and POST is extraposed elements. The left and right dislocation fields are adjuncts to the clause in this framework. Within the topological framework, finite comment clauses could theoretically occur...
between consecutive fields or within a certain field (except for the LB field which can by definition only contain
one element). Besides that, they can occur between two (coordinate or subordinate) clauses, a position which is
indicated by #. In Table 4, we exemplify the positions between the left dislocation field and the PRE field (LD-
PRE for short) and within the middle field (MI).5

Table 4: Comment clauses at the positions LD-PRE and MI

(INSERT TABLE 4 HERE)

The distribution of comment clauses in written and spoken data is shown in Table 5.6 The distribution is
displayed in terms of both the absolute numbers and the (relative) proportion of the occurrences occurring at
various positions of the total number of occurrences. Note that intercalations appearing within a field rarely
occur within a major constituent (the few instances we found all occurred in the spoken component of our
corpus).

Table 5: The distribution of comment clauses in corpus data

(INSERT TABLE 5 HERE)

To establish whether this distribution was the result of coincidence or really reflected certain preferences, we
performed a likelihood ratio test.7 To ensure the independence of each instance, we decided to use only one
sentence per file. Therefore we removed sentences from files that had already delivered another sentence. After
this operation only 57 sentences from written material and 106 sentences from spoken material remained. These
numbers were counted back to instances per million words to ensure comparability. The value of the likelihood
ratio statistics was 42.701 (df = 9), p < 0.01. In view of the low numbers, the significance of this statistical test
can be assumed to reflect a really significant difference.

Only 5 out of 271 instances of comment clauses use a copula, 3 of these occur in written data and 2 in spoken
data; they occur at 4 common positions in the sentence.8 This number is too small to draw reliable conclusions,
but there does not seem to be a reason to assume a different analysis for comment clauses with a copula. Only in
3 cases does a comment clause occur within a major constituent; in all 3 cases it occurs between a preposition
and a NP in spoken language, where we have an indication that the speaker is confused or hesitant (repeating the
preposition, saying uh...).

The literature does not provide very explicit claims about the positions at which intercalations can appear, but
the general tacit assumption seems to be that they can occur anywhere. If this were true, we would expect a
regular distribution, but the distribution of comment clauses in Table 5 is far from regular. Both in written and
in spoken data, three positions together cover more than 75% of the cases, viz. the positions LB-MI, MI and #.
The position between clauses and the position between the finite verb and the middle field are clear enough, but
the position MI is a rather broad category. The middle field can contain a lot of elements; in order to obtain a
more accurate description of the distribution we will first develop a more specific description of the instances in
the middle field.

The order of the elements in the middle field in Dutch is discussed extensively in the ANS (chapter 20.4/5) and
nicely summarized in Haeseryn (1998). The elements in the middle field are ordered on the basis of their
information value (the higher the information value, the more to the right an element occurs), their relation to
the main verb (elements closely related to the verb, like predicates, occur closer to the right bracket) and their
complexity (the heavier an element is, the more to the right it occurs). The ANS describes a division over three
subfields, for which we developed the following paradigm. The first part of the middle field is the canonical
position for subjects, clitics and particles (cf. Gerrits (2001)); we call this the pre-middle field or PREMI. The
last part of the middle field contains predicates, R-particles (also known as stranded prepositions) or resultatives
(cf. Van Dreumel (2000)); we call this the post-middle field or POSTMI. All other elements are in the middle-
middle field or MIMI; each of the three subfields can be empty. Examples are given in Table 6.

<table>
<thead>
<tr>
<th>Table 6: Examples of a topological analysis with a refined MI-field.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(INSERT TABLE 6 HERE)</td>
</tr>
</tbody>
</table>

We reanalysed all instances of comment clauses whose positions were encoded as LB-MI, MI or MI-RB into the
appropriate position within the middle field, in both written and spoken language. Then we combined all
possible positions into either positions following a certain field or positions within a certain field; e.g., LB-
MIMI was mapped on LB-any following field. Finally, we represented the distribution around the middle field
in terms of the proportion of occurrences relative to the total number of occurrences around the middle field, so we did not zoom in on the percentages of the total distribution. The results are given in Table 7.

