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ABSTRACT: In this paper, 200 years of modeling crystal growth and morphology are reviewed. From the discovery
of the law of rational indices, the interplanar distance law of Bravais, Friedel, Donnay, and Harker, to more structural
theories such as the Hartman-Perdok theory, as well as statistical mechanical cell models, we arrive at the modern
growth theories supported by Monte Carlo growth simulations. Shortcomings in the classical Hartman-Perdok
theory are highlighted, and the concept of weakening of connected nets by connected net interactions is explained
using a theoretical example. In the last section, our new insights are applied to three examplesscrystal structures
of venlafaxine, paracetamol, and triacylglycerolssto illustrate their scope and applicability.

1. Introduction
For more than two centuries, people have been trying

to relate the macroscopic morphology and the roughen-
ing of crystal faces to the microscopic crystal structures.
Understanding the crystal morphology is very important
and interesting both from a purely scientific point of
view and for all kinds of technical applications. In
industry, crystals are often formed both as intermediate
and end products. Crystallization is often the only viable
operation available for purification and isolation. Knowl-
edge of the shape or morphology of these crystals is of
crucial importance, since the shape determines many
macroscopic properties of the product. Think for in-
stance of the dissolution rate for pharmaceutical com-
pounds, optical properties, solubility, and compressibil-
ity but also more process-related characteristics such
as rheological characteristics, filtration rate and pres-
sure, agglomeration, etc.

Over the years, separate disciplines have studied the
correlation between structure and growth. Recently,
these studies were integrated to come to a better
understanding of the crystal growth and therefore of the
morphology. In this section, we will first explain the
mathematical background of crystallography, the BFDH
(Bravais, Friedel, Donnay, and Harker) law, the Hart-
man-Perdok theory, and the statistical mechanical
theories of surface roughening transitions, Ising models,
and computer simulation models.

Section 2 starts with a theoretical crystal structure
to illustrate the effect of weakening of connected nets
by multiple connected net interactions. Then, three
examples of real compounds are discussed to illustrate
the more integrated approach to the modeling of mor-
phology.

1.1. Mathematical Backgrounds of Crystallog-
raphy and Crystal Morphology. The first important
breakthrough in the science of crystallography was the
formulation of the law of rational indices.1,2 This law
states that the angles between similar crystallographic
faces on different crystals are identical within minutes
of arc. Later, it was found that this law is generally
applicable to all kinds of inorganic and organic crystals;
see for instance the volumes edited by von Groth,3 who
was also the first editor of Zeitschrift für Kristallografie
in 1877.

The law of rational indices further describes the
orientation of crystallographic faces in reference to a
coordinate system. This coordinate system is defined in
such a way that it consists of three axes, A, B, and C,
taken to be parallel to the three edges of the crystal
under investigation. One observed face is taken to be
the unit face; it cuts distances a, b, and c from the axes.
Now, any observed crystal face will cut pieces a/h, b/k,
and c/l from the unit axes, in which h, k, and l (the
reciprocal or Miller indices) are taken to be integers
including zero, i.e., h ) 0 implies that the face (0 k l) is
parallel to the A-axis. The hypothesis that for a three-
dimensional (3D) translationally invariant crystal struc-
ture a macroscopic face (h k l) is parallel to a stack of
parallel net planes was put forward by Bravais more
than a century ago.

After the discovery of rational indices, the current
mathematical crystallography was developed in the 19th
and the beginning of the 20th century,1 which is, seen
from a modern logical point of view, a branch of
Euclidian geometry and mathematical group theory.
Nowadays, the resulting 230 space groups, 32 point
groups,4,5 and their implications for the description of
3D crystal structures are summarized in the Interna-
tional Tables for Crystallography.6

1.2. Crystals Seen from a Macroscopic and Mi-
croscopic Point of View: BFDH Law. One of the
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most fascinating aspects of crystals is that due to the
crystal growth processes, crystals are generally bound
by flat faces. Sometimes, however, crystals are partly
or completely bound by rounded faces or have dendritic
shapes (for instance, snow crystals). Modern theories
of crystal surfaces and crystal growth try to explain
under which conditions crystals grow with more or less
flat faces (h k l)7 or with unstable rounded faces, which
will develop unstable crystal shapes that change in
time.8-10

The first successful attempt to predict crystal mor-
phology was the law that nowadays is called the BFDH
law, which was developed in the first half of the 20th
century. It states that the larger the interplanar dis-
tance dhkl for a stack of net planes parallel to a
macroscopic plane with orientation (h k l), the lower its
growth rate or the higher its morphological importance
(MI). Here, the MI of a face (h k l) is a qualitative
measure for the relative statistical frequency of occur-
rence or relative size of a set of symmetry equivalent
faces of crystals. The indices (h k l) have to be corrected
using the space group selection rules of X-ray crystal-
lography. In Table 1, an example of these rules is given
for the space group P21/n (the space group of venlafaxine
crystals discussed in section 2.2.1). Note that in general
the MI of a face is inversely related to its growth rate,
i.e., the slowest growing faces dominate the growth
morphology of the crystal.

The mathematical BFDH hypothesis seems to work
rather well. This can be confirmed by comparing the
calculated MI and the resulting pictures of crystal
morphologies, with a statistical analysis of the relative
sizes of observed crystal faces (h k l).

From a physical, chemical point of view, the relation-
ship between growth rate and dhkl can be rationalized
by realizing that the thicker the growth layers dhkl are,
the more chemical bonds will have to be formed in the
process of creating the growth layer; therefore, the
slower the growth rate is. This is especially true if these
bonds are isotropic as for simple ionic crystals such as
NaCl. For organic molecules, these bonds may be much
more anisotropic because in organic crystals the inter-
actions are governed by van der Waals interactions and
hydrogen bonding, as well as electrostatic interactions,
and these may have large anisotropic contributions,
depending on the structure of the molecule.

1.3. Hartman-Perdok Theory. Almost half a cen-
tury ago, Hartman and Perdok (teachers of P. Bennema)
wrote three seminal papers on the morphology of
crystals.11-13 Looking back, they implicitly introduced
the concept of what is nowadays called the crystal
graph. The Hartman-Perdok theory discerns growth
units (GUs) and overall bonds between GUs. The overall
bonds between GUs may consist of multiple subbonds,
which can be determined computationally using various
force fields. The GUs can be molecules, complexes, or
ions occurring in the mother phase (melt, solution, or
vapor) from which the crystal grows. The crystal graph

is therefore a mathematical representation of the crystal
structure as an infinite set of translationally invariant
vertices and edges, with the same elementary cell and
space group as the crystal structure that it represents.

The crystal graph can be used to define periodic bond
chains (PBCs), periodic chains of bonds in the crystal
graph. Two PBCs in different directions [u v w], which
span dhkl, make up a connected net with the crystal-
lographic orientation (h k l). Note that the reciprocal
space vector [h k l]* is perpendicular to the correspond-
ing crystal face. Now, we can define F-faces to have a
connected net perpendicular to the vector [h k l]*,
S-faces to have mutually nonconnected PBCs perpen-
dicular to the vector [h k l]*, and K-faces to have no
PBCs perpendicular to [h k l]*.

To try to predict the morphology of crystals, Hartman
and Perdok introduced the broken bond energies Ehkl

att

and Ehkl
slice11-13 and Hartman and Bennema14 published

a paper in 1980 in which it was shown, by studying
theories of crystal growth mechanisms such as spiral
growth and two-dimensional (2D) nucleation mecha-
nisms, that relative growth rates of faces (h k l) are in
principle proportional to Ehkl

att . In other words, by cal-
culating the attachment energies of all (h k l), a growth
morphology can be predicted.

These concepts above apply to the growth form of
crystals but can also be applied to the equilibrium form
of a crystal. This form is asusually very smallscrystal,
the habit of which is determined by statistical fluctua-
tion processes, rather than growth kinetics. When
predicting equilibrium forms, surface tension is consid-
ered, and therefore, all attachment energies should be
scaled by the mesh area Mhkl:

This leads to a narrower distribution of Eeq,hkl
att , result-

ing in a similar, but richer, morphology as compared to
the growth morphology. This is also observed on actual
equilibrium forms, which can be produced under very
special experimental conditions.15-17

1.4. Statistical Mechanical Models. In this section,
the occurrence of flat faces (h k l), resulting from the
growth process, will be explained in terms of the
roughening phase transition, which occurs above the
dimensionless critical roughening temperature θR, for
each crystallographic orientation (h k l).

1.4.1. Roughening Transition of Connected Nets.
Connected nets, as defined earlier in the Hartman-
Perdok theory, have a nonzero roughening temperature,
defined as

Here, Φstr is the strongest bond in the crystal graph,
composed of bonds Φ1, Φ2, Φ3, ..., Φi, ... between GUs
in the crystal graph. In eq 1, we introduced, according
to conventions, a dimensionless temperature θ defined
as

Table 1. Selection Rules of Space Group P21/n

(h k l) selection rules, with n ∈ Z

(h 0 l) h + l ) 2n
(0 k 0) k ) 2n
(h 0 0) h ) 2n
(0 0 l) l ) 2n

Eeq,hkl
att )

Ehkl
att

Mhkl

θhkl
R ≡ (2kT

Φstr)
hkl

(1)

θ ) 2kT
Φstr

(2)
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At the roughening temperature, the edge free energies
γuvw of steps along the direction [u v w] coplanar with
the crystallographic orientation (h k l) becomes equal
to zero:

When the edge free energy in a certain direction [u v
w] has become equal to zero, effectively, there is no
energy barrier inhibiting growth and the face will grow
as a nonfaceted rough face.

The implications for F-, S-, and K-faces are as follows.
An F-face is parallel to at least one connected net having
two sets of mutually interconnected PBCs in at least
two directions [u v w]. This means that in all directions
[u v w], the edge free energy will be larger than zero at
a nonzero temperature, and the face will have a
roughening transition at T > 0. For S-faces, there is only
one set of PBCs parallel to a direction [u v w] in the
face. All other directions [u v w] will have a zero edge
free energy; therefore, the face will grow as a rough face
from T ) 0. Finally, K-faces are not connected in any
direction [u v w] and will grow rough from T ) 0.

1.4.2. Relation between the Ising 2D Spin Order-
Disorder Transition and Connected Nets. The Ising
2D spin order-disorder transition is based on a 2D grid
of spins, and in the case of simple triangular, hexagonal,
or rectangular connected nets, the dimensionless critical
Ising temperature, θhkl

I , can be calculated exactly, pro-
vided the ratio of broken bond energies of the 2D nets
is known. This temperature roughly marks the transi-
tion for a particular connected net, at which its con-
nectedness in terms of free energy is lost. Rijpkema and
Knops have developed a formalism in which connected
nets of all configurations can be translated to the Ising
model.18 The work of Rijpkema and Knops can be
considered to be a generalization of the pioneering work
of Onsager,19 who demonstrated that there is a spin
order-disorder phase transition of second order at the
critical temperature. Below the transition temperature,
two phases exist, one with all spins up, one with all
spins down; above the transition temperature, one
disordered phase of mixed spins exists. This spin model
can be transferred to the crystal growth model by
considering solid and fluid (spin up and spin down)
phases to occur randomly above the transition temper-
ature (rough growth, edge free energy is equal to zero)
and as two separate phases below the roughening
temperature (layer-by-layer growth, edge free energy
larger than zero).

The theory of Onsager’s 2D order-disorder transition
served as a basis for the famous seminal paper of
Burton, Cabrera, and Frank (BCF).20 Using a one layer
model for the (001) face of the Kossel crystal, they
showed that below a critical temperature steps have a
finite edge free energy. Below this critical temperature,
a crystal surface can grow by a layer mechanism, either
by 2D nucleation or by the spiral growth mechanism
as proposed by Frank in 1949. Above the critical
roughening temperature, a crystal face will grow as a
rounded rough face (due to volume diffusion). Now-
adays, the crystallographic approach of Hartman and

Perdok11-14 and the statistical mechanical approach of
2D Ising models18-20 are highly integrated.7,21

1.4.3. Survey of Existing Ising Surface Models,
Developed and Used Until About 1998. Various
statistical mechanical models for crystal surfaces have
been studied in the last century. These all use cell
models, in which each cell can be either “fluid” or “solid”.
We will shortly summarize their main features in the
list below.

1.4.3.1. The Not Exact Mean Field 2D Model. For
instance, the model of Jackson from which it can be
derived states that if the well-known R factor (R ) 4
Φ/kT)22 of a crystal face (h k l) is larger than two this
face is growing as a flat face with a layer mechanism
(2D nucleation or spiral growth). This implies that below
a certain critical, nowadays called roughening temper-
ature, a face (h k l) is growing with a layer mechanism
as a face with a well-defined orientation (h k l) and
above this temperature as a rough face in principle
without any orientation (h k l).

1.4.3.2. The Not Exact Mean Field SOS (Solid on
Solid, No Overhangs) 3D Multilayer Mean Field
Model. This model was introduced by Temkin,23 from
which it also follows that a critical roughening transition
occurs, which marks the transition between “flat” and
“rough” growth.

1.4.3.3. The 2D Step Model. This model, in which
the SOS condition was introduced by Leamy, Gilmer,
and Jackson,24 can be solved exactly (see also the recent
survey paper of Bennema and Meekes25).

1.4.3.4. The 2D Cell Models. These models were
introduced by BCF and inspired by Onsager and can
be solved exactly as well.19,20 Thanks to Rijpkema and
Knops, a generalized version of the Onsager-BCF 2D
cell models was introduced, which could be applied to
any kind of 2D connected net. It was first applied to
the connected nets of the complex garnet structure.18

1.4.3.5. Computer Simulations of Growth. In the
seventies of the last century, computer simulations to
study crystal growth processes were introduced by,
among others, Gilmer et al.,26 using the SOS model
introduced by Temkin.23 (Recall that Temkin used a
mean field approach. See also the survey papers7,21). It
followed from these simulations that for the (001) face
of the simple cubic SOS model, above a certain critical
value of R, i.e., below the critical roughening tempera-
ture, curved growth rates vs driving force curves were
obtained, which could be fitted with a birth and spread
2D nucleation model. Below this critical value of R, i.e.,
above the corresponding critical roughening tempera-
ture, a linear rate vs supersaturation curve was ob-
tained. This change from nonlinear 2D nucleation
curves to linear curves marked the roughening transi-
tion and the roughening temperature.

It can be concluded that considerable progress was
made in the field of crystal growth, by applying statisti-
cal mechanical models to Ising models of crystal surfaces
to study and simulate crystal growth, resulting in an
integrated approach to the problem at hand.

2. Recent Developments in Nijmegen

The BFDH law and the attachment energy approach
correlate the growth rate of the face to the unit cell and
the energies in the crystal structure, respectively, by

θ < θhkl
R w γhkl

uvw > 0

θ g θhkl
R w γhkl

uvw ) 0 (3)
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making some crude assumptions. In reality, the growth
rate is determined by the step free energy, since both
birth-and-spread and spiral growth models have this
quantity, apart from the supersaturation, as their key
parameter. Cuppen et al. have recently published steps
toward a generalized theory of crystal growth mecha-
nisms based on this key parameter, the step free
energy.27,28

Although the step (free) energy determines the growth
rate and not the interplanar distance or the attachment
energy, both the BFDH and the attachment energy
method often give reasonable results for the morphol-
ogy.29 This can be explained by considering that large
interplanar distances and small attachment energies
usually mean large slice energies. For isotropic con-
nected nets, nets in which the bonds are more or less
equal in all directions, large slice energies result in large
step energies leading to slow growth. An anisotropic
connected net consists of a very strong and a very weak
PBC; that is, it is connected very strongly in one
direction [u v w] and very weakly in another direction
[u v w]′. The two PBCs still make it a connected net,
but because of the very weak PBC in one direction, the
connected net gets an S-face character and will grow
rough.

Another effect that can cause an increase in the
growth rate of the surface with respect to the expected
growth rate from the attachment energy is weakening
due to multiple connected net interactions, as will be
explained by the following example.

2.1. Multiple Connected Net Interactions. About
five years ago, the physical implications for crystal
growth mechanisms and crystal morphology of the
occurrence of two or more alternative connected nets
for one orientation (h k l) became apparent.30-32 Before
this discovery, we simply selected the strongest con-
nected net out of a stack of alternative connected nets,
which corresponded to the highest Eslice or highest Ising
temperature for the orientation (h k l) under consider-
ation. It was simply assumed that this strongest con-
nected net would dominate the crystal growth process.

Detailed investigation, however, revealed that when
a potential nucleus is formed on a connected net,
differential bonds come into play if there are multiple
connected nets. As a result, a substitute net can be
formed to account for the appearance of these dif-
ferential bonds. The substitute net can be considerably
weaker than the original nets present in the structure.

To demonstrate the phenomenon, we present a simple
model crystal graph seen in the [100] direction (see
Figure 1). In this direction, perpendicular to the plane
of the paper, equally strong bonds are present, which
have the same length as the unit of length of the a-axis.
They form one set of PBCs, which is used to complement
all connected nets.

It can be seen from Figure 1 that the crystal graph
can be partitioned in connected nets (011) and (01h1)
consisting of the PBCs [01h1] and [011], respectively, and
the PBC [100]. The PBC [01h1] consists of the bonds a1
and b2 (with bond energies Φa1 and Φb2) and the PBC
[011] consists of the bonds a2 and b1, respectively
(corresponding with bond energies Φa2 and Φb1). There
are no other connected nets in these orientations;
therefore, they are singlets. The edge energy of the (011)

net is either Φb1 or Φa2, and for the (01h1) net, the edge
energies are either Φa1 or Φb2.

It can be seen from Figure 1 that there are two
parallel connected nets in the (001) direction, (001)1 and
(001)2, made up of a1 and a2 and b1 and b2, respectively.
In the calculation of the edge energies ε1 and ε2 of these
nets, we encounter the difference bonds. This can be
viewed as follows: when we make the edge of net (001)1,
we cut the bonds b1 and b2, but at the same time,
because we make the edge, we prevent the breaking of
bonds a1 and a2. The net energy difference ε1 is therefore
(Φa1 - Φb1) + (Φa2 - Φb2). Similarly, if we make the
edge for net (001)2, we cut bonds a1 and a2, but bonds
b1 and b2 are formed, making the net energy difference
ε2 equal to (Φb1 - Φa1) + (Φb2 - Φa2).

Now, depending on the magnitudes of all Φs, either
ε1 or ε2 is negative. In the case that ε1 is negative, the
crystal will grow with layers shaped like connected net
(001)2, or when ε2 is negative, it will grow with layers
shaped like (001)1. There is a special third case, when
Φa1 ) Φb1 and Φa2 ) Φb2 or if (Φb1 - Φa1) ) -(Φb2 -
Φa2). Then, both ε1 and ε2 are equal to zero, and the face
will have zero edge free; therefore, it will have zero edge
free energy for both nets. Effectively, the face becomes
an S-face, and the face will grow rough already at T )

Figure 1. Model graph for illustration of weakening by
multiple connected net interactions is shown here. The bonds
in the direction of the a-axis are only shown in the lower 3D
picture of the graph. These bonds make the model graph
connected and are present perpendicular to the paper in the
upper figure.
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0; we called this rather exceptional situation a case of
symmetry roughening.

Another interesting case occurs when one of the bonds
Φi (i ) a1, a2, b1, or b2) has zero bond strength. Take for
example Φa1 ) 0. The connected net (001)1 is no longer
connected, and the connected net (001)2 becomes the
only connected net in the (001) orientation. When
calculating the edge energy ε, the result is Φb1 + (Φb2
- Φa2). So, even though there is only a single connected
net (i.e., a singlet), the edge energy is still lower than
expected from the attachment energies, because of
difference bonds. The latter situation was found for the
first time for fat crystals, which will be discussed further
on in section 2.2.3.

The result for the morphology of the present example
is that depending on the exact magnitude of the bonds,
the (001) faces grow relatively fast and may or may not
appear on the morphology. This is due to the occurrence
of difference bonds, as 2D nucleation and roughening
barriers of the (001) faces may be reduced considerably,
as compared to the nucleation and roughening barriers
for the orientations (011) and (01h1). Because of this
gradual reduction, a sharp distinction between F- and
S-faces seems to become more of a gliding scale,
depending not only on the magnitude of individual
bonds but also on the topology of the bonds in the
surface of an orientation (h k l).

Recently, many more examples of crystal structures
for which difference bonds determine the growth rate
of orientations (h k l) were found. If the topology of a

stack of connected nets with orientation (h k l) becomes
very complex, we may give up carrying out a topological
analysis and simply carry out a Monte Carlo growth
simulation, which will provide us with a growth rate
vs supersaturation curve of this orientation. For this,
the program MONTY was developed. MONTY can run
a Monte Carlo simulation of growth for any orientation
of any crystal structure, based on information from the
crystal graph.

The Monte Carlo simulations are based on an “ato-
mistic” lattice growth simulation, in which the “atoms”
or GUs represent the molecules that can grow or etch
from fixed lattice points. The program has a flexible
probability scheme, which we can use to simulate either
growth or etching conditions. As the program does not
consider surface diffusion, it is particularly suited for
solution growth, for which it is known that the surface
diffusion is much lower, as compared to growth from
the gas phase. We have learned from various recent
Monte Carlo studies that despite the assumptions
described above, the MONTY growth simulations are
susceptible to the subtle implications of the bonding
topology of an orientation (h k l) of a certain crystal
graph.33-35

Figure 2. Experimentally observed morphologies of the free
base form of venlafaxine. (i) Top view: Front and back face
{002}; side faces {102h}; and top and bottom faces {012}. (ii)
Detailed side view of the {012} top/bottom faces.

Figure 3. Morphology of the free base form of venlafaxine
predicