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The problem whether P equals NP is one of the most important open
problems in mathematics and computer science at this time. That is why
one million dollars is put on the problem.To determine whether P equals
NP, it is sufficient to determine for any NP-complete problem whether it
is in P or not. Roughly, this means that you have to show for any NP-
complete problem that there is a fast algorithm to solve it or that no such
algorithm exists. In this article, we show that Master Mind and hexagonal
and triangular Minesweeper are NP-complete. R. Kaye already showed that
normal minesweeper is NP-complete.

An example of an NP-complete problem is (1 in 3)-SAT. In (1 in 3)-SAT,
the problem is to find solutions over {0, 1} of equations of the form

ai + aj + ak = 1

(1− ai) + aj + ak = 1

(1− ai) + (1− aj) + ak = 1

(1− ai) + (1− aj) + (1− ak) = 1

with i ̸= j ̸= k ̸= i. Now you might think: “Solving equations? I have learned
that on secondary school. Let us get one million bucks!” The problem is not
to find a parameterization of the solutions over, say, the real numbers, but
to find solutions in (that parameterization with all variables contained in)
{0, 1}.

Another NP-complete problem is solving polynomial equations over F2.
We now show that this problem is NP-complete, by reducing (1 in 3)-SAT to
polynomial equations over F2. Reducing any problem of the pool of known
NP-complete problems to the problem at hand is the way to show that the
problem at hand is NP-complete. All problems that are currently known
to be NP-complete have been proven to be so by this method, except one.
In the beginning, the pool of known NP-complete problems was empty, and
Cook and Levin showed from scratch that SAT was NP-complete.
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But let us show now that solving polynomial equations over F2 is NP-
complete. Write a′i for the inverse 1− ai of ai and let a

(0)
i = ai and a

(1)
i = a′i

(just as in a calculus course). All equations of (1 in 3)-SAT are of the form

a
(e1)
i + a

(e2)
j + a

(e3)
k = 1

and can be expressed by the polynomial equations

a
(e1)
i + a

(e2)
j + a

(e3)
k ≡ 1 (mod 2)

a
(e1)
i · a(e2)j ≡ 1 (mod 2)

Furthermore, the equalities ai + a′i = 1 can be expressed by

ai + a′i ≡ 1 (mod 2)

So a fast algorithm for solving polynomial equations over F2 can be used to
solve (1 in 3)-SAT fast. It follows that solving polynomial equations over F2

is NP-complete.
For your information, the problem of SAT is solving inequalities of the

form
a
(e1)
i1

+ a
(e2)
i2

+ · · ·+ a
(ek)
ik

≥ 1

where k may differ for any such inequality. Now you may guess yourself
how the intermediate problems (1 in)-SAT and 3-SAT are formulated. Both
problems are NP-complete as well.

Now you might think: “Isn’t solving linear equations over F2 NP-complete?
For the above quadratic equations look so simple.” The answer is no. If lin-
ear equations over F2 would be NP-complete, then you could apply what you
have learned for the field R or Q on secondary school on an arbitrary field,
which F2 is, and make one million bucks.

1 NP-completeness of Master Mind

I did not found a reference on Master Mind being NP-complete, but that
does not mean that it is hard to show that Master Mind is NP-complete.
Apparently, no one found it interesting enough to write it down this far.

We reduce from (1 in 3)-SAT. Assume we have an instance of (1 in 3)-
SAT, say with n variables and m equations. We take the code to be broken
2n coordinates long, and index it with the n variables ai and the n inverses
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a′i. Next, we set up n +m + 2 turns. The first turn will be an all red-turn
and the second turn will be an all-blue turn. These turns are needed to
indicate that the code to be broken consists of n red and n blue mushrooms.
The idea is that from each pair of coordinates {ai, a′i} one is red and one is
blue in the code to be broken, corresponding to the fact that one of these
variables equals one and the other equals zero. We use exactly n black pegs
and no white pegs for the first and second turn, to indicate that half of the
mushrooms is red resp. blue. Talking about the pegs, I will assume that
the black ones indicate “correct and on the right place” and the white ones
indicate “correct but on the wrong place”. Some people do it the opposite.

