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This paper proposes the use of least-squares support
vector machines (LS-SVMs) as a relatively new nonlinear
multivariate calibration method, capable of dealing with
ill-posed problems. LS-SVMs are an extension of “tradi-
tional” SVMs that have been introduced recently in the
field of chemistry and chemometrics. The advantages of
SVM-based methods over many other methods are that
these lead to global models that are often unique, and
nonlinear regression can be performed easily as an
extension to linear regression. An additional advantage
of LS-SVM (compared to SVM) is that model calculation
and optimization can be performed relatively fast. As a
test case to study the use of LS-SVM, the well-known and
important chemical problem is considered in which
spectra are affected by nonlinear interferences. As one
specific example, a commonly used case is studied in
which near-infrared spectra are affected by temperature-
induced spectral variation. Using this test case, model
optimization, pruning, and model interpretation of the LS-
SVM have been demonstrated. Furthermore, excellent
performance of the LS-SVM, compared to other ap-
proaches, has been presented on the specific example.
Therefore, it can be concluded that LS-SVMs can be seen
as very promising techniques to solve ill-posed problems.
Furthermore, these have been shown to lead to robust
models in cases of spectral variations due to nonlinear
interferences.

The importance of multivariate calibration (MVC) methods in
the field of analytical chemistry is indisputable. MVC is often used
in a wide variety of industrial applications (e.g., in food, petrol, or
pharmaceutical industries) to relate easily measured spectra to
specific parameters of interest. This is especially useful if it is diffi-
cult to measure the parameters of interest in a direct way. For
example, the characteristics (and the quality) of industrial products
can often only be determined in a laborious and expensive way;
therefore, these have to be measured off-line. Using MVC, these
parameters can also be derived from indirect measurements, such
as spectra, only much faster. Very often, Raman or near-infrared
(NIR) spectra are used. Hence, the use of MVC is a very suitable
approach to be used on-line for product quality estimation.

A typical characteristic of spectral data is that the variables
(wavelengths or wavenumbers) are often correlated. Furthermore,
usually many variables are recorded that exceed the number of

spectra (i.e., the number of measurements). Therefore, performing
regression with few measurements as compared to the number
of variables leads to a so-called ill-posed problem. As a result,
standard linear regression breaks down, implying that no solution
can be obtained. Suitable candidates for regression methods on
spectra should be able to deal with these problems.

The most commonly used MVC technique for laboratory and
industrial purposes is partial least-squares (PLS). PLS solves the
ill-posed problem by performing regression on a new basis, which
is a linear combination of the original variables. Much research
has been conducted on PLS to study important calibration issues
such as feature selection, model transferability, or its robustness
to known and unknown external interferences.1-8

The advantages of PLS are that it is easy to use; it is fast; its
basis allows some interpretation of underlying relationships
present in the data; and to some extent, it can model weak
nonlinearities. However, it has been shown that PLS is not
necessarily the best-performing approach,9 especially if nonlinear
calibration has to be performed.10,11

Recently, support vector machines (SVMs) have been intro-
duced as promising alternatives to the existing linear and nonlinear
MVC approaches.12-15 Originally, SVMs have been developed for
binary classification, but their principles can be extended for
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regression purposes. Yet, in the field of analytical chemistry or
chemometrics only a few applications of SVM regression have
been reported.16-21

SVMs have the advantage that these can deal with ill-posed
problems and lead to global models that are often unique.
Furthermore, due to their specific formulation, sparse solutions
can be found, and both linear and nonlinear regression can be
performed. However, finding the final SVM model can be com-
putationally very difficult because it requires the solution of a set
of nonlinear equations (quadratic programming). As a simplifica-
tion of this approach, Suykens and co-workers22,23 have proposed
the use of least-squares SVM (LS-SVM). LS-SVM has been
proposed as a class of kernel machines related to many other well-
known techniques (e.g., kernel Fisher discriminant analysis,
principal component analysis, canonical correlation analysis, PLS,
or recurrent neural networks). It is also closely related to Gaussian
processes and regularization networks but uses an optimization
approach as in SVMs. Therefore, LS-SVM encompasses similar
advantages as SVM, but its additional advantage is that it requires
solving a set of only linear equations (linear programming), which
is much easier and computationally very simple.

