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Introduction

In this paper, I present some results about a special type of polynomial maps,
the so-called quasi-translations. A quasi-translation is a map x + H such that
x − H is its inverse. In 1876 in [6], P. Gordan and M. Nöther studied quasi-
translations to understand singular Hessians better, because quasi-translations
can be made from Hessians with determinant zero in the following manner:

Let f be a polynomial such that the Hessian Hf := J∇f has determinant
zero. Then the components of ∇f are algebraically dependent over C, say that
R(∇f) = 0 with R 6= 0. Now

x+ (∇R ◦ ∇f)

happens to be a quasi translation.

In [1], it is shown that

D :=

n∑
i=1

Hi
∂

∂xi

with Hi := Rxi(∇f) satisfies D2xi = 0 for all i. In [5], it is shown that D2xi = 0
is equivalent to x+H being a quasi-translation.

We will reprove most of the results of [6] from P. Gordan and M. Nöther (as far
as they can not be found in [1]), since they are written in an old-fashioned, not
very readable style.

1 Homogeneous quasi-translations x + H with
rkJH ≤ 2

Let H be homogeneous of degree d such that D :=
∑n
i=1Hi

∂
∂xi

satisfies

D2xi = DHi = 0 (1 ≤ i ≤ n)
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i.e. JH ·H = 0.

In [6], P. Gordan and M. Nöther characterized such H for which rkJH ≤ 2.
They proved the following result with geometric methods:

Theorem 1.1. Assume that D =
∑n
i=1Hi∂i is a derivation such that D2xi = 0

for all i. Assume further that H is homogeneous of degree d and the rank of
JH is at most 2 and define g = gcd{H1, H2, . . . ,Hn}.
Then there is a linear transformation T and an s ≥ min{2, n − 1} such that
H̃ = T−1 ◦ g−1H ◦ T satisfies H̃1 = H̃2 = · · · = H̃s = 0 and H̃s+1, . . . , H̃n ∈
C[x1, x2, . . . , xs].

If JH · H = 0, then H is an eigenvector of JH and JH is nilpotent [5,
Proposition 1.1 iii)], i.e. all eigenvalues of JH are zero. But the reverse holds
as well, so x+H is a quasi-translation, if and only if H is an eigenvector of JH
and JH is nilpotent. In particular, if x+H is a quasi-translation, then

JH ·H = trJH ·H

The following theorem characterizes all maps H with rkJH ≤ 2 that satisfy
this property and therefore generalizes theorem 1.1:

Theorem 1.2. Assume that H is homogeneous. Then the following statements
are equivalent:

i) rkJH ≤ 2 and JH ·H = trJH ·H,

ii) There exists a linear transformation T and an s ≥ min{2, n − 1}, such
that H̃ = T−1 ◦H ◦T is of the form H̃ = g ·h(p, q), with H̃1 = H̃2 = · · · =
H̃s = 0 and p, q ∈ C[x1, x2, . . . , xs].

We first show that ii) implies i) in the above theorem. So assume ii). Since
Hi ∈ C[g1/ deg hp, g1/ deg hq] for all i, rkJH = rkJ H̃ = trdegC H̃ ≤ 2 follows.
Furthermore, if we put D̃ =

∑n
i=1 H̃i

∂
∂xi

, then it follows from H̃1 = H̃2 = · · · =
H̃s = 0 and p, q ∈ C[x1, x2, . . . , xs] that p, q ∈ kerD, whence

J H̃i · H̃ = D̃H̃i = hi(p, q)D̃g

= H̃i

n∑
j=1

hj(p, q)
∂

∂xj
g

= H̃i

n∑
j=1

∂

∂xj
H̃j

= H̃i · trJ H̃
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So J H̃ · H̃ = trJ H̃ · H̃, whence

JH ·H = TJ H̃|T−1xT
−1 · TH̃|T−1x

= TJ H̃|T−1xH̃|T−1x

= T trJ H̃|T−1xH̃|T−1x

= T trJ H̃|T−1xT
−1 · TH̃|T−1x

= trJH ·H

and i) follows.

We will prove the implication i) ⇒ ii) in the remainder of this section.

Corollary 1.3. Assume H satisfies i) of theorem 1.2 and define g = gcd{H1,
H2, . . . ,Hn} = 1. Then x+ g−1H is a quasi-translation.

We shall show later that for quasi-translation x+H,

rkJH ≤ max{n− 2, 1} (1)

So if n ≤ 4, then rkJH ≤ 2.

Corollary 1.4. Assume x+H is a homogeneous quasi-translation in dimension
n ≤ 4. Then H satisfies i) and ii) of theorem 1.2

The map
H = (0, 0, x2g, x1g)

with g = (x1x3 − x2x4) is a typical example of a quasi-translation in dimension
4.

Before we prove theorem 1.2, we first formulate a result for homogeneous Jaco-
bians of rank 2:

Theorem 1.5. Assume rkJH = 2 and let g := gcd(Hi). Then there exist
hi ∈ k[t1, t2] homogeneous of the same degree s or zero and p and q in k[x]
homogeneous of the same degree r such that Hi = ghi(p, q) for all i.

Furthermore, both p and q are irreducible.