In the next n turns, we make turns corresponding to the equations ai +
a′i = 1. In the (2 + i)th turn, we make the variables ai and a′i red and all
other variables blue, for all i with 1 ≤ i ≤ n. Each of these turns gets exactly
n black pegs and 2 white pegs, to indicate that n blue mushrooms plus 2 red
mushrooms are correct but not necessarily on the right place. To indicate
that one of the red mushrooms, and hence one of the blue mushrooms also,
is on the wrong place, indeed exactly 2 white pegs are needed. If we see a
red mushroom on a

(e1)
i in the code to be broken as a

(e1)
i = 1, then turn 2 + i

indicates exactly that a′i is the inverse of ai, since exactly one of both red
mushrooms is indicated to be on the correct place.

The remaining m turns will correspond to the equations of the instance
of (1 in 3)-SAT. If a

(e1)
1 + a

(e2)
2 + a

(e3)
3 = 1 is such an equation, then there

will be a turn where the mushrooms on the coordinates corresponding to
a
(e1)
1 , a

(e1)
2 and a

(e1)
3 are red and all other mushrooms are blue. Now the pegs

for that turn should indicate that exactly one red mushroom is on the right
place, for exactly one of the variables a

(e1)
1 , a

(e2)
2 and a

(e3)
3 must be equal to

1. This is done with n − 1 black pegs and 4 white pegs. Why? Since the
turn has 3 reds and the code has n reds, the total number of pegs must be
2n − (n − 3) = n + 3. Furthermore, there are 2 red mushrooms not on the
right place, but then, there are also 2 blue mushrooms on the wrong place:
there are exactly two coordinates that are not blue in the turn, but are blue
in the code to be broken. So exactly 4 of the n+ 3 pegs must be white.

The condition that exactly one red mushroom on a
(e1)
1 , a

(e2)
2 and a

(e3)
3 is

right corresponds to a1 + a2 + a3 = 1, if we see a red mushroom on a
(ei)
i in

the code as a
(ei)
i = 1 and a blue mushroom on a

(ei)
i in the code as a

(ei)
i = 0.

So the only way to find a candidate for the code to be broken is to solve the
instance of (1 in 3)-SAT.
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An example with four variables a1, a2, a3, a4 and the three equations a1+
a2 + a3 = 1, a1 + a′3 + a4 = 1 and a′2 + a3 + a′4 = 1 is shown in figure 1.

· · · ·
· · · ·
· ·
· ·
· ·
· ·
·
·
·

a1a
′
1a2a

′
2a3a

′
3a4a

′
4

4 variables 1
4 variables 0
a1 + a′1 = 1
a2 + a′2 = 1
a3 + a′3 = 1
a4 + a′4 = 1

a1 + a2 + a3 = 1
a1 + a′3 + a4 = 1
a′2 + a3 + a′4 = 1

solution

Figure 1: Master Mind is NP-complete

Consistent Master Mind

Now we showed that Master Mind is NP-complete, but you might object that
you never play this way. After the first turn, it is known that the code to be
broken consists of n red mushrooms exactly, and can never be the all-blue
code. For that reason, we now show that consistent Master Mind is NP-
complete. In consistent Master Mind, each turn must be a valid candidate
for the code to be broken, given the previous turns and their pegs.

Showing that consistent Master Mind is NP-complete is somewhat more
difficult. Again we reduce from (1 in 3)-SAT, but we assume that each pair of
equations has at most one term in common. There are twice as many terms
as variables, since each variable has an inverse. At the end of this section,
we show that this assumption is justified.

Say we have an instance of (1 in 3)-SAT, such that two equations do not
share more than one term, say with n variables and m equations. We use
(n+m+3)(n+m+2)+n coordinates in our Master Mind game, corresponding
to variables which we divide in four groups:

• The n variables a1, a2, . . . , an of the instance of (1 in 3)-SAT and their
inverses a′1, a