The main goal of this paper is to demonstrate the use of LS-
SVM as a relatively new multivariate calibration technique. As an
example case, a well-known important analytical chemical problem
is used. The problem considered deals with the use of experi-
mental data for multivariate calibration that are affected by
unavoidable (nonlinear) interferences. To obtain reliable calibra-
tion models, it is important to obtain models that are robust against
those interferences. One specific example of this problem has been
introduced by Wülfert et al.1 in which NIR spectra of a ternary
mixture are affected nonlinearly by temperature-induced spectral
variations. In the literature, various approaches have been
described to solve this specific problem, but promising results
have only been obtained using nonlinear regression
approaches.17,24-28 Because the reported results are still not
completely satisfying, the second goal of this paper is to contribute
to the solution of this problem using LS-SVM. The excellent
performance of LS-SVM has been demonstrated and compared
with the published results.

THEORY
The theory of LS-SVMs and its predecessor have been

described clearly in the following references: Suykens et al.23 and
Schölkopf and Smola,15 respectively. For this reason, this section
only shows the important elements of performing multivariate
calibration with LS-SVM using these references. First, in general
its relation is discussed with standard statistical methods from
the point of view of solving ill-posed problems. These kinds of
problems occur if fewer measurements are taken (i.e., less objects)
than the number of variables or if the variables measured are
(strongly) correlated. This is typically the case when spectra are
measured. Next, the approach for linear and nonlinear regression
is explained, followed by a discussion of the important charac-
teristics and advantages of LS-SVMs.

In general, there are two ways to solve ill-posed problems.29,30

The first way is to perform regression on a basis with a lower
dimension than the original one. Well-known examples are PLS
or principal component regression (PCR) that use PLS factors or
PCs to define the new basis, respectively. The second way to solve
ill-posed problems is to shrink the regression coefficients by
imposing a penalty on their values. A well-known regression
method making use of this approach is ridge regression31 (RR).

In principle, LS-SVM always fits a linear relation (y ) wx + b)
between the regressors (x) and the dependent variable (y). Similar
to RR, the best relation is the one that minimizes the cost function
(Q) containing a penalized regression error term:

The first part of this cost function is a so-called L2 norm on the
regression weights. Using this norm, weight values are penalized
quadratically, and it aims at coefficients that are as small as
possible. The second term takes into account the regression error
(ei) for all of the n training objects (the standard least-squares
error approach). The relative weight of this part as compared to
the first part is indicated by the parameter γ, which has to be
optimized by the user. The third part gives the definition of the
regression error to be the difference between the true and
predicted values, and this can be seen as a constraint. For
comparison, note that the traditional SVM approach defines the
regression error differently by neglecting all regression errors
smaller than (ε (the ε-insensitive loss function12). It is this
difference in error definitions that makes the LS-SVM optimization
problem computationally much easier than the original SVM
problem. Furthermore, the value of parameter ε does not have to
be optimized for LS-SVM, which is the case for SVMs.

The crucial difference between RR and LS-SVM depends on
the approach followed to solve the optimization of the cost
function. RR solves this problem by simply setting the first
derivative to zero. The LS-SVM approach considers this problem
to be a constrained optimization problem and uses a Lagrangian
function to solve it:
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In this Lagrangian (L), the first two parts are the cost function
as defined earlier, but the Lagrangian is extended with the
constraint multiplied by so-called Lagrange multipliers (Ri). Each
Lagrange multiplier corresponds to a certain training point. To
obtain the final LS-SVM solution, the partial first derivatives of
this Lagrangian function are taken and are set to zero. For further
details about this approach, the reader is referred to the litera-
ture.23 However, an important subresult of this approach is that
the weight coefficients (w) can be written as an expansion of the
Lagrange multipliers with the corresponding training objects (xi):