Proof. This theorem is formulated as Theorem 2.1 in [2], except the last sen-
tence: the property that both p and q are irreducible. Assume that p and q
have minimal degree. We distinguish two cases:

• p+ λq is reducible for all λ ∈ C.
Since g = gcd{H1, H2, . . . ,Hn}, p+tq does not have divisors which degree
with respect to t is zero. So p + tq is irreducible. Now it follows from
Theorem 18 in [8, p. 79] (see also Theorem 2.2 in [2]) that

p+ tq =

s∑
i=1

ai(t)(p
∗)i(q∗)s−i (2)
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for some s ≥ 2 and p∗, q∗ ∈ C.

Assume deg p∗ 6= deg q∗, say that deg p∗ > deg q∗. Take λ ∈ {0, 1} and let
iλ be the largest i such that ai(λ) 6= 0. Then

p+ λq = p+ λq = aiλ(λ)(p∗)iλ(q∗)s−iλ

where f is the largest degree homogeneous part of f . Since deg p = deg(p+
q), we have i0 = i1, whence gcd{p, p+q} 6= 1, contradicting gcd{p, q} = 1.

So deg p∗ = deg q∗. If p∗ and q∗ are linearly dependent, then we can
replace q∗ by a linear combination of p∗ and q∗ to get deg p∗ > deg q∗,
without affecting (2). So p∗ and q∗ are linearly independent.

Since
s∑
i=1

ai(λ)zi1z
s−i
2

is homogeneous and bivariate, it decomposes in linear factors, whence

s∑
i=1

ai(λ)(p∗)i(q∗)s−i (3)

decomposes in linear combinations of p∗ and q∗. But each of these com-
binations is nonzero, so the expression in (3) is nonzero as well for all λ,
in particular for λ = 0 and λ = 1. It follows that

p =

s∑
i=1

ai(0)(p∗)i(q∗)s−i

and

p+ q =

s∑
i=1

ai(1)(p∗)i(q∗)s−i

so Hi/g can be expressed as a homogeneous polynomial in p∗ and q∗ for
each i . Since deg p∗ = deg q∗ < deg p = deg q, and p and q were chosen
of minimal degree, we have a contradiction.

• p+ λq is irreducible for certain λ ∈ C.
Let p∗ = q and q∗ = p+ λq. Then H is of the form

H = gh∗(p∗, q∗)

Furthermore, q∗ is irreducible and according to the above, there exists a
λ∗ ∈ C such that p∗ + λq∗ is irreducible. Now replace p by p∗ + λq∗ and
q by q∗ to get the desired result.

Lemma 1.6. Let H = (H1, H2, . . . ,Hn) be homogeneous and assume rkJH =
2 and JH · H = trJH · H. Then there are at least two independent linear
relations between the components of H.
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Proof.

i) Assume first that Hi ∈ C[x1, x2] for all i. Then trJ (H1, H2) is an eigen-
value of J (H1, H2). Since trJ (H1, H2) is the sum of all eigenvalues of
J (H1, H2) by definition, the other eigenvalue of J (H1, H2) is zero. So H1

and H2 are algebraically dependent and thus n ≥ 3, for rkJH = 2. Since
H1 and H2 are homogeneous of the same degree, there exists a homoge-
neous relation between them. This homogeneous relation decomposes into
linear components, whence H1 and H2 are linearly dependent. So we may
assume that H1 = 0. It follows from JH ·H = trJH ·H = (H2)x2

·H
that JH3 ·H = (H2)x2

·H3. But also JH3 ·H = (H3)x2
·H2. Apparently,

either H2 = 0 or
∂

∂x2

H3

H2
= 0

in which case H3 is a scalar multiple of H2. So we have two independent
linear relations between the Hi in case Hi ∈ C[x1, x2] for all i.

ii) Assume next the general case. From theorem 1.5, it follows that H is
of the form g · h(p, q), where g = gcd{H1, H2, . . . ,Hn} and p and q are
homogeneous of the same degree and irreucible. Furthermore, they are
relatively prime by definition of g.

Replacing H by T−1 ◦H ◦T and p resp. q by p◦T resp. q ◦T for a suitable
T ∈ GLn(C), we may assume that

h1(p, q) ≡ pr (mod pq)

h2(p, q) ≡ 0 (mod pq)

...

hn−1(p, q) ≡ 0 (mod pq)

hn(p, q) ≡ qr (mod pq)

Since H is an eigenvector of JH, h(p, q) = g−1H is such an eigenvector
as well, say JH · h(p, q) = b(x) · h(p, q). Put

D :=

n∑
i=1

hi(p, q)
∂

∂xi

Assume H1 6= 0. Then

D
Hi

H1
=
H1DHi −HiDH1

H2
1

=
H1b(x)Hi −Hib(x)H1

H2
1

= 0

but also

D
Hi

H1
= D

hi(p/q, 1)

h1(p/q, 1)
=

(
∂

∂y1

hi
h1

)
(p/q, 1) ·Dp

q

and

D
Hi

H1
= D

hi(1, q/p)

h1(1, q/p)
=

(
∂

∂y2

hi
h1

)
(1, q/p) ·Dq

p
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Since D(q/p) = −q2/p2D(p/q), it follows that either both h2/h1 and
h3/h1 are constant or D(p/q) = 0.