Table 7: The distribution of comment clauses around MI

(INSERT TABLE 7 HERE)

We tested the significance of these results in the same way as we did with the total number of occurrences as described above. Now the value of the Likelihood Ratio test was 20.134 (df = 5), p < 0.01.

In the written data, we see a sharp decrease in frequency of use from left to right until the MIMI field; no comment clauses are used following this field. The exception to the gradual decrease is the PREMI field, which is used less often than would fit the line of decrease. In spoken data, the positions early in the middle field are all used in roughly 25% of the cases with a slight decrease in the PREMI field, and then the frequency shows a sharp decrease: just a few instances follow the MIMI field (in fact they all occur between MIMI and POSTMI), and no instances occur in POSTMI or between POSTMI and RB. In sum: a comment clause following MIMI is almost impossible and in written language there is a strong preference for positions preceding MIMI.

Now that we have a clear picture of the distribution of comment clauses, we may ask why this distribution is as it is. There are probably three factors influencing the distribution: prosody, syntax and semantics. With respect to prosody we must note, that finite comment clauses are several syllables long and that they are set apart from the intonation pattern of the clause. The intonation stops when the finite comment clause begins, then this clause has its own pattern and after the finite comment clause the intonation of the host clause continues where it had stopped. It can be expected that this becomes difficult when the preceding or following part of the host clause is only one or a few syllables long. Also the PREMI field becomes a difficult position from a prosodic viewpoint, since it often contains clitics and particles that are intonationally strongly bound together. But a position which has a pause in the intonation, like the position between clauses or following/preceding the left and right dislocation field, is very suitable for interruption.

Syntactically we see that elements within POSTMI are often closely related to the verb; they are often nonverbal parts of verbal expressions, predicates and resultatives. Apparently the fact that comment clauses hardly occur in
POSTMI, between POSTMI and RB and within RB indicates a strong relationship between the verbs and their nearest complements, which cannot be disrupted. The semantic factor that might be of interest is the tendency of new information to occur more to the right in the clause. It could be the case that new information cannot be interrupted by parenthetical material. More research is necessary to find out whether this is indeed the case.

Another point is that we saw that comment clauses hardly ever occur within a major constituent: our corpus instances do not occur within NPs, APs, ADVPs and hardly ever within PPs. The position preferences may be explained by adding some verbal projection to this list. Note that MIMI, POSTMI and RB together form VP (Van Zonneveld (1994)) or some functional projection like IP (Sybesma (2002)) in a generative framework. Apparently the coherence of major constituent-XPs and VPs is strong enough to prevent interruptions, but it gets weaker as we reach higher levels in the sentence – there are no comment clauses in NPs while there are a few comment clauses in PPs (between P and complement) and a few more in MIMI. If this is true, we would expect that the higher we come in a generative analysis tree (which equals coming more to the left in a topological analysis) the more comment clauses we find. This expectation does not come true in Table 5. The non-occurrence of comment clauses within the fields LD, PRE and LB can be explained by the fact that these fields usually contain only one constituent, LB even contains only one word, and as we saw above, major constituent-XPs are hard to penetrate. The reason that relatively few comment clauses appear between these first sentence fields may have to do with the scope of the comment clause: the comment clause usually modifies not the known information in a discourse but the new information as provided by this sentence, and it is often the VP that contains the new information. Therefore positions preceding or following the VP may be a more appropriate alternative to the syntactically most straightforward clause boundaries than positions preceding or following elements with a low information value, like topics or modals. Of course, more research into this hypothesis is necessary. Another explanation could be that the LD-field and the PRE-field are simply less often used than the other fields and hence finite comment clauses have fewer opportunities to occur in these positions.