Using the Lagrangian, the approach comes down to finding
values for the Lagrange multipliers that solve the problem rather
than finding the weight (w) as in RR. So, when filling in this
expression into the original regression line (y ) wx + b), the
following result is obtained:

where the inner product of xi and x is indicated by 〈xi, x〉. From
Suykens et al.,23 it can be seen that the Lagrange multipliers can
be defined as

Finding these Lagrange multipliers is very simple as opposed
to the SVM approach in which a more difficult relation has to be
solved to obtain these values. As can be seen from eqs 3 and 5,
usually all Lagrange multipliers are nonzero, which means that
all training objects contribute to the solution (these are all support
vectors). Furthermore, training objects that are located far away
from the regression line (relatively high prediction errors) highly
influence the location of this line. For this reason, the correspond-
ing Lagrange multipliers are also relatively high (proportional to
their prediction error). As discussed before, SVMs neglect all
regression errors of the training objects that are smaller than ε.
As a result, their corresponding Lagrange multipliers are zero,
which means that a sparse solution can be obtained: the final
result only depends on a fraction of the training objects.

The advantage of solving the optimization problem in terms
of the Lagrange multipliers is that the final model can be written
as a weighted linear combination of the inner product between
the training points and a new test object (x). The entry of the
data in inner products is very important because of two reasons.
The first one is that the dimension of the objects (i.e., the number
of variables) does not appear in the problem to be solved and
large dimensional data can therefore be used without numerical

problems. The second reason is that it easily allows nonlinear
regression as an extension of the linear approach. The latter step
is performed by replacing the inner product, 〈xi, x〉, by a so-called
kernel function: K(xi, x). If this function meets certain conditions32

(Mercer’s conditions), the kernel implicitly determines both a
nonlinear mapping, x f æ(x), and the corresponding inner product
æ(xi)Tæ(x). This leads to the following nonlinear regression
function:

In principle, the nonlinear mapping can become infinite dimen-
sional. For this case and if many input variables are present,
solving this equation is particularly useful. However, for linear
cases with not too many variables, eq 1 can also be used directly.

Finding the nonlinear mapping explicitly (i.e., without using
kernels) can be very troublesome because for all input variables
of the data, the specific mapping has to be known. This is
especially difficult if the data are high dimensional such as spectra.
Kernels typically used are the polynomial function, 〈xi,,x〉d, or the
radial basis function, exp(-||xi - x||2/2σ), which is a Gaussian
curve. As can be seen, each kernel is associated with a kernel-
specific parameter. For the polynomial and RBF kernels, these
parameters are the degree of the polynomial (d) and the width of
the Gaussian function (σ), respectively. So instead of calculating
a specific mapping for each dimension of the data, the problem
comes down to selecting a proper kernel function and optimizing
its specific parameter.

Important advantages of the LS-SVM approach are that it leads
to a global solution that is often unique.23 This is similar to PLS
but an advantage over neural networks, for example. Furthermore,
the dimension of the input data becomes irrelevant due to the
inner product; therefore, nonlinear regression can be performed
easily. This is a direct result from using the Lagrangian theory to
solve the penalized cost function. As result, this approach requires
finding the Lagrange multipliers that give a measure of the
importance of a training object to the solution. A subselection of
the most important training objects can be found by pruning the
Lagrange multipliers. In this way, a sparse solution can be
obtained. For SVMs, the deselection of irrelevant training objects
follows inherently from the specific formulation of the cost
function. Finally, the (nonlinear) LS-SVM regression model can
be found by solving a set of linear equations, which is easy.

Note that, in contrast to the Lagrange multipliers, the choice
of a kernel and its specific parameters together with γ do not
follow from the optimization problem but have to be tuned by
the user. These can be optimized by the use of Vapnik-
Chervonenkis bounds, cross validation, an independent optimiza-
tion set, or Bayesian learning.15,23

EXPERIMENTAL SECTION
Software. All calculations have been performed using Matlab.