In the first case, we have with H2 = h2/h1 · H1 and H3 = h3/h1 · H1

two independent linear relations between the components of H, so assume
D(p/q) = 0. Then Dp = p/q · Dq, so q | Dq, for gcd{p, q} = 1. Since
also Dq ≡ prqx1

(mod q), it follows that q | prqx1
. This is only possible

if qx1
= 0, i.e. q ∈ C[x2, . . . , xn−1, xn], for gcd{p, q} = 1. Similarly,

p ∈ C[x1, x2, . . . , xn−1].

iii) Assume first that either p ∈ C[x2, . . . , xn−1] or q ∈ C[x2, . . . , xn−1], say
that q ∈ C[x2, . . . , xn−1]. Then p, q ∈ C[x1, x2, . . . , xn−1]. Let ĝ be the
leading coefficient of g with respect to xn and put Ĥ = ĝ(h1(p, q), h2(p, q),
. . . , hn−1(p, q)). Then it is easy to show that Ĥ inherits all properties of H,
but Ĥ has one variable less. So if n ≥ 4, then it follows by induction that
there are at least two independent linear relations between the components
of H. The case n = 3 reduces to i), so there are at least two independent
linear relations between the components of H.

iv) Assume next that px1
6= 0 and qxn 6= 0. Since p and q are irreducible,

gcd{p, px1
} = gcd{q, qxn} = 1. So there is a non-constant c ∈ C[x2, . . . ,

xn−1], and there are ai ∈ C[x1, x2, . . . , xn−1] and bi ∈ C[x2, . . . , xn−1, xn]
such that

a1p+ a2px1
= b1q + b2qxn = c (4)

Write ω = (ω1, ω2, . . . , ωn−1, ωn). Now take ω2, . . . , ωn−1 ∈ C such that
c(ω2, . . . , ωn−1) = 1. Take ω1 such that p(ω) = 0 and ωn such that
q(ω) = 0. From (4), it follows that px1

(ω) 6= 0 and qxn(ω) 6= 0. Since
pxn(ω) = qx1

(ω) = 0, (∇p)(ω) and (∇q)(ω) are independent.

The following lemma completes the proof of lemma 1.6, since it reduces the
general case to the case Hi ∈ C[x1, x2] of i):

Lemma 1.7. Let H = (H1, H2, . . . ,Hn) be homogeneous. Assume rkJH = 2
and write H = gh(p, q), where g = gcd{H1, H2, . . . ,Hn}. Assume that there
is an ω ∈ Cn such that p(ω) = q(ω) = 0 and such that (∇p)(ω) and (∇q)(ω)
are independent. Then there is an Ĥ = ĝh(p̂, q̂) such that p̂ and q̂ are linear,
ĝ = gcd{Ĥ1, Ĥ1, . . . , Ĥn} ∈ C[p̂, q̂], and such that the algebraic relations between
the Hi correspond to those between the Ĥi.

Furthermore, if JH ·H = trJH ·H, then J Ĥ ·H = trJ Ĥ ·H.

Proof. By way of a suitable linear transformation, we may assume that ω = e1.
Let r be the degree of p and q. Since p(e1) = q(e1) = 0, the coefficients of xr1
in p and q are zero. It follows that the coefficient of xix

r−1
1 of p resp. q equals

pxi(e1) resp. qxi(e1), for all i.

Let p̂ resp. q̂ be the leading coefficient of p resp. q with respect to x1. Then p̂ =
〈(∇p)(e1), x〉 and q̂ = 〈(∇q)(e1), x〉, for (∇p)(e1) and (∇q)(e1) are independent
vectors by assumption. Furthermore, p̂ and q̂ are algebraically independent
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linear forms. Since rkJH = 2, p and q are algebraically independent as well,
and each relation between the components of both H and h(p̂, q̂) are relations
between the components of h already.

There is a linear coordinate system of C[x] of the form x1, y2, . . . , yn−2, p̂, q̂. Let
g1 be the leading coefficient of g with respect to x1 and define gi inductively
as the leading coefficient of gi−1 with respect to yi, for i = 2, . . . , n − 2. Then
ĝ := gn−2 ∈ C[p, q]. Furthermore, Ĥ can be obtained from H in the same
way as ĝ was obtained from g, and each step in this construction preserves the
properties of H. So J Ĥ · Ĥ = trJ Ĥ · Ĥ.

Proof of theorem 1.2: We must show the implication i) ⇒ ii). So assume i).
Take s maximal such that there is a T ∈ GLn(C) for which H̃ = T−1 ◦ H ◦
T satisfies H̃1 = H̃2 = · · · = H̃s = 0. Put K = C(x1

xs
, x2

xs
, . . . , xs−1

xs
). We

distinguish three cases:

• (H̃s+1, H̃s+2, . . . , H̃n) are linearly dependent over K.
Say that

cs+1H̃s+1 + cs+2H̃s+2 + · · ·+ cnH̃n = 0

where ci ∈ K for all i. Write H̃ = gh(p, q) and put ĥ =
∑n
i=s+1 cihi ∈

K[y1, y2]. Then ĥ(p, q) = 0, so either ĥ = 0 or p and q are algebraically
dependent over K.

