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Abstract

In this paper we describe some recent developments concerning the Jacobian Conjec-
ture(JC). First we describe Drużkowski’s result in [6] which asserts that it suffices to
study the JC for Drużkowski mappings of the form x + (Ax)∗3 with A2 = 0. Then
we describe the authors’ result of [2] which asserts that it suffices to study the JC
for so-called gradient mappings i.e. mappings of the form x − ∇f , with f ∈ k[n]

homogeneous of degree 4. Using this result we explain Zhao’s reformulation of the JC
which asserts the following: for every homogeneous polynomial f ∈ k[n] (of degree 4)
the hypothesis ∆m(fm) = 0 for all m ≥ 1 implies that ∆m−1(fm) = 0 for all large
m (∆ is the Laplace operator). In the last section we descibe Kumar’s formulation of
the JC in terms of smoothness of a certain family of hypersurfaces. 1

Introduction

Since the first appearance of the JC in [12] various papers have been published con-
cerning this conjecture. One of the milestones is undoubtedly the classical paper [1] of
Bass, Connell and Wright from 1982. This paper gave an impuls to the field of poly-
nomial automorphisms, which is now flourishing as never before. To mention a few
highlights: the counterexample to the real Jacobian Conjecture by Pinchuk in [14],
1994, proofs of the 2-dimensional Markus-Yamabe Conjecture by Glutsuk, Fessler
and Gutierrez in [9],[8] and [10], the polynomial counterexamples to the Markus-
Yamabe Conjecture in all dimensions ≥ 3 by Cima, van den Essen, Gasull, Hubbers
and Mañosas in [4], 1995, the proof of the linearization conjecture for C∗-actions on
C3 by Kaliman, Koras, Makar-Limanov and Russell in [11] and recently the negative
solution of the tame generators conjecture by Shestakov and Umirbaev in [15]. How-
ever, since the famous reduction theorems of Bass, Connell, Wright/Yagzhev [16] and
Drużkowski [5], not much progress has been made towards the Jacobian Conjecture.
The aim of this paper is to report on some surprising new reduction theorems, which
go far beyond the classical reductions mentioned before. The two most important
papers in this respect are [2] and [17]. In the authors’ paper [3] a survey is given
of various results related to the paper [2]. Therefore in this paper we will focus our
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attention on Zhao’s paper [17] (see section 3). First we recall in section 2 the main
result of [2], on which Zhao’s result is based. Finally in the last section we describe
one more consequence of the main theorem of [2]: namely a reformulation of the JC,
due to Mohan Kumar, in terms of smoothness of a family of hypersurfaces.

1 The classical reduction theorems and
Drużkowski’s recent reduction

Throughout this paper k denotes an algebraically closed field of characteristic zero
and by k[n] or k[x] we denote the n-variable polynomial ring k[x1, . . . , xn]. Recall that
the Jacobian Conjecture asserts that a polynomial map F : kn → kn is invertible if
det JF ∈ k∗, where JF = (∂Fi

∂xj
) denotes the Jacobian matrix of F .

In [1] Bass, Connell and Wright and in [16] Yagzhev showed that it suffices to inves-
tigate the JC for all n ≥ 1 and all polynomial maps of the form F = x + H, where
H = (H1, . . . ,Hn) is homogeneous (of degree 3) and JH nilpotent (in fact they show
that for such homogeneous maps H the condition det JF ∈ k∗ is equivalent to JH
being nilpotent). A little later Drużkowski in [5] showed that one may even assume
that each Hi is of the form L3

i , where Li is a linear form. In other words it suffices
to study the JC for polynomial maps of the form x + (Ax)∗3, where A ∈ Mn(k)
and (v1, . . . , vn)∗3 denotes the vector (v31 , . . . , v

3
n). More recently Drużkowski in [6]

obtained the following improvement of his reduction theorem.

Theorem 1.1 (Drużkowski, 2000). It suffices to investigate the JC for all n ≥ 1 and
all polynomial maps of the form x+ (Ax)∗3 with the additional property that A2 = 0.

Proof. Let F := x + (Ax)∗3 : kn → kn and i ∈ k satisfy i2 = −1. Put F∗ :=
x + 2i(Ax)∗3. Observe that F∗ = zF (z−1x), where z2 = 1

2i . So F is invertible iff F∗
is invertible iff F̂ := (F∗, y) = (x + 2i(Ax)∗3, y) : k2n → k2n is invertible. Now put

Q := (x + iy, y + (A(x + iy))∗3) and S := (x− iy, y).