An analysis as sketched above should hold for both written and spoken language, but Table 5 shows differences in the distribution of comment clauses in written and spoken language. These differences mainly pertain to the order of the preferred positions: in written data, # is most often used, followed first by LB-MI and then by MI. In spoken data, on the other hand, MI is the favourite position, followed by # and LB-MI. In other words: MI moves from third preference to first preference, the order of the other preferred positions remains the same. A
tentative explanation is that the restrictions on XP-interruption are less strong in spoken language. It is well known that spoken language offers more freedom than written language in many respects. Another explanation might be that MI-internal comment clauses tend to comment on an MI-internal XP, whereas the other positions tend to comment on the entire VP or CP. Commenting on only a part of the message could be more frequent in spoken language than in written language, as it is uttered right when the speaker realizes that his utterance needs modification. In written language, self-comment is more controlled; it is often a deliberate warning that the message is not a fact but merely an opinion. This hypothesis could be subject of further research, although we must be aware that it will be hard to develop objective criteria for the question what exactly the comment clause is commenting on, especially in spoken language. However, the differences in distribution of comment clauses in written and spoken language seem either negligible or explicable.

3. Analyses of finite comment clauses. The analyses of finite comment clauses that have been given in literature can be divided into two groups: parenthetical analyses and extraction analyses. A parenthetical analysis implies that an independent chunk is inserted into a matrix clause, to which it has no syntactic relationship. An extraction analysis, on the other hand, assumes that the comment clause is in fact the main clause. The surrounding clause is the direct object of the verb in the comment clause, which is discontinuous because one or more of its parts were extracted out of it. A rough example looks as follows:

I think [that idea is stupid] ___

that idea, I think, is stupid

The parenthetical analysis has been defended by Reis (1996) for German and by Corver & Thiersch (2002) for Dutch. The extraction analysis has been argued for by Ross (1972), McCawley (1982) and Emonds (1973) for English, by Grewendorf (1988) and Staudacher (1990) for German and again by Corver & Thiersch (2002) for
Dutch (Corver & Thiersch split up the group of comment clauses into two subgroups and give each of them a
different analysis).

It is remarkable that almost all these authors restrict themselves to comment clauses occurring at one position:
Grewendorf and Staudacher discuss only comment clauses in prefinite position (the position PRE-LB in a
topological framework), for English only the sentence final and sentence prefinal positions are discussed. Only
Reis and Corver & Thiersch take comment clauses at several positions into account. As our corpus study
shows, comment clauses can indeed occur at almost all positions in Dutch, although they have a strong
preference for postfinite and clause peripheral positions. This does not confirm an analysis which allows only
one position.

From our corpus study it appears that the comment clause in Dutch certainly does not occur anywhere. In fact,
only a few positions (#, LB-MI and the first positions within the middle field) are strongly preferred; the other
positions that are used are positions between topological fields. Positions within major constituents and the
position MI-RB are hardly ever used. In Schelfhout et al. (2003b) we compared these positions with the
positions at which interjections preferably occur. It turned out that interjections have a strong preference for the
position between clauses, but that the preferred positions after this strong preference are comparable to those of
finite comment clauses. Especially we may note that interjections hardly ever interrupt a major constituent.

In earlier research (Schellhout (1999)) the position of reporting clauses in Dutch was described in roughly the
same framework as was used for the present paper. The conclusion was that reporting clauses mainly occur
between topological fields, but not between the middle field and the second verbal field. Schellhout (2000) and
Collins & Branigan (1997) argue for a parenthetical analysis of reporting clauses, and for interjections there is
no alternative analysis to our knowledge. The similarities in the distribution of interjections, reporting clauses
and finite comment clauses therefore strongly suggest that a parenthetical analysis is applicable to comment
clauses as well. Or, to put it differently: so far only parenthetical analyses are able to explain the distribution of
comment clauses.
4. Discussion. An overview of the distribution of finite comment clauses in Dutch and the analyses of finite comment clauses that have been put forward in literature made clear that the distribution cannot be explained by the extraction analyses discussed so far, but it can be explained by a parenthetical analysis. Hence there are two ways that we can go: we can either adapt the extraction analysis or accept the parenthetical analysis. If an extraction analysis is to cover all instances as found in the corpus, it has to allow multiple extraction: several elements must be moved out of the direct object clause in several cycles to be raised to a position after the element that was raised earlier. There seems to be no theoretical basis for this.

A parenthetical analysis, however, has its problems too. The main question raised by a parenthetical analysis is why the parenthetical clause can be incomplete in itself. Usually parenthetical clauses are complete clauses, but in comment clauses the direct object role seems to be empty. It is I think, not I think something. An extraction analysis does not have this problem, as the direct object role is given to the matrix clause, but how does a parenthetical analysis deal with the apparent absence of an obligatory argument role?

The solution is developed along the lines of the analysis of reporting clauses that was developed in Schelfhout (2000). This paper follows the analysis of reporting clauses in English that was developed by Collins & Branigan (1997), which states that reporting clauses are parenthetically attached to the citation by use of an operator. This operator can optionally surface as the particle so, which always takes the first position in a reporting clause. This also explains the inversion in the reporting clause. Schelfhout (2000) notes that a number of reporting clauses, gathered by corpus research, was indeed introduced by the Dutch particle zo ‘so’. The following test was conducted: in all clauses that were introduced by the particle zo it was left out, while in all clauses that were not introduced by the particle zo it was added at the first clause position. This did not change either the grammatical acceptability or the meaning of the clauses. Apparently Dutch reporting clauses are comparable to English ones in this respect: there is an operator at the first clause position that might be phonologically empty but can be made explicit in the form of the particle so/zo. It is this operator that somehow absorbs or takes on the direct object role.

This operator can also appear when the reporting clause or the finite comment clause occurs sentence-finally, as in examples 7 and 8:
(7)a. “Dat is erg belangrijk voor de ontwikkeling van deze theorie,” (zo) zei hij.
that is very important for the development of this theory so said he
“That is very important for the development of this theory,” (so) he said.

b. Dat is erg belangrijk voor de ontwikkeling van deze theorie, althans, dat zei hij.
that is very important for the development of this theory at-least that said he
“That is very important for the development of this theory, or at least, that’s what he said.”

(8)a. Dat is erg belangrijk voor de ontwikkeling van deze theorie, (zo) denk ik.
that is very important for the development of this theory so think I
“That is very important for the development of this theory, I think.”

b. Dat is erg belangrijk voor de ontwikkeling van deze theorie, althans, denk ik.
that is very important for the development of this theory at-least think I
“That is very important for the development of this theory, or at least, that’s what I think.”

The difference between the a and b examples illustrates that the operator zo, whether phonologically present or not, allows the direct object role to remain empty whereas this role must be fulfilled when the word althans ‘or at least’ enforces a new clause.

The same analysis seems to be applicable to finite comment clauses. When we repeat the test that was described above on finite comment clauses, the same results are obtained: the operator zo can be present or phonologically empty without consequences for the syntactic acceptability or the meaning of the comment clause. Another similarity, as discussed earlier, is the distribution of reporting clauses and finite comment clauses. Therefore, we conclude that the same analysis holds and that the main objection to a parenthetical analysis for finite comment clauses is sufficiently refuted.

Finally, two caveats are in order about our methodology. First, the fact that certain positions do not occur in a corpus does not prove that these positions can never be used. More research into those positions is necessary. But the earlier research into reporting clauses (Schelfhout (1999)) confirms that these constructions are truly rare at the positions MI-RB and RB. A second point relates to the preferred positions. These preferences are now based on the absolute distribution figures. However, these figures can only be indicative of preference if we
assume that all fields and positions are equally frequently available. This, of course, need not be the case. In fact, it is rather likely that some fields are used more frequently than others. Thus, the left and right dislocation fields are only occupied with what are considered to be marked structures. Moreover, PRE can be expected to be less frequent than LB and MI, because of its absence in embedded clauses. When this is taken into account, the PRE and PRE-LB positions might receive higher peaks relative to LB-MI. Unfortunately, no Dutch corpus is available which is annotated according to the topological model as described in the ANS. Hence, we do not have any figures about the relative use of fields and absolute distribution figures of intercalations are the best we can get for the moment.

5. Conclusion. We have presented a corpus based research into the distribution of finite comment clauses. In both written and spoken language it appeared that comment clauses can occur between most topological fields (except the MI-RB position), but have a strong preference for occurring at clause boundaries or at the positions following LB. This distribution is unexpected under the types of extraction analyses as presented by several authors, but it is consistent with a parenthetical analysis. Under a parenthetical analysis, however, it has to be explained why the direct object role of the comment clause can be empty. In analogy to reporting clauses, the explanation is found in an operator that might be phonologically filled or empty; when filled it always takes the first position in the comment clause and has the form of the particle zo.
References

Here we shall restrict ourselves to comment clauses that occur in sentence-internal (or medial) position. Where relevant to our argumentation, we will occasionally refer to comment clauses in sentence-final position.

Another construction can be found in which the subject occurs initially with a finite verb following. This verb expresses an opinion, for example *The train stops between I think Tilburg and Breda*. In this case, adding modifiers or adverbial *zo* is impossible. This construction should not be confused with the one we are concerned with in this article.

The sentences themselves can be retrieved at http://lands.let.kun.nl/~schilthu/.

The terms used in the ANS are left dislocation field, topicalisation field, first verbal pole, middle field, second verbal pole, extraposition field and right dislocation field. For the term middle field also the term inner field could be used. In German, the terms Vorfeld, Mittelfeld and Nachfeld are in use for prefield, middle field and postfield.

From here, non-used peripheral fields (LD, POST, RD) are not shown for reasons of space.

If an intercalation appears between two non-neighbouring fields, we have transparency: as the intervening field(s) is/are empty, we are unable to decide where exactly the intercalation occurs. These instances are excluded from the further research. This was the case for 9 out of 195 spoken comment clauses; transparency did not occur with the written comment clauses.

Performing a chi-square test here was impossible, as the expected values of frequencies in a number of cells was <5.

RB-POST, PREF, LB-MI and twice #.
Table 1

<table>
<thead>
<tr>
<th>WRITTEN</th>
<th>SPOKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>essay</td>
<td>lecture</td>
</tr>
<tr>
<td>127,122</td>
<td>62,810</td>
</tr>
<tr>
<td>interview</td>
<td>interview</td>
</tr>
<tr>
<td>126,376</td>
<td>62,510</td>
</tr>
<tr>
<td>news</td>
<td>news</td>
</tr>
<tr>
<td>123,140</td>
<td>80,121</td>
</tr>
<tr>
<td>novel</td>
<td>commentary</td>
</tr>
<tr>
<td>255,503</td>
<td>125,747</td>
</tr>
<tr>
<td>short story</td>
<td>private conversation</td>
</tr>
<tr>
<td>255,653</td>
<td>63,883</td>
</tr>
<tr>
<td>scientific writing</td>
<td>telephone conversation</td>
</tr>
<tr>
<td>125,846</td>
<td>63,205</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>1,013,640</td>
<td>458,276</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th></th>
<th>number of comment clauses</th>
<th>comment clauses per 10,000 words</th>
</tr>
</thead>
<tbody>
<tr>
<td>spoken</td>
<td>195</td>
<td>4.3</td>
</tr>
<tr>
<td>written</td>
<td>76</td>
<td>0.7</td>
</tr>
<tr>
<td>total</td>
<td>271</td>
<td>1.8</td>
</tr>
</tbody>
</table>

To occur on page 6
Table 3

<table>
<thead>
<tr>
<th>LD</th>
<th>PRE</th>
<th>LB</th>
<th>MI</th>
<th>RB</th>
<th>POST</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>snap</td>
<td>understand</td>
<td>je dat</td>
<td>you that</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ik</td>
<td>heb</td>
<td>I have</td>
<td>geveloekt</td>
<td>als een ketter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elvis,</td>
<td>die</td>
<td>zou would</td>
<td>ik graag</td>
<td>willen horen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elvis</td>
<td>him</td>
<td></td>
<td>I very</td>
<td>want hear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>omdat</td>
<td>because</td>
<td>ik hem</td>
<td>I him</td>
<td>haat,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>because</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>die rotzak</td>
</tr>
</tbody>
</table>