If ĥ = 0, then hs+1, hs+2, . . . , hn are linearly dependent over K, and hence
over C, since hi ∈ C[y1, y2] for all i. So Hs+1, Hs+2, . . . ,Hn are linearly

dependent over C. This contradicts the maximality of s, however. So ĥ is
a relation over K between p and q. Since ĥ is homogeneous, ĥ decomposes
in linear factors over K̄[y1, y2], where K̄ is the algebraic closure of K,
and one of these factors is already a relation between p and q. So p/q ∈
K̄∩K(xs, xs+1, . . . , xn). Since p and q are relatively prime, it follows that
p, q ∈ K, and ii) follows.

• s ≥ 2.
H̃ is a homogeneous polynomial map over K = C(x1

xs
, x2

xs
, . . . , xs−1

xs
), with

n−(s−1) < n indeterminates xs, xs+1, . . . , xn. From Lefschetz’ principle,
it follows again from lemma 1.6 that there are at least two independent
linear relations over K between the components of (H̃s, H̃s+1, . . . , H̃n).
One such relation is H̃s = 0, and the other is given by, say

cs+1H̃s+1 + cs+2H̃s+2 + · · ·+ cnH̃n = 0

where ci ∈ K for all i. Write H̃ = gh(p, q) and put ĥ =
∑n
i=s+1 cihi ∈

K[y1, y2]. Then ĥ(p, q) = 0, so either ĥ = 0 or p and q are algebraically
dependent over K.

If ĥ = 0, then hs+1, hs+2, . . . , hn are linearly dependent over K, and hence
over C, since hi ∈ C[y1, y2] for all i. So Hs+1, Hs+2, . . . ,Hn are linearly

dependent over C. This contradicts the maximality of s, however. So ĥ is
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a relation over K between p and q. Since ĥ is homogeneous, ĥ decomposes
in linear factors over K̄[y1, y2], where K̄ is the algebraic closure of K,
and one of these factors is already a relation between p and q. So p/q ∈
K̄∩K(xs, xs+1, . . . , xn). Since p and q are relatively prime, it follows that
p, q ∈ K, and ii) follows.

• s ≤ 1.
If rkJH = 1, then s = n− 1, for each pair of components of H is linearly
dependent. If rkJH = 2, then it follows from lemma 1.6 that s ≥ 2. So if
H 6= 0, then s = 1, n = 2 and rkJH = 1. Now define H̃3 = xd1, where d
is the degree of H. The map (H̃, H̃3) = (0, H̃2, H̃3) satisfies the properties
of H, whence H̃2 and H̃3 are linearly dependent. So H̃2 ∈ C[x1].

Corollary 1.8. Assume that H ∈ C[x1, x2, x3]3 is homogeneous, such that two
of the three eigenvalues of JH are zero. Then the components of H are linearly
dependent.

Proof. Corollary 1.8 extends Theorem 1.4 of [2], where all eigenvalues of JH are
assumed to be zero, i.e. JH is nilpotent. The proof of Theorem 1.4 distinguishes
two cases: JH ·H = 0 and JH ·H 6= 0. Since JH ·H = 0 implies that JH is
nilpotent [5, Prop. 1.1], the case JH ·H = 0 follows from Theorem 1.4 of [2].
So assume JH ·H 6= 0.

In the proof of the case JH · H 6= 0 in the proof of Theorem 1.4, of [2], the
condition that three eigenvalues are zero instead of two is only required on page
299 of [2], to ensure that the matrix Tv is invertible. It follows from the definiton
of Tv that the condition that three eigenvalues are zero can be weakened to the
condition that two eigenvalues are zero, provided we add the condition that x,
JH · x and (JH)2 · x are independent. So we may assume that x, JH · x and
(JH)2 · x are dependent.

i) Assume first that the vectors x and JH · x are already dependent. Since
JH · x = dH, it follows that H is of the form H = g · x. This contradicts
detJH = 0.

ii) So assume that x and JH ·x are independent. Since x, JH ·x and (JH)2·x
are dependent by assumption, it follows that there are a(x), b(x) ∈ C(x)
such that

(JH)2 · x = a(x) · x+ b(x) · JH · x
Assume first that a(x) = 0. Dividing the above equality by d

JH ·H = b(x) ·H

follows, i.e. H is an eigenvector of JH.

Since JH · H = 0 implies that JH is nilpotent, it follows that b(x)
equals the third eigenvalue of JH, i.e. 0 + 0 + b(x) = trJH. It follows
that 1. of theorem 1.2 is fulfilled. So 2. of theorem 1.2 holds as well.
Since s ≥ min{2, n − 1}, it follows that s = 2 in 2. of theorem 1.2. So
H̃ = (0, 0, g) in 2. of theorem 1.2.
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iii) We show that the remaining case a(x) 6= 0 does not occur. So assume
that a(x) 6= 0. Since JH ·x is independent of x, it follows that for generic
v1 ∈ C3, both a(v1) 6= 0 and v1 and

v2 := (JH)(v1) · v1

are independent. Take v3 independent of v1 and v2 and put

T = (v1|v2|v3)

Then it is a straightforward exercise to compute that J (T−1 ◦H ◦ T ) is
of the form

J (T−1 ◦H ◦ T ) =

 0 a(v1) ∗
1 b(v1) ∗
0 0 ∗


Since detJH = 0, the last row of the above Jacobian must be zero. So
the sum of the determinants of the principal (2 × 2)-minors in the above
Jacobian is −a(v1) 6= 0. This contradicts the assumption that two of the
three eigenvalues of JH are zero, so a(x) = 0.