Then G := S ◦ F̂ ◦Q is invertible iff F̂ is invertible. Furthermore, one readily verifies
that G = (x, y) + (N(x, y))∗3, where

N :=

(
−iA A
A iA

)
which satisfies N2 = 0.

2 Reduction to the symmetric case

Let JH be a Jacobian matrix. Then one easily verifies that JH is symmetric iff H is
a gradient mapping i.e. H = ∇f(= (fx1 , . . . , fxn)) for some f ∈ k[x]. The main result
of [2] asserts that it suffices to investigate the JC for all n ≥ 2 and all F : kn → kn of
the form F = x +∇f (with J(∇f) nilpotent). More precisely we have
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Theorem 2.1 (de Bondt, van den Essen, 2003). If the JC is true for all polynomial
maps F : k2n → k2n of the form x +∇f , with J(∇f) nilpotent (and homogeneous),
then the JC is true for all polynomial maps of the form x + H : kn → kn with JH
nilpotent (and homogeneous).

The proof of this result is based on the next lemma. Recall that

J(∇f) = ( ∂2f
∂xi∂xj

) =: H(f)

the Hessian of f . The standard bilinear form on km we denote by <,>.

Lemma 2.2 Let H = (H1(x), . . . ,Hn(x)) ∈ k[x]n and y1, . . . , yn new variables. Put
f := fH = (−i) < H(x + iy), y >. Then JH is nilpotent iff H(f) is nilpotent.

Proof. (1) H(f) is nilpotent iff det (TI2n −H(f)) = T 2n. Put S := (x − iy, y) and
S0 the corresponding matrix in M2n(k). Then
g := f ◦ S = (−i) < H(x), y > and

(2) H(g) =

(
∗ (−i)(JH)t

(−i)JH 0

)
.

Furthermore

(3) H(g) = St
0H(f)|S(x,y).S0.

Since det S0 = 1 we get from (1) and (3) H(f) is nilpotent iff

det St
0(TI2n −H(f))|S(x,y)S0 = T 2n iff det (TSt

0S0 −H(g)) = T 2n.

Since St
0S0 =

(
In −iIn
−iIn 0

)
we get from (2)

H(f) is nilpotent iff det

(
∗ −iT In + i(JH)t

−iT In + iJH 0

)
= T 2n.

Since for n× n matrices A and B we have that

det

(
∗ −iA
−iB 0

)
=det Adet B

we get H(f) is nilpotent iff det (TIn − (JH)t)det (TIn − JH) = T 2n iff

det (TIn − JH) = Tn iff JH is nilpotent.

Proof of theorem 2.1. Let H = (H1(x), . . . ,Hn(x)) with JH nilpotent (and H
homogeneous). Let f = fH be as in lemma 2.2. Then H(f) is nilpotent (and f is
homogeneous). So by our hypothesis

G := (x1 + fx1
, . . . , xn + fxn

, y1 + fy1
, . . . , yn + fyn

)

is invertible. Consequently, with S as in the proof of lemma 2.2, S−1 ◦ G ◦ S is
invertible too. An easy calculation shows that

S−1 ◦G ◦ S = (x1 + H1(x), . . . , xn + Hn(x), ∗, . . . , ∗).

Since this last map is invertible, the desired result follows from the next lemma.
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Lemma 2.3 If F̃ := (F1(x), . . . , Fn(x), ∗, . . . , ∗) : k2n → k2n is invertible, then F :=
(F1(x), . . . , Fn(x)) : kn → kn is invertible.

Proof. Let (G1(x, y), . . . , Gn(x, y), ∗, . . . , ∗) be the inverse of F̃ . Then in particular

Fi(G1(x, y), . . . , Gn(x, y)) = xi for all i.

So Fi(G1(x, 0), . . . , Gn(x, 0)) = xi for all i, which means that F is invertible with
inverse (G1(x, 0), . . . , Gn(x, 0)).

Combining theorem 2.1 with the classical Bass, Connell, Wright/ Yagzhev reduction
theorem we get

Corollary 2.4 . The following statements are equivalent
i) The Jacobian Conjecture.
ii) The Jacobian Conjecture for polynomial maps of the form x + ∇f with H(f)
nilpotent and f homgeneous of degree 4.

3 Zhao’s Laplace operator formulation of the Jaco-
bian Conjecture

In the previous section we saw that it suffices to investigate the JC for polynomial
maps of the form x +∇f with H(f)(= J(∇f)) nilpotent (and we may even assume
that f is homogeneous of degree 4).
In [17] Zhao uses this result to obtain a remarkable reformulation of the JC. Recall
that the Laplace operator, denoted ∆, is equal to ∂2

1 + . . . + ∂2
n (∂i := ∂

∂xi
).

Theorem 3.1 (Zhao, 2004). The JC is equivalent to each of the following state-
ments.
i) If f is a homogeneous polynomial of degree ≥ 3 such that ∆m(fm) = 0 for all
m ≥ 1, then ∆m−1(fm) = 0 for all large m.
ii) If f is a homogeneous polynomial of degree 4 such that ∆m(fm) = 0 for all m ≥ 1,
then ∆m−1(fm) = 0 for all large m.

In the remainder of this section we give a somewhat simplified proof of this result.
We start with some notations and generalities.
If R is a commutative ring, then R[[x]] denotes the ring R[[x1, . . . , xn]] of formal power
series in x1, . . . , xn over R. The order of an element g of R[[x]], denoted o(g), is by
definition the smallest degree of a monomial appearing in g if g 6= 0 and o(g) = ∞
if g = 0. More generally, if H = (H1, . . . ,Hn) ∈ R[[x]]n then o(H) denotes the
minimum of the o(Hi).
Now let H ∈ k[[x]]n with o(H) ≥ 2. Then the formal map F = x − H satisfies det
JF (0) = 1. So it has a formal inverse. To study this inverse the crucial idea in [17]
is to embed F in a family of such maps. More precisely, let t be a new variable and
let A := k[t]. Then define

Ft := x− tH(x) ∈ A[[x]]n.
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Since det (JxFt)(0) = 1 it follows from the formal inverse function theorem ([7], 1.1.2)
that Ft has a unique formal inverse, say Gt in A[[x]]n, which is of the form x+Ut(x)
with o(Ut) ≥ 2. Setting t = 0 in Ft(Gt(x)) = x we get G0(x) = x. So Ut(x) = tNt(x)
for some Nt(x) ∈ A[[x]]n. Hence

Gt(x) = x + Nt(x).

Consequently, the equation Gt(Ft(x)) = x implies that x − tH(x) + tNt(Ft(x)) = x,
whence

(4) Nt(Ft(x)) = H(x).

By the chainrule we get JNt(Ft).JFt = JH. Using JFt = I − tJH this gives

JNt(Ft) = JH.(I − JH)−1 =
∑∞

k=1(JH)k(x)tk−1.

Writing ∂t for ∂
∂t we get

Proposition 3.2 Nt(x) is the unique formal solution of the Cauchy problem

(5) ∂t(Nt) = JNt.Nt, Nt=0(x) = H(x).

Proof. The initial condition follows directly from (4). Furthermore, differentiating
(4) with respect to t gives ∂t(Nt)(Ft)− (JNt)H = 0. Composing from the right with
Gt and using (4) gives the desired result.

From now on we assume that JH is symmetric. So H = ∇f for some unique
f ∈ k[[x]] with o(f) ≥ 3. It follows from (5) that JNt(Ft) is symmetric and hence so
is JNt(x). Consequently there exists a unique Qt ∈ A[[x]] with o(Qt) ≥ 3 such that
Nt(x) = ∇Qt. So Gt(x) = x + t∇Qt. Writing <,> for the standard bilinear form we
have

Proposition 3.3 Qt is the unique solution of the Cauchy problem

(6) ∂t(Qt) = 1
2 < ∇Qt,∇Qt >, Qt=0 = f .

Proof. Using Nt = ∇Qt and 3.2 we get ∇(∂t(Qt)) = ∂t(∇Qt) = JNt.∇Qt. Also one
easily verifies that

∇( 1
2 < ∇Qt,∇Qt >) = H(Qt).∇Qt = JNt.∇Qt.

So ∇(∂t(Qt)) = ∇( 1
2 < ∇Qt,∇Qt >). This implies the first equality in (6), since the

polynomials in this equation have no constant term. Finally, using (4) we get that
∇Qt=0 = N0 = H = ∇f , which gives Qt=0 = f .

In order to investigate JC one should, according 3.4. study polynomial maps x−∇f
with H(f) nilpotent. Therefore we call an element f ∈ k[[x]] which matrix H(f) is
nilpotent, Hesse Nilpotent, HN for short.

Lemma 3.4 Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN iff ∆Qt = 0.
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Proof. Observe that JNt = J(∇Qt) = H(Qt), whence Tr JNt=Tr H(Qt) = ∆Qt.
Since H = ∇f we also have JH = H(f). Then it follows from (5) by taking traces
that

(7) (∆Qt)(Ft) =
∑∞

k=1 Tr H(f)ktk−1.

Finally, f is HN iff Tr H(f)k = 0 for all k ≥ 1 iff (∆Qt)(Ft) = 0 iff ∆Qt = 0.

Now we are able to give Zhao’s main theorem, which gives a beautiful formula for Qt

(and hence for the formal inverse Gt = x+∇Qt) in case f is HN. In fact his theorem
gives the following more general result.

Theorem 3.5 (Zhao, 2004). Let f ∈ k[[x]]n with o(f) ≥ 3 and HN. Then

(8) Qk
t = k!

∑∞
m=0

tm

2mm!(m+k)!∆
m(fm+k) for all k ≥ 1.

Proof. Introduce a new variable s and consider the generating function of the se-
quence {Qk

t /k!} i.e. U := exp(sQt).
Claim: U is the unique solution of the Cauchy problem

(9) ∂t(U) = 1
2s∆U , U(t = 0) = exp(sf).

To prove this claim observe that, using (6), we get

(10) ∂t(U) = s
2 < ∇Qt,∇Qt > U and U(t = 0) = exp(sf).

Furthermore, ∆U = s
∑

i ∂i(∂i(Qt)U) = s∆(Qt)U + s2
∑

i ∂i(Qt)
2U

= s2 < ∇Qt,∇Qt > U , since ∆Qt = 0 by 3.4. So

(11) ∆U = s2 < ∇Qt,∇Qt > U .

From (10) and (11) we get (9). However, also the formal series∑∞
k=0

tk

(2s)kk!
∆k(exp(sf))

is a solution of the Cauchy problem (9), as one easily verifies. So by the uniqueness
we obtain that this series is equal to exp(sQt). Comparing the coefficients of sk for
all k ≥ 1 in this equation we obtain (8).

As an immediate consequence of (8) we get

Corollary 3.6 Let f ∈ k[[x]] with o(f) ≥ 3 and f HN. Then ∆m(fm) = 0 for all
m ≥ 1

Proof. By (3.4) ∆Qt = 0. Then use (8) with k = 1.

Now we show that the converse holds as well i.e.

Theorem 3.7 Let f ∈ k[[x]] with o(f) ≥ 3. Then f is HN iff ∆m(fm) = 0 for all
m ≥ 1 iff ∆m(fm) = 0 for all 1 ≤ k ≤ n.

The proof of this result follows directly from the next result with k = n, using the
fact that an n×n matrx A over a domain is nilpotent iff Tr Ak = 0 for all 1 ≤ k ≤ n.
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Proposition 3.8 Let vm(f) := ∆m(fm) and um(f) :=Tr H(f)m for all m ≥ 1. Let
k ≥ 1. If v1(f) = . . . = vk(f) = 0, then u1(f) = . . . = uk(f) = 0.

The proof of this result is based on the following lemma in which we use the symbol
”*” to denote a non-zero constant in k.

Lemma 3.9 Let k ≥ 1 and u1(f) = . . . = uk(f) = 0. Then for all m ≥ 1

(12) ∂l
tQ

m
t ≡ ∗∆lQm+l

t (mod t(k+1)−l), for all 1 ≤ l ≤ k.

Proof. i) By induction on l. First the case l = 1. Observe

∂tQ
m
t = mQm−1

t ∂t(Qt) = ∗Qm−1
t < ∇Qt,∇Qt > (by (6)).

So we need to show that Qm−1
t < ∇Qt,∇Qt >≡ ∆(Qm+1

t )(mod tk). Therefore ob-
serve that

∆(Qm+1
t ) = ∗Qm

t ∆Qt + ∗Qm−1
t < ∇Qt,∇Qt >.

Since by (7) and the hypothesis ∆Qt ≡ 0(mod tk), the case l = 1 follows.
ii) Now assume (12) for 1 ≤ l ≤ k. Applying ∂t to (12) gives

(13) ∂l+1
t Qm

t ≡ ∗∆l∂t(Q
m+l
t )(mod t(k+1)−(l+1)).

From the case l = 1 with m + l instead of m we get

∂t(Q
m+l
t ) ≡ ∗∆Qm+l+1

t (mod tk).

Combining this with (13) gives the desired result for l + 1.

Proof of 3.8. By induction on k. The case k = 1 is obvious since v1(f) = u1(f).
So assume 3.8 for k ≥ 1 and lets prove it for k + 1. So we assume that v1(f) =
. . . = vk+1(f) = 0. In particular the induction hypothesis implies that u1(f) = . . . =
uk(f) = 0. So by (7) ∆Qt ≡ uk+1(f)tk(mod tk+1). Consequently

uk+1(f) = 1
k!∂

k
t (∆Qt)t=0.

Furthermore, applying ∆ to (12) with l = k and m = 1 we get

∂k
t (∆Qt) ≡ ∗∆k+1Qk+1

t (mod t).

So, using Q0 = f (by (6)), we get uk+1(f) = ∗∆k+1Qk+1
0 = ∗∆k+1fk+1 = vk+1 = 0,

as desired.

Now we are finally able to give

Proof of theorem 3.1. Let f be homogeneous of degree 4. Substituting t = 1 in
(8) with k = 1 we get that the formal inverse of x−∇f is of the form x+∇Q, where

Q =
∑∞

m=0
1

2mm!(m+1)!∆
m(fm+1).

Since the condition H(f) is nilpotent is equivalent to the conditions described in 3.7,
the desired result follows readily from 2.4.
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4 Kumar’s formulation of the Jacobian Conjecture

We conclude this paper with an observation of Mohan Kumar ([13]) which describes
the Jacobian Conjecture as a problem concerning the smoothness of some hypersur-
faces.

Theorem 4.1 (Kumar, 2004) The Jacobian Conjecture is equivalent to the following
statement:

(S) For every homogeneous HN polynomial f of degree 4, every 1 ≤ i ≤ n and every
t ∈ k∗, the hypersurface

S(t, i) := xi + fxi + t
2fxixi + t2

6 fxixixi

has no singularities.

Proof. i) First assume (S). Let f be a homogeneous HN polynomial of degree 4.
According (2.4) and [7], 4.2.1 it suffices to show that F := x + ∇f is injective.
Therefore suppose that F (a) = F (a + b) for some a, b ∈ kn with b 6= 0. Choose an
orthogonal T such that T−1b = (t, 0, . . . , 0), for some t ∈ k∗. Put g := f ◦ T . Then
G := x +∇g = x + T t ◦ ∇f ◦ T = T−1 ◦ F ◦ T and G(T−1a) = G(T−1a + T−1b). So
replacing F by G and f by g we may assume that b = (t, 0, . . . , 0) for some t ∈ k∗.
ii) Now consider the assumption

(14) (x +∇f)(a + (t, 0, . . . , 0)) = (x +∇f)(a).

Put a∗ := (a2, . . . , an). Then looking at the first component of (14) we get a1 + t +
fx1

(a1 + t, a∗) = a1 + fx1
(a). Expanding fx1

(a1 + t, a∗) in its Taylor series we deduce
that

(15) t + tfx1x1
(a) + t2

2 fx1x1x1
(a) + t3

6 fx1x1x1x1
(a) = 0.

For 2 ≤ i ≤ n, looking at the i-th component of (14) gives

(16) tfxix1
(a) + t2

2 fxix1x1(a) + t3

6 fxix1x1x1(a) = 0

Dividing by t ∈ k∗ we deduce from (15) and (16) that the hypersurface S(t, 1) has a
singularity at a, contradiction.
ii) Conversely assume that the JC holds. If for some homogeneous HN polynomial f
of degree 4, some 1 ≤ i ≤ n and some t ∈ k∗ the hypersurface S(t, i) has a singularity,
say at a ∈ kn, then reading backwards the argument in ii) we find from (14) that the
map x+∇f is not injective. In particular x+∇f is not invertible, contradicting the
JC since f is HN i.e. J(∇f) is nilpotent.

To conclude this paper we give the following interesting observation, also due to
Kumar.

Proposition 4.2 Let f be a homogeneous HN polynomial of degree 4. Then for every
i ≤ i ≤ n and every t ∈ k the hypersurface

R(t, i) := xi + fxi
+ tfxixi

+ t2

2 fxixixi

has no singularities.
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Proof. We may assume that i = 1. Let b := (t, 0, . . . , 0) and x∗ := (x2, . . . , xn).
Since H(f) is nilpotent, so is H(f)(x1 + t, x∗) = H(f(x1 + t, x∗)). Using Taylor’s
expansion we get

f(x1 + t, x∗) = f(x) + tfx1
(x) + t2

2 fx1x1
(x) + . . .

Since ”taking the Hessian” of a polynomial is additive, we see that

H(f(x1 + t, x∗)) = H(f) + tH(fx1) + t2

2 H(fx1x1).

The first row of this matrix is ∇(R(t, 1)− x1) and thus ∇(R(t, 1)) is the first row of
the invertible matrix In−H(f(x1 + t, x∗)), which implies that the hypersurfac R(t, 1)
has no singularities.
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