′
2, . . . , a

′
n. Half of these 2n coordinates are one, i.e. corre-

spond to a red coordinate in the code to be broken,

4



a1 + a′1 + b1 + c11 + c12 + c13 + c14 + c15 = 1

a2 + a′2 + b2 + c12 + c22 + c23 + c24 + c25 = 1

a3 + a′3 + b3 + c13 + c23 + c33 + c34 + c35 = 1

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 = 0

a1 + a2 + a3 + c41 + c42 + c43 + c44 + c45 = 1

a1 + a′2 + a′3 + c51 + c52 + c53 + c54 + c55 = 1

c83 + c74 + c65 + c51 + c42 + c33 + c24 + c15 = 0

c84 + c75 + c61 + c52 + c43 + c34 + c25 + c11 = 0

c85 + c71 + c62 + c53 + c44 + c35 + c21 + c12 = 0

c81 + c72 + c63 + c54 + c45 + c31 + c22 + c13 = 0

c82 + c73 + c64 + c55 + c41 + c32 + c23 + c14 = 0

· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · ·
solution candidate 1

· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · · ·· · ·
solution candidate 2solution candidate 2

aia
′
ibi cij di

Figure 2: Consistent Master Mind is NP-complete
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• Variables bi for all i with 1 ≤ i ≤ n+m+3, all zero, i.e. corresponding
to a blue coordinate in the code to be broken,

• Variables cij for all i, j with 1 ≤ i ≤ n+m+ 3 and 1 ≤ j ≤ n+m, all
zero, i.e. corresponding to a blue coordinate in the code to be broken,

• Variables d1, d2, . . . , dm+3, all one, i.e. corresponding to a red coordinate
in the code to be broken.

The first turn will correspond to the equation

a1 + a′1 + b1 + c11 + c12 + · · ·+ c1(n+m) = 1

so the red mushrooms are on the variables in the sum on the left hand side
exactly and all other coordinates get a blue mushroom. There are exactly
n + m + 3 red pegs in the code and the same number of red pegs in the
first turn, so the first turn gets as many pegs as there are coordinates, i.e.
(n+m+3)(n+m+2)+n pegs. 2(n+m+2) pegs will be white, to indicate
that exactly one red peg in on the correct place, corresponding to the fact
that the sum of the red variables in the first turn equals one.

The second turn will correspond to

a2 + a′2 + b2 + c12 + c22 + · · ·+ c2(n+m) = 1

The equation of the second turn has exactly one variable in common with
the first turn (c12 to be precise). Furthermore, it has n + m + 3 variables
also. The same holds for the code to be broken: n +m + 3 red variables of
which exactly one can be found in the equation of the first turn. It follows
that the second turn is consistent.

More generally, the ith turn will correspond to

ai + a′i + bi + c1i + · · ·+ cii + · · ·+ ci(n+m) = 1

for all i ≤ n. It is consistent since it shares exactly one red coordinate with
each of the previous turns.

The (n+ 1)-th turn will correspond to

b1 + b2 + · · ·+ bn+m+3 = 0

So the coordinates bi get a red mushroom and all other coordinates get a
blue mushroom. 2(n + m + 3) white pegs will be used, to indicate that all

6



red mushrooms are on the wrong place, corresponding to the fact that the
sum of the red variables in this turn equals zero.

Next, m turns corresponding to the m equations of the instance of (1 in
3)-SAT follow. Say that αi1 + αi2 + αi3 = 1 is the i-th equation, where each
αij is one of the variables ak or a′k. The (n+1+ i)th turn will correspond to
an equation of the form

αi1+αi2+αi3+γ(n+i)1+ · · ·+γ(n+i)(n−1+i)+ c(n+i)(n+i)+ · · ·+ c(n+i)(n+m) = 1

where γ(n+i)j ∈ {c(n+i)j, cj(n+i)}. For consistency, this turn must not have
red mushrooms on the red coordinates of the (n+ 1)th turn and must share
exactly one red coordinate with all other previous turns. The former is
automatically satisfied, since no variables bj occur in the above equation.
About the latter, the partial sum αi1 + αi2 + αi3 has at most one variable
in common with any equation of a previous turn, say the j-th turn, with
j ̸= n + 1. The whole sum αi1 + αi2 + αi3 + γ(n+i)1 + · · · + γ(n+i)(n−1+i) +
c(n+i)(n+i) + · · ·+ c(n+i)(n+m) must have exactly one variable in common with
the equation of the j-th turn, in order to get consistency with respect to the
j-th turn.

Assume first that j < n + 1. Then cj(n+i) is a variable of the j-th turn.
If αi1 + αi2 + αi3 does not have a variable in common with the equation of
the j-th turn, then γ(n+i)j = cj(n+i). This way, both equations have variable
cj(n+i) in common. If αi1 + αi2 + αi3 do already have a variable in common
with the equation of the j-th turn, then γ(n+i)j = c(n+i)j. In both cases, the
equations of the jth turn and the (n+1+ i)th turn have exactly one variable
in common. The case j > n+ 1 is similar. We adjust γ(n+i)(j−1) now instead
of γ(n+i)j.

Turn n+ 1 +m+ k will correspond to∑
i+j≡k (mod n+m+3)

cij = 0

and since these equations share exactly one variable with the equations of
turn 1 to n and the equations of turn n + 2 to n +m + 1, and no variables
with each other and the (n+ 1)th equations, these turns are consistent.

After all turns, it is known that all bi and all cij are zero. Furthermore,
the first n equations imply that from each pair {ai, a′i}, exactly one is equal
to one. So besides the di, there are exactly n red coordinates in the code to
be broken. Since there are exactly n + m + 3 red coordinates in the code
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to be broken, the coordinates d1, d2, . . . , dm+3 must be red in the code to be
broken, and candidates for the code to be broken correspond to solutions of
the instance of (1 in 3)-SAT.

An example with three variables and the two equations a1 + a2 + a3 = 1
and a1 + a′2 + a′3 = 1 is shown in figure 2. Since this system of equations has
two solutions, there are two candidates for the solution. Furthermore, not
all mushrooms have the same size and the red mushrooms are yellow here.

Final issues

So consistent Master Mind is NP-complete. A somewhat stronger concept
than NP-completeness is ASP-completeness, see [4]. Since(1 in 3)-SAT is
ASP-complete [4, Th. 3.6] and the NP-reductions in the above proof are
even ASP-reductions, consistent Master Mind is even ASP-complete, if I am
not mistaken.

Oh no, no I am not mistaken, but I forgot to justify the assumption that
two equations share at most one term, remember? Suppose that this is not
the case, say a1 + a2 + a3 = 1 and a1 + a2 + a

(e)
k = 1 are both equations of

the system. There are two ways to deal with this situation.

• The theoretical approach:
The information that a1+ a2+ a

(e)
k = 1 adds to a1+ a2+ a3 = 1 is that

a
(e)
k = a3. This information can be coded in a different matter as well.

Instead of a1 + a2 + a
(e)
k = 1, we use the equations

a3 + b′1 + b2 = 1

a
(e)
k + b′3 + b4 = 1

b′1 + b3 + b5 = 1

b′2 + b4 + b5 = 1

b2 + b′4 + b5 = 1

b2 + b4 + b′5 = 1

Summing the last three equations of the above, we get 2b2 + b′2 +2b4 +
b′4 + 2b5 + b′5 = 3, i.e. b2 + 1 + b4 + 1 + b5 + 1 = 3, so b2 = b4 = b5 = 0.
It follows that b1 = a3, b3 = b1 and ak(e) = b3, so ak(e) = a3. So the
system of equations still has the same solutions after this procedure.
Furthermore, there is at least one equation less that shares two variables
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with another equation. So by induction, it follows that we may assume
that two equations do not share more than one variable.

• The practical approach:
Since a

(e)
k = a3 follows from a1 + a2 + a3 = 1 and a1 + a2 + a

(e)
k = 1, we

can replace a
(e)
k by a3 and a

(1−e)
4 by a′3 all over the system of equation.

This way, the equation a1 + a2 + a
(e)
k = 1 becomes a1 + a2 + a3 = 1,

which is already in the system, so the equation a1 + a2 + a
(e)
k = 1 is

effectively eliminated.

But other things might happen. We might get equations of the form

a3 + a3 + a5 = 1

which is equivalent to a3 = 0 and a′5 = 0, and

a3 + a′3 + a5 = 1

which is equivalent to a′5 = 0. So we must have a cure for variables
being equal to zero, say that we have an equation al = 0. Say that al
occurs also in an equation

al + a6 + a7 = 1

and a′l occurs in an equation

a′l + a8 + a9 = 1

Remove all occurences of al in all equations, so al+a6+a7 = 1 becomes
a6+a7 = 1, which is equivalent to a6 = a′7. We already know what to do
with a6 = a′7, since it is the same type of equation as the equation a3 =
aek that we started with. Replace equations with a′l, say a′l+a8+a9 = 1,
by a′8 = 0 and a′9 = 0. We already know what to do with these equations
as well.

So after some fast (i.e. polynomial-time) clean-ups, we have either
solved the system of equations, or reduced it to a smaller system of
equations such that each pair of equations do not share more than one
variable.
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NP-completeness of Minesweeper on several

grids

Richard Kaye showed in [2] that Minesweeper is NP-complete. Did you read
that article? I did, and I can tell you that it is one of the coolest articles I
ever read. In fact, he builds a logical circuit on the minesweeper board, in
order to compute a boolean expression. Next, he enforces the outcome of the
boolean expression to be true, whence the problem becomes finding boolean
values for the variables such that the logical expression evaluates to true.

We are going to reduce Minesweeper to solving polynomial equations
over F2, for all three regular tesselations of the plane (triangular, normal and
hexagonal Minesweeper). For this purpose, we build circuitry as well, this
time circuitry to compute polynomials over F2. This is because my advisor
is a specialist in polynomial mappings, this was the only way that he would
agree me to write an article so far from his subject. No, just kidding. In
figure 3, a circuit with two splitters, one crossover, two multipliers and two
adders is given.
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Figure 3: A circuit that computes the polynomial p = x+ y2 + xz

In order to make such circuits on a minesweeper board, we first need a
way to code wires on it. This is done in figure 4.

In figure 4, we do not know what the compartments with x and x′ contain,
but we do know that either exactly all compartments with x contain a mine
(figure 5) or exactly all compartments with x′ do (figure 6). Which of both
cases are possible follows from the global structure of the Minesweeper board.
To make polynomial equations from the polynomial expressions, it suffices to
force these expressions to have a given value in {0, 1}. This can be done by
forcing a wire that conducts a certain expression to conduct a given value.
Figure 7 showns how to force a wire to conduct one and zero respectively.
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Figure 4: A wire that conducts x, running from the starting point of x
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Figure 5: A wire that conducts one

Small computational components

Next, we need to have curves to bend wires (figure 8) and splitters to dupli-
cate wires (figure 9).

Something that is not shown in figure 3, but that we might need, are so-
called phase-shifters (figure 10). The phase-shifter with square compartments
is stolen from R. Kaye [2].
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Figure 6: A wire that conducts zero
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Figure 7: A wire that is forced to conduct a given value
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Figure 8: A curve of a wire with x
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Figure 9: Merge two curves to get a splitter
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You might think that the phase-shifter with hexagonal compartments is
a so-called invertor as well. In that case, I do not agree with you, and since
this is my article, I am right by definition. A real invertor is shown in figure
11.
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Figure 11: An invertor

In case you might not have noticed already, the hexagonal phase-shifter is
not a good invertor because the mine-counter might given information about
the circuit then, possibly screwing up all our efforts with it.

Larger computational components

A crossover for Minesweeper with square compartments is shown in figure
12. It is taken from Richards Kaye’s slides, see [3]. You might wonder why
there is no crossover given with hexagonal compartments. The answer is that
I did not found one by direct construction. But a crossover can also be made
from three splitters and the same number of adders, see [2] or figure 13.

But before we have such a crossover, we must first make a hexagonal
adder. Figure 14 shows an adder-multiplier combi. If you only want to use
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Figure 13: A crossover circuit

the adder, you just cut off the wire of the multiplier output. A wire cut-off
is the same as the start of a variable in figure 4.

Since the adder-multiplier combi is the most complicated component by
far, it needs some explanation. Let us concentrate on the one for normal
minesweeper first. The heart on the left hand side with the number 5 enforces
the equation x + z + a′ + v′ = 2 over Z. Since also a + v + a′ + v′ = 2 over
Z, the sets {x, z} and {a, v} are enforced to be equal. So the heart on the
left hand side in in fact the heart of a shaker : its outputs a and v are a
nondeterministic permutation of x and z.

We show that a = min(x, z) and v = max(x, z). Suppose that this is not
the case. Then a = 1 and v = 0. So a′ = v = 0. It follows that the heart on
the right hand side is surrounded by 3 mines at most. This contradicts the
number 4 in it, so a = min(x, z) and v = max(x, z).

Since x · z = min(x, z), the output a equals x · z. Next, the heart on the
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right hand side enforces the equation a′ + v + c′ = 2 over Z. Since v = 0
implies a′ = 1 and a′ = 0 implies v = 1, 1 ≤ a′ + v ≤ 2 over Z. So c′ can be
chosen such that a′ + v + c′ = 2 over Z.

Modulo 2, the heart on the right hand side gives the following information:

0 ≡ a′ + v + c′ ≡ a+ v + c ≡ x+ z + c (mod 2)

It follows that c = x+ z is satisfied over F2.
Are we done now with the adder-multiplier combi for normal minesweeper.

No, for some of the square compartments are bold. They are bold because
revealing these compartments might give new information about the board at
first glance. But that only seems so. If you e.g. reveal the bold compartment
with v, then v = 0 and you already know before revealing it that a′ = c′ = 1.

The adder-multiplier combi for hexagonal minesweeper works essentially
the same as that for normal minesweeper. Notice that the heart on the left
hand side is not the heart of a buggy shaker this time, due to some bold
compartments surrounding it. But the subcomponent is correct within its
context.

Triangular Minesweeper

You probably already wondered where the figures with triangular compart-
ments stayed. I have a disappointing announcement to make: there will
not be very many of them. One reason is that I can not play triangular
Minesweeper. Playing hexagonal Minesweeper with HexMines of William
Hause was fun, but I got sick of shareware reminders when I tried to play
triangular Minesweeper with Professional Minesweeper by Bojan Urosevic.
Another reason is that this article is already quite long due to the large
number of figures.

In figure 15, each hexagonal compartment on the left hand side is replaced
by two triangular compartments: one with a red mine that points downwards
and another that points upwards. The triangle that points upwards contains
a blue mine if the corresponding hexagonal compartment on the left hand
does. Otherwise, it contains the number of the corresponding hexagon plus
3. The “plus 3” counts (for) the red mines surrounding the triangular com-
partment. So apart for some border issues that are ignored here, we have
a reduction from hexagonal minesweeper to triangular minesweeper here. It
follows that triangular minesweeper is NP-complete.
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Figure 15: Hexagonal Minesweeper reduces to triangular Minesweeper

A stronger result on normal Minesweeper

Since Richard Kaye already proved that Minesweeper is NP-complete, it
would be nice to improve on that. But how? To observe that Minesweeper
is ASP-complete? It is true that all three variants of Minesweeper discussed
above are indeed shown to be ASP-complete, while Richard Kaye’s proof is
not an ASP-proof (if the inputs u and v of his AND-gate are both zero, then
r and s can be interchanged).

But that is not what I want to discuss here. No, we are going to show that
solving a minesweeper board of which only one square is uncovered initially
is NP-complete. Of course, the uncovered square can only be surrounded
by zero mines, since otherwise it would be impossible to uncover any other
square, in which case you will not get any further.

Ok, say that there is one uncovered square with no mines surrounding it.
Then you can uncover all surrounding squares, and for each such square that
has no mines surrounding it either you can uncover the surrounding squares
as well, etc. All programs for minesweeper do this automatically.

So we get an area of uncovered squares consisting of connected squares
with no mines around them, from now on called a whitespace component.
Furthermore, the border of the first whitespace component is uncovered as
well, but the border squares do have mines around them.

In order to show that solving a minesweeper board of which only one
square is uncovered initially is NP-complete, it suffices to be able to do the
following by local reasoning:
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• reason through wires to uncover all whitespace components,

• get to know all components except for the values of their variables.

Figure 16 shows how to get to know wires and to reason through them.
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Figure 16: Mark the phase of a wire by an extra mine an you can reason
through it

All other components of normal Minesweeper that are presented here can
be figured out as well, provided all whitespace components are uncovered and
the phases of all wires are known (see figure 16 as well). The adder-multiplier
combi needs the part between the dashed lines very sorely now.
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