2 Homogeneous quasi-translations in dimension
five

Let x + H be any quasi-translation (possibly a real translation as well). Then
D :=

∑n
i=1Hi

∂
∂xi

satisfies

D2xi = DHi = 0 (1 ≤ i ≤ n)

and
H(x+ tH) = H(x) (5)

is a polynomial equality, since H(x+tH) = H((exp(tD))x) = (exp(tD))H = H.

If L is a linear form, then DL = L(H), whence

L ∈ kerD ⇐⇒ L(H) = 0 (6)

If T ∈ GLn(C) then the map

x+ T−1H(Tx) = T−1x ◦ (x+H) ◦ Tx

is again a quasi-translation.

Now assume that H is homogeneous of degree d ≥ 1. If A ∈ kerD is homoge-
neous of degree ≥ 1, then

A = (exp tD)A = A(x1 + tH1, x2 + tH2, . . . , xn + tHn)
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and A(H) is the highest degree on the right hand side (the variable t is needed
for the case d = 1). But the corresponding part on the left hand side is zero, so
A(H) = 0.

In general, one can write A ∈ kerD as a sum of its homogeneous parts, each of
which is contained in kerD, and we get

A ∈ kerD =⇒ A(H) = A(0) (7)

We call a derivation D =
∑n
i=1Hi

∂
∂xi

irreducible if gcd{Hi | 1 ≤ i ≤ n} = 1.

Proposition 2.1. D is reducible, if and only if dimV (H) = n−1. Furthermore,
if g = gcd{Hi | 1 ≤ i ≤ n}, then D̃ = g−1D satisfies D̃2xi = 0 as well.

Proof. Assume dimV (H) = n− 1. Then V (H) contains an irreducible (n− 1)-
dimensional subvariety V (g′). It follows that g′ | Hi for all i, whence D is not
irreducible. The reverse is similar.

Assume g = gcd{Hi | 1 ≤ i ≤ n}. Since D is locally nilpotent, kerD is
factorially closed, and g ∈ kerD follows. So gDf = D(gf) for all f and D̃2xi =
g−2D2xi = 0.

The above proposition says that in case D is reducible, i.e. g = gcd{Hi | 1 ≤
i ≤ n} 6= 1, then D can be made irreducible by dividing out g. So we assume
from now that D is irreducible. Notice that dividing out g might decrease the
degree d to zero. But in that case, the original H satisfies

rkJH = 1 (8)

This case has been dealt with in section 1. So we maintain our assumption that
d ≥ 1.

SinceD is irreducible and d ≥ 1, it follows from proposition 2.1 that dimV (H) ≤
n− 2. Looking at the coefficient of td in (5) with d = degH, H ◦H = 0 follows.
So H(Cn) ⊂ V (H) and we have

rkJH = dimH(Cn) ≤ dimV (H) ≤ n− 2

as well. This and (8) imply (1) in section 1.

Lemma 2.2. Every strictly increasing chain of prime ideals in C[x] = C[x1, x2,
. . . , xn] extends to one of length n.

Proof. Assume without loss of generality that the first ideal is zero. From Krull’s
maximal ideal theorem, it follows that we may assume that the last prime ideal
of the chain is a maximal ideal m. Using Hilbert’s correspondence between zero
sets and radicals, we see that m is of the form (x1− p1, x2− p2, . . . , xn− pn). It
follows that the height of m is n. Since C[x] is catenary, the chain 0 ( · · · ( m
at hand extends to one of length n, as desired.
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Lemma 2.3. Assume V1 and V2 are irreducible varieties of codimensions h1
and h2 in Cn and V1 ∩ V2 6= {0}. Then the codimension of V1 ∩ V2 is at most
h1 + h2.

Proof. Let p1 = I(V1) and p2 = I(V2). Then (p1(x), p2(y)) is a prime ideal in
C[x, y] = C[x1, x2, . . . , xn, y1, y2, . . . , yn] of height h1 + h2. Since

(V1 ∩ V2)× (V1 ∩ V2) ⊂ V
(
p1(x), p2(y), x− y

)
there exists a be a minimal prime ideal q containing (p1(x), p2(y), x− y).

Since (x − y) has n generators, the ideal (p1(x), p2(y), x − y)/(p1(x), p2(y)) in
C[x, y]/(p1(x), p2(y)) has n generators as well. It follows from the Krull height
theorem that the height of (p1(x), p2(y), x−y)/(p1(x), p2(y)) is at most n. Con-
sequently, the height of q is at most h1 + h2 + n.

From lemma 2.2, we obtain that there exists a chain of prime ideals q ( · · · of
lenght 2n− (h1 + h2 + n) = n− h1 − h2. Consequently, the Krull dimension of
C[x, y]/(p1(x), p2(y), x−y) is at least n−h1−h2. But C[x, y]/(p1(x), p2(y), x−y)
is isomorphic to the coordinate ring of V1∩V2. So V1∩V2 has dimension n−h1−h2
at least, as desired.

Lemma 2.4. Assume x + H is a homogeneous quasi-translation and suppose
that dimH(Cn) = dimV (H) ≤ dn/2e. Let p and q be generic points in the
Zariski closure W of H(Cn). Then there exists an r 6= 0 such that Cp+Cr ⊂W
and Cq + Cr ⊂W .