LS-SVM was performed using the Matlab/C toolbox.33 For SVM,
a Matlab toolbox was used.34

(32) Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines;
Cambridge University Press: Cambridge, MA, 2000.
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Data. The data set used was originally described by Wülfert
et al.1 For the data set, NIR spectra were measured of ternary
mixtures of ethanol, water, and 2-propanol. For these data, 19
different combinations of mole fractions are analyzed in a
wavelength range of 850-1049 nm with a 1-nm resolution. Each
mixture is measured at 30, 40, 50, 60, and 70 °C ((0.2 °C). It
could be observed that measuring the spectra at different tem-
peratures lead to nonlinear spectral variations; for this reason,
relations between spectra from different temperatures cannot be
made straightforward. The training set contains 13 mixtures per
temperature while the independent test set contains 6 mixtures
per temperature. The spectra have been baseline-corrected and
mean-scaled. Using these data, in principle, two types of regression
models can be made: global and local models. The global models
are set up with training data from all the temperatures (65 objects)
and are used to predict the (dimensionless) mole fractions at any
temperature. In contrast, the local models are set up on basis of
the training set from one temperature (13 objects), while predict-
ing mole fractions of the test set for exclusively the same
temperature. Obviously, to span the complete temperature range,
as many local models as temperatures have to be made. Optimiz-
ing the models has been done by cross validation on the training
set while the final prediction error has been based on the
independent test set.

RESULTS
Optimizing the LS-SVM. As discussed above, the optimal LS-

SVM model is obtained by finding the Lagrange multipliers that
follow from minimizing the cost function using the Lagrange
optimization procedure. However, minimizing the cost function
is preceded by a definition of model parameters that influence
the cost function: γ (the relative weight of the regression error)
and d or σ (kernel parameters of the RBF or the polynomial kernel,
respectively). In this paper, the optimal parameters are found from
an intensive grid search. In practice, this numerical approach is
the most common one used. The result of this grid search is an
error-surface spanned by the model parameters. A robust model
is obtained by selecting those parameters that give the lowest
error in a smooth area.

In this paper, LS-SVM uses the often used Gaussian kernel
(RBF). To find the optimal model parameters, for each of the three
mixture compounds a grid search is performed on basis of 15-
fold cross validation on the training set. The resulting LS-SVM
models during cross validation were very similar concerning their
support vectors. For the RBF parameter (σ), a series has been
used of 0.1-2.5 with incremental steps of 0.1. For the γ, two
different ranges have been used: 50-500 in steps of 50 and from
5 × 103 to 150 × 103 in steps of 2.5 × 103. In this way, parameter
optimization was performed in different orders of magnitude.
Because the grid search has been performed over just two
parameters, a contour plot of the optimization error can be

visualized easily (Figure 1). This is an advantage of LS-SVMs over
SVMs in which three parameters have to be optimized. From
Figure 1, it can be seen that the optimization error decreases on
the diagonal from a high σ to a high γ. The optimal parameter
settings can now be selected from (1) a smooth subarea with (2)
a low prediction error. Similar error plots have been derived for
the LS-SVM models when forecasting the mole fractions of water
and 2-propanol. From these error plots, the following results are
obtained for ethanol, water, and 2-propanol: γ ) 80 500, σ ) 0.6;
γ ) 73 000, σ ) 0.6; γ ) 150 500, σ ) 0.7, respectively. From
these results, it appears that a relative large weight is given to
the second part of the cost function due to the usage of a high γ.
This means that emphasis has been put on obtaining low
prediction errors while retaining possibly high weight coefficients.
In principle, this again bears the risk of overfitting, but in this
paper it is avoided by using cross validation for optimization and
by invoking an independent test set to report the final results.

MVC Results. When spectra are affected by unknown (non-
linear) interferences, the performance of MVC methods can
deteriorate, and invalid conclusions might be drawn. Obviously,
this is an unwanted situation that needs to be avoided. For an
illustrative example in which NIR spectra are affected nonlinearly
by different temperatures, the literature shows several approaches
to make robust MVC methods based on PLS that will be reviewed
shortly. In this case, robust means the ability to make accurate
predictions irrespectively of the temperature.