To occur on page 6
Table 4

<table>
<thead>
<tr>
<th>LD</th>
<th>PRE</th>
<th>LB</th>
<th>MI</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prince,</td>
<td>mean ik</td>
<td>die</td>
<td>zou ik graag</td>
<td>willen ontmoeten</td>
</tr>
<tr>
<td>Prince</td>
<td>think I</td>
<td>him</td>
<td>would I very_much</td>
<td>want meet</td>
</tr>
<tr>
<td>Prince,</td>
<td>die</td>
<td>zou</td>
<td>ik mean ik graag</td>
<td>willen ontmoeten</td>
</tr>
<tr>
<td>Prince</td>
<td>him</td>
<td>would</td>
<td>I think I very_much</td>
<td>want meet</td>
</tr>
</tbody>
</table>

To occur on page 7
Table 5

<table>
<thead>
<tr>
<th>position</th>
<th>written</th>
<th></th>
<th></th>
<th>spoken</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
<td>Number</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-PRE</td>
<td>5</td>
<td>6.6</td>
<td>1</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE</td>
<td>3</td>
<td>3.9</td>
<td>5</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE-LB</td>
<td>7</td>
<td>9.2</td>
<td>8</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB-MI</td>
<td>21</td>
<td>27.6</td>
<td>29</td>
<td>15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>11</td>
<td>14.5</td>
<td>84</td>
<td>45.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI-RB</td>
<td>2</td>
<td>2.6</td>
<td>2</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB-POST</td>
<td>1</td>
<td>1.3</td>
<td>8</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POST</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POST-RD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>1</td>
<td>1.3</td>
<td>3</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>25</td>
<td>32.9</td>
<td>39</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>76</td>
<td>99.9</td>
<td>186</td>
<td>100.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th>PRE</th>
<th>LB</th>
<th>PREMI</th>
<th>MIMI</th>
<th>POSTMI</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daar</td>
<td>peins</td>
<td>ik</td>
<td>niet</td>
<td>over!</td>
<td></td>
</tr>
<tr>
<td>there</td>
<td>think</td>
<td>I</td>
<td>not</td>
<td>about</td>
<td></td>
</tr>
<tr>
<td>Ik</td>
<td>had</td>
<td>'t 'm nog wel</td>
<td>zo duidelijk</td>
<td>uitgelegd.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>had</td>
<td>it him PRT PRT</td>
<td>so clearly</td>
<td>explained</td>
<td></td>
</tr>
<tr>
<td>omdat</td>
<td>we</td>
<td>het hek</td>
<td>groen</td>
<td>moesten verven</td>
<td></td>
</tr>
<tr>
<td>because</td>
<td>we</td>
<td>the fence</td>
<td>green</td>
<td>had-to paint</td>
<td></td>
</tr>
<tr>
<td>De man</td>
<td>heeft</td>
<td>de hond</td>
<td>geslagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the man</td>
<td>has</td>
<td>the dog</td>
<td>beaten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To occur on page 8
Table 7

<table>
<thead>
<tr>
<th>position</th>
<th>written</th>
<th>spoken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>LB - (PREMI / MIMI / POSTMI)</td>
<td>21</td>
<td>61.8</td>
</tr>
<tr>
<td>PREMI</td>
<td>2</td>
<td>5.9</td>
</tr>
<tr>
<td>PREMI - (MIMI / POSTMI / RB)</td>
<td>10</td>
<td>29.4</td>
</tr>
<tr>
<td>MIMI</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>MIMI - (POSTMI / RB)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POSTMI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POSTMI - RB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>totals</td>
<td>34</td>
<td>100</td>
</tr>
</tbody>
</table>

To occur on page 9