In other words, there exists projective lines Lp 3 p and Lq 3 q in W that have
a nonzero intersection.

Proof. Since H(H) = 0, W ⊂ V (H). By dimW = dimV (H) we obtain that
the interior of W ⊂ V (H) is non-empty. Since p and q are generic, we may
assume that p, q ∈ H(Cn) and p, q are contained in the interior of W ⊂ V (H).

Since dimH(Cn) ≤ dn/2e, it follows from the fiber theorem that H−1(p) has
dimension n − dn/2e at least. Since H is homogeneous, the codimension of
C∗H−1(p) is less than that of H−1(p). So C∗H−1(p) has codimension dn/2e −
1 < n/2 at least. The same holds for C∗H−1(q). Since 0 ∈ CH−1(p)∩C∗H−1(q),
it follows from lemma 2.3 that the codimension of the intersection of the Zariski
closures of C∗H−1(p) and C∗H−1(q) is less than n/2 +n/2 = n. So there exists
an r 6= 0 that is contained in this intersection.

Assume r′ ∈ C∗H−1(p). Then H(r′) = λp for some λ ∈ C∗. It follows that

H(r′ + tp) = H
(
r′ + tλ−1H(r′)

)
= H(r′) = λp

and we can derive that H(r) ∈ Cp ∩ Cq = {0}. So H(r + tp) = H(r) = 0 and
thus Cp+ Cr ⊂ V (H).

Since p is contained in the interior of W ⊂ V (H), Cp + Cr ⊂ W . Similarly,
Cq + Cr ⊂W , as desired.
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Assume Lp is a projective line in a variety W ⊂ Cn. We call Lp a superline if
for generic q ∈ W , there exists a projective line Lq 3 q such that Lq ⊂ W and
Lq ∩ Lp 6= {0}.

Lemma 2.5. Assume Lp is a superline in W . Then for all q ∈W , there exists
a projective line Lq 3 q such that Lq ⊂ W and Lq ∩ Lp 6= {0}. In particular,
W =

⋃
q∈W Lq.

Proof. W is the Zariski closure of
⋃
q∈W Lq.

Lemma 2.6. Assume x + H is a homogeneous quasi-translation and suppose
that dimH(Cn) = dimV (H) = 3 ≤ dn/2e. Let W be the Zariski closure of
H(Cn) and p ∈ W generic. Then there exists a projective line Lp 3 p that is a
superline of W .

Proof. If there are infinitely many lines Lp 3 p that are contained in W , then⋃
p∈W Lp has dimension 3 at least, whence Cp+Cq ⊂W for generic q. So every

projective line through p that is contained in W is a superline of W in this case.
So assume that there are only finitely many lines Lp 3 p that are contained in
W . From lemma 2.4, it follows that one of these lines Lp is a superline of W ,
as desired.

Theorem 2.7. Assume x+H is a homogeneous quasi-translation and

dimH(Cn) = dimV (H) = 3 ≤ dn/2e

Let W be the Zariski closure of H(Cn). Then either W is star-shaped with
respect to some p ∈ W\{0} or there exists projective lines Lp and Lq such that
W ⊂ Lp + Lq.

Proof. Take p ∈ W generic. Then there exists a superline Lp 3 p of W . If
Lq ∩ Lp = {0}, then for every point r of Lq, there exists a projective line Lr
such that Lr ∩Lp 6= {0}, for Lp is a superline. Moreover, the union of all these
lines Lr has dimension 3. It follows that W ⊂ Lp + Lq in this case.

So assume Lq ∩Lp 6= {0} for every projective line Lq ⊂W . Now take q generic.
Then there exists a superline Lq 3 q of W . Next, take r generic. Then there
exist a projective line Lr 3 r that is contained in W . Now Lr ∩ Lp 6= {0}, but
similarly, we may assume that Lr ∩ Lq 6= {0}, since otherwise W ⊂ Lq + Lr.
Now there are two cases:

• Lr ∩ Lp ∩ Lq 6= {0} for generic r. Then W is star-shaped with respect to
every point of Lr ∩ Lp ∩ Lq.

• Lr ∩Lp ∩Lq = {0} for generic r. Then W ⊂ Lp +Lq. Furthermore, W is
a three-dimensional linear subspace of Cn in this case.

This gives the desired result.
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Some of the ideas of the above theorem and its proof can be found on [6, pp.
565-566].

The following quasi-translations are examples of each of the three cases in the-
orem 2.7:

• Case Lq ∩ Lp = {0}:
H = (x25(ax1−x25x2), a(ax1−x25x2), x25(ax3−x25x4), a(ax3−x25x4), 0) with
a = x1x4 − x2x3,

• Case Lr ∩ Lp ∩ Lq 6= {0}:
H = (x54, bx

3
4, b

2x4, 0,−b2x1 + 2bx2x
2
4 − x3x44) with b = x1x3 − x22 + x4x5.

• Case Lr ∩ Lp ∩ Lq = {0}:
H = (x24, x4x5, x1x5 − x2x4, 0, 0),

The components of the second example are linearly dependent. If we take
g = x4, p = x24 and q = b, then this example is of the form

H =


gh1(p, q)
gh2(p, q)
gh3(p, q)
gh4(p, q)

r


and g - r. Furthermore, there is no linear conjugation that makes H of the
above form with g | r. The below theorem now claims that the components of
H are linearly dependent, and indeed H4 = 0.

Theorem 2.8. Let H ∈ C[x1, x2, x3, x4, x5]5 be homogeneous of degree d ≥ 0,
such that JH ·H = 0. Put g := gcd{H1, H2, H3, H4, H5}. If the components of
H are not linearly dependent over C, then there exists a T ∈ GL5(C) such that
H̃ = T−1 ◦H ◦ T , H̃ is of the form

H̃ = g


h1(p, q)
h2(p, q)
h3(p, q)
h4(p, q)

r


Furthermore, x + g−1H is a quasi-translation as well (and the components of
g−1H are not linearly dependent over C either).

Proof. Assume the components of H are not linearly dependent over C. Then
d ≥ 2. From theorem 2.7, we obtain that the Zariski closure of H(C5) is star-
shaped with respect to some nonzero p ∈ C5. Take T and H̃ such that H̃(C5)
is star-shaped with respect to e5.
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i) Since H̃5 is algebraically independent over C of H̃1, H̃2, H̃3, H̃4, it follows
from trdegC H̃ = dimW = 3 that

rkJ (H̃1, H̃2, H̃3, H̃4) = trdegC(H̃1, H̃2, H̃3, H̃4) = 2

It follows from [2, Th. 2.1] that (H̃1, H̃2, H̃3, H̃4) is of the form gh(p, q),
where g, p and q are homogeneous polynomials and p and q are relatively
prime.

ii) From proposition 2.1, it follows that we may assume that D̃ :=
∑5
i=1 H̃i

∂
∂xi

is irreducible. In order to prove that g ∈ C∗, we assume that g has an
irreducible divisor g1. Notice that g1 - H̃5. Since ker D̃ is factorially
closed,

0 = D̃g1 ≡ H̃5
∂

∂x5
g1 (mod g1)

It follows that g1 | (g1)x5
, but deg g1 > deg(g1)x5

, so (g1)x5
= 0, i.e.

g1 ∈ C[x1, x2, x3, x4].

iii) Assume first that p, q ∈ C[x1, x2, x3, x4]. Then the components of (x1 −
H1, x2 −H2, x3 −H3, x4 −H4) do not have x5, whence

x1 −H1

x2 −H2

x3 −H3

x4 −H4

 ◦


x1 +H1

x2 +H2

x3 +H3

x4 +H4

 =


x1
x2
x3
x4


So (x1 +H1, x2 +H2, x3 +H3, x4 +H4) is a quasi-translation. Making this
quasi-translation irreducible, we get that

(x1, x2, x3, x4) + h(p, q)

is a quasi-translation. So by 1.1 and rkJ (h(p, q)) ≤ 2, there are two inde-
pendent linear relations between the components of H̃, whence between
the components of H as well. So assume that one of p, q is not contained
in C[x1, x2, x3, x4]. Replacing the other by a linear combination of p and
q, we may assume that neither p nor q is contained in C[x1, x2, x3, x4].

iv) Just as in section 1, we may assume that

h1(p, q) ≡ pr (mod pq)

h2(p, q) ≡ 0 (mod pq)

h3(p, q) ≡ 0 (mod pq)

h4(p, q) ≡ qr (mod pq)

Since the linear transformation that is used to get this form only takes
place at the first four coordinates, the property that p, q 6∈ C[x1, x2, x3, x4]
is preserved.
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Since D̃g1 = 0, it follows from

D̃g1 ≡ qr(g1)x4 (mod p)

and
D̃g1 ≡ pr(g1)x1

(mod q)

that p | (g1)x4
and q | (g1)x1

. Since p, q 6∈ C[x1, x2, x3, x4] and (g1)x4
,

(g1)x1 ∈ C[x1, x2, x3, x4], it follows that (g1)x4 = (g1)x1 = 0. So g1 ∈
C[x2, x3]. Since g1 is homogeneous, g1 is linear, for it is irreducible. From
(6), it follows that g1 is a linear relation between the components of H̃,
whence the components of H are linearly dependent as well.

This completes the proof of theorem 2.8.

It is not known yet whether in theorem 2.8, the components of H need to be
linearly dependent. I promise a bottle of Joustra Beerenburg (Frisian spirit)
to the one who first solves the problem whether for quasi-translations x + H
in dimension 5 with H homogeneous, the components of H need to be linearly
dependent or not.

3 Homogeneous singular Hessians

In [6], the homogeneous polynomials f ∈ C[x1, x2, . . . , xn] for which detHf = 0
are classified for all n ≤ 5, using theorem 1.1 (or theorem 1.2). If n ≤ 4,
then the f ’s that satisfy the above are exactly those f that can be expressed
as a (homogeneous) function in three linear coordinates, see e.g. [3, Cor. 1.3].
In [1], the following results are used to classify the homogeneous polynomials
f ∈ C[x1, x2, x3, x4, x5] for which detHf = 0:

Theorem 3.1. Let f ∈ C[x1, x2, x3, x4, x5] be homogeneous and assume that R
is homogeneous and of minimum degree ≥ 1 such that R(∇f) = 0. Then there
are two independent linear relations between the components of H = ∇R ◦ ∇f .

Theorem 3.2. Let f ∈ C[x1, x2, x3] such that R(∇f) = 0 (f does not need to
be homogeneous). Then there exists a linear relations between the components of
H = ∇R ◦∇f . More generally, for every quasi-translation x+H in dimension
3, the components of H are linearly dependent.

The latter theorem, which is also used to classify the h ∈ C[x1, x2, x3] for which
detHh = 0, is proved by Z. Wang in [9]. A. van den Essen found another
proof which is given below. But first, we give the proof of theorem 3.1, which
is essentially that of P. Gordan and M. Nöther in [6, p. 567]:

Lemma 3.3. Let f ∈ C[x1, x2, x3, x4, x5] be homogeneous and R ∈ C[x1, x2, x3,
x4] be homogeneous and irreducible, such that R(fx1

, fx2
, fx3

, fx4
) = 0. Assume

further that A ∈ C[x1, x2, x3, x4] is homogeneous such that R(∇A) = 0 and
A(H) = 0, where H = ∇R ◦ ∇f . Then H1, H2, H3, H4 are linearly dependent.
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Proof. Since A is homogeneous and R(∇A) = 0, it follows from [3, Cor. 1.3]
that there exists a linear relation L between the components of ∇A. Assume
first that rkHA = 3. Then the relations between the components of ∇A form a
prime ideal of height one, which is a principal ideal. Since L is irreducible, (L)
must be that principal ideal, and L | R. So R is linear, which implies that H is
constant. In particular, H1, H2, H3, H4 are linearly dependent.

So assume that rkHA = 2. Since there exists a linear relation L between the
components of ∇A, A can be expressed a a polynomial in three homogeneous
linear coordinates. The rank of the (3× 3)-Hessian with respect to these three
linear coordinates of A cannot be larger than 2, the rank of the original Hessian.
So this (3 × 3)-Hessian is singular as well. It follows again from [3, Cor. 1.3]
that A can be expressed as a polynomial in two linear coordinates. Since A is
homogeneous and bivariate, A decomposes into linear factors, and one of these
factors is already a relation between H1, H2, H3, H4.

Proof of theorem 3.1: From lemma 2.7, it follows that we need to distinguish
the following two cases:

• The components of H are linearly dependent.
Without loss of generality, we assume that H5 = 0. Now write

f = Axm5 +Bxm+1
5

such that A ∈ C[x1, x2, x3, x4]\{0}. Then A + x5B | f . If e is the degree
of R, then

Df =

5∑
i=1

Rxi(∇f)fxi = eR(f) = 0

with D =
∑5
i=1Hi

∂
∂xi

follows from Eulers formula, whence A + x5B ∈
kerD. From (7) and H5 = 0, A(H) = A(H) + H5B(H) = 0 follows.
Since R is assumed to be of minimum degree, it follows from H5 = 0 and
degR > degRx5

that Rx5
= 0, i.e. R ∈ C[x1, x2, x3, x4]. It follows that

the coefficient of xme5 of R(∇f) is R(∇A), for ∇A is the lowest degree
part of (fx1 , fx2 , fx3 , fx4) with respect to x5. Since R(∇f) = 0, R(∇A) =
0 as well. From lemma 3.3, it follows that H1, H2, H3, H4 are linearly
dependent. So there are two independent linear relations between the
components of H.

• H5 is algebraically independent of H1, H2, H3, H4.
Now let A be the leading coefficient to x5 of f , i.e.

f = Axm5 +O(xm−15 )

Since f ∈ kerD, f(H) = 0 follows. But, since H5 is algebraically inde-
pendent of H1, H2, H3, H4, A(H) = 0 follows. Furthermore, R(∇A) is the
leading coefficient with respect to x5 of R(∇f), and hence equal to zero.
From lemma 3.3, it follows that H1, H2, H3, H4 are linearly dependent.
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The existence of another linear dependence has been shown in the case
above.

P. Gordan and M. Nöther settle the second case in the proof of theorem 3.1 in
a different matter, see [6, p. 568]. In the first case in the proof of theorem 3.1,
[4, proposition 5.3 ii)] is proved.

Proof of theorem 3.2: Let d be the degree of H and put

H̃ = xd4

(
H

(
x1
x4
,
x2
x4
,
x3
x4

)
, 0

)
Put x = (x1, x2, x3). Since (x − xd−14 H,x4) is the inverse polynomial map of
(x + xd−14 H,x4) due to (5) and (x−14 x, x4) is the inverse polynomial map of
(x4x, x4),

((x, x4)− H̃) = (x4x, x4) ◦ (x− xd−14 H,x4) ◦ (x−14 x, x4)

is the inverse polynomial map of

((x, x4) + H̃) = (x4x, x4) ◦ (x+ xd−14 H,x4) ◦ (x−14 x, x4)

So (x, x4) + H̃ is a homogeneous quasi-translation in dimension 4, whence there
are two independent linear relations between the components of H̃. One of these
relations is H̃4 = 0 and the other is a linear relation between H̃1, H̃2, H̃3. Since
H = (H̃1, H̃2, H̃3) ◦ (x, 1), the components of H are linearly dependent.

In [9], Z. Wang characterizes all quasi-translations in dimension 3, which can
also be done by way of the above homogeneization technique.
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