The first approaches for this problem were to use either global
or local models.1 A global model has been made for all temper-
atures at once while local models have been set up for each
possible temperature separately. Furthermore, attempts have been
made to correct for the temperature influence by taking it into
account explicitly as an extra variable, by performing robust
variable selection, or by removing its influence with wavelets.24

Variable selection has also been performed using simulated
annealing.26 In another PLS-based application, continuous piece-
wise direct standardization (CPDS) has been applied to remove
nonlinear temperature effects.25 The first nonlinear MVC approach
used for this problem was a two-dimensional penalized signal

(33) Pelckmans, K.; Suykens, J. A. K.; Van Gestel, T.; De Brabanter, D.; Lukas,
L.; Hamers, B.; De Moor, B.; Vandewalle, J. LS-SVMlab: a Matlab/C Toolbox
for Least Squares Support Vector Machines; Internal Report 02-44, ESAT-
SISTA; K. U. Leuven: Leuven, 2002. Available at http://www.esat.kuleuve-
n.ac.be/sista/lssvmlab/.

(34) Gunn, S. R. Support Vector Machines for Classification and Regression;
Technical Report; Image Speech and Intelligent Systems Research Group,
University of Southampton: 1997. Available at http://www.isis.ecs.so-
ton.ac.uk/isystems/kernel/.

Figure 1. Contour plot of the optimization error for LS-SVM when
optimizing the parameters γ and σ for the prediction of ethanol using
a global model. The dot indicates the selected optimal settings.
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regression method28 (TPSR). TPSR uses a joined wavelength-
temperature domain to determine the regression coefficients for
an arbitrary temperature (global approach). In fact, this is an
extension of the one-dimensional PSR that uses a newly formed
basis of B-splines and forces the coefficients to vary smoothly with
the wavelengths. Additionally, for a fair comparison with LS-SVMs,
“traditional” SVMs have also been used to make a global model.17

Figure 2 shows a selection of the prediction results gathered
directly from the literature. This selection contains the local PLS
model (PLS local), which is the best PLS approach described.
Furthermore, the global PLS method (PLS global) is included to
enable a fair comparison with the other global methods. The
optimal number of PLS factors for these models have been stated
in the original papers and have been derived by cross validation.
Finally, the nonlinear approaches have been included as well
(global TPSR, SVM global, and LS-SVM global).

The figure shows that the nonlinear methods perform much
better than the PLS-based models and that the LS-SVM global
model outperforms all others. When comparing PLS local (best
PLS approach) with LS-SVM global (the overall best approach),
the latter has an RMSEP that is a factor of 2.6 lower. Except for
better prediction ability, the (nonlinear) global approaches have
the additional advantage that one model can be used for all
temperatures. When mutually comparing the nonlinear modeling
techniques, both SVM and LS-SVM outperform TPSR (leading to
an RMSEP that is a factor of 1.1 and 1.3 lower, respectively).
Finally, it can be seen that LS-SVM also performs better than its
predecessor SVM, which is an additional advantage to its
computational simplicity when compared with SVMs. Probably,
a better performance is obtained because LS-SVM can be
optimized much more accurately due to its computational simplic-
ity (less parameters and much faster).

However, a possible advantage of SVMs over LS-SVMs is the
fact that usually less support vectors than training objects are
required in the model (sparseness). As it has been discussed
above, LS-SVMs use all training objects in their final model; hence,
no sparseness is obtained. However, model sparseness can be
reinforced by using one of the existing pruning techniques applied
to the Lagrange multipliers.23,35 When using the approach of
Suykens et al.,23 first the LS-SVM model is built using all training
objects. In the next step, those training objects are removed that

are less relevant for the model (e.g., the objects corresponding
to the lowest 5% of absolute Lagrange multiplier values). Next,
this step is followed by a re-estimation of the model, after which
again a certain number of training objects is removed. It should
be stressed that re-estimation is a prerequisite to ensure that a
new optimal model is found given a certain subset of (remaining)
training objects. For this paper, the LS-SVM models have been
pruned until the point where the prediction errors start to increase
(Figure 3). After pruning, the number of LS-SVM support vectors
were 37 (57%), 57 (88%), and 35 (54%) for ethanol, water, and
2-propanol, respectively. Pruning has been performed until an
increase of the error of maximal 10% was achieved leading to an
increase of 5 ×10-4, 5 × 10-4, and 6 × 10-4, as compared to the
full model. An exception for this is water. When pruning, its
prediction error increases relatively much. However, these results
are still comparable to or better than those of SVM. Furthermore,
it appears that for ethanol and 2-propanol, SVM uses similar
numbers of support vectors (60% and 55%, respectively); however,
for water the number of SVM support vectors is much smaller
(41.5%).17 If the pruned LS-SVM model should also contain this
number of support vectors, the prediction error increased with
7.1 × 10-3 (∼300%). The reason for this relatively high number
of support vectors stems from the fact that the relative contribu-
tions of the training objects are more or less similarly relevant as
compared to SVM. Therefore, removing only a few training objects
can cause the prediction error to increase. Furthermore, Figure
5 also shows the important training objects to be more spread
over the design.

Model Interpretation. The next step after having established
a prediction model is to interpret the model. This can be done
using the Lagrange multipliers. In this section, model interpreta-
tion is performed on the established SVM model,17 the current
LS-SVM model, and the pruned LS-SVM model. From Figure 4,
it follows that the relative importance of the training objects are

(35) De Kruif, B. J.; De Vries, T. J. A. IEEE Trans. Neural Networks 2003, 14,
696-702.

Figure 2. Calibration performances of different approaches from
the literature together with the newly presented global model based
on LS-SVM. The errors have been derived from an independent test
set.1 Note that these are dimensionless because the predicted
variable represents a fraction.

Figure 3. Logarithmic root-mean-square errors introduced when
pruning the LS-SVM models for the prediction of ethanol, water, and
2-propanol. Indicated with an asterisk is the number of support vectors
used for the pruned model. Note that the y-axis is dimensionless
because the predicted variable represents a fraction.
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very similar for SVM and LS-SVM (unpruned model) as is
indicated by a correlation coefficient of 0.89 calculated for both
sets of Lagrange multipliers. Training objects that are important
for SVM are also important for LS-SVM. However, for LS-SVM
also some objects are important that are irrelevant for SVM. For
the pruned LS-SVM model, it appears that the relative importance
of the training objects has changed and pruned series of Lagrange
multipliers exhibit a correlation coefficient of only -0.12 as
compared to the SVM model. Only for a part, the irrelevant SVM
training objects coincide with irrelevant ones for the pruned LS-
SVM (e.g., 15, 17, 25, or 65).

Figure 5 shows the location of the most important training
objects in the mixture design (as obtained from Wülfert et al.1)
for SVM, LS-SVM, and the pruned LS-SVM. In principle, for each
model type, 15 mixture designs can be shown: for each of the
three components to predict, five designs have been set up corres-
ponding to the five different temperatures. Therefore, the impor-
tance of each mixture point has been obtained by taking the mean
of the individual 15 mixture designs. The values shown therefore
represent an overall value of 15 Lagrange multipliers. As a result,
if some of these 15 Lagrange multipliers are set to zero, the overall
importance can still be significant. The reason to aggregate the

individual results for predicting different components into one
figure is because the individual results were similar in sign and
value.

It can be seen that SVM mostly uses training objects with a
high mole fraction of ethanol and 2-propanol and low mole
fractions of water. This can be explained from the fact that the
NIR spectra of ethanol and 2-propanol are similar while the one
from water deviates much more.1 This means that it is more
difficult to distinguish ethanol from 2-propanol than ethanol from
water, for example. Hence, the reason objects 8, 13, 17, 18, and
19 are hardly important for the SVM model stems from the fact
that the water contribution can be predicted better and the
corresponding prediction error is smaller than ε. In the latter case,
this means that the corresponding Lagrange multiplier value
equals zero.12 Due to the ε-insensitive error function, a very crisp
distinction is created between important training objects and
irrelevant ones. For the LS-SVM model, it appears that the
importance of training points is spread over almost the whole
design except for the mixtures with high water content. The
prediction error of the latter samples is small; hence, their
importance is still negligible. For the pruned LS-SVM, the
important training objects are again much more spread over the
design. It is shown that after removing the less relevant objects,
objects 13 and 17 start to contribute more to the final model (this
is possible because the importance of each mixture point is
calculated from in total 15 points). This is caused by the fact that
first many training objects with high water contents are removed
because their contributions were only minor. This leaves only a
few of these objects, which again become relatively important
(after a few re-modeling steps) in order to enable the prediction
of the water content.

So after having established the final LS-SVM model, the
prediction time for new objects is related to the number of training
objects in the data. Therefore, the prediction time for the standard
LS-SVM model is higher than for the pruned LS-SVM model. This
difference can play an important role if many training objects have
been used and if prediction has to be performed on-line (i.e., fast).
For those cases a pruned LS-SVM might be preferred over a
regular LS-SVM. On the other hand, the unpruned LS-SVM allows
a good interpretation of the model comparable to the traditional
SVM.

DISCUSSION AND CONCLUSIONS
This paper proposes the use of LS-SVMs as a nonlinear

calibration technique for solving ill-posed problems. Due to their

Figure 4. Values of the Lagrange multipliers from ethanol prediction
models. The upper row shows the results for the SVM, while the
middle and bottom rows show the Lagrange multipliers for LS-SVM
and the pruned LS-SVM, respectively. Similar results are obtained
for the prediction of water and 2-propanol.

Figure 5. Relative importance of training objects for the three types of (LS-)SVM models. The white circles indicate an importance of less than
5%. The light gray and dark gray circles indicate an importance of 5-10% and more than 10%, respectively.

3104 Analytical Chemistry, Vol. 76, No. 11, June 1, 2004



good prediction abilities, LS-SVMs are promising techniques to
use in (analytical) laboratories as well as industries for solving
nonlinear multivariate calibration problems. An important applica-
tion is the estimation of the quality of products from indirect but
fast and reliable measurements such as spectra. This improves
the common approach of determining the quality parameters
physically, which can be very time inefficient and allowing no on-
line monitoring of product quality.

LS-SVMs most important advantages are that they lead to
global (and often unique) nonlinear models that can be calculated
easily. Using a well-known analytical chemical test case, this paper
demonstrates the performance of LS-SVM. The test case shows
to the difficult problem of relating temperature-affected NIR
spectra to other characteristics of interest. Compared to the
previously applied modeling methods to solve this problem, LS-
SVMs perform best. Furthermore, strategies have been described
regarding the optimization of the model, model pruning, and
model interpretation. It appears that a pruned model can be
obtained easily with a low prediction error. Additionally, the
Lagrange multipliers can be used to interpret the importance of
the training objects in the context of the considered analytical
chemical problem.

Furthermore, although not applied in this paper, the extraction
of the most informative regression features might also be a useful
contribution to solve nonlinear MVC problems in a robust way.
One way to obtain these results is to apply feature selection using
optimization methods such as genetic algorithms, simulated
annealing, or tabu search.4 However, another solution for LS-SVM
might be the use of a slightly different cost function leading to
automatic feature selection. In the different cost function, the L2

norm (sum of squared values) of the coefficients can be replaced
by an L1 norm (sum of absolute values). The feature of an L1 norm

is an inherent deselection of features because their coefficients
are forced to zero. The L1 norm alternative to RR is known as the
least absolute shrinkage and selection operator method36 (LASSO).
For SVMs, this approach can be applied as well.16,37

Finally, performing kernel-based nonlinear mapping is shown
to perform well but, thus far, it is not used to retrieve physico-
chemical information. Reconstructing the mapping according to
Schölkopf et al.,38 for example, and knowing what kind of mapping
is preferred for specific features (e.g., spectral bands) can increase
the knowledge of the problem. This in turn can give further
directions to interpret and improve the results. Investigating this
issue in combination with efficient feature selection, as discussed
above, is one of the aspects our future research will focus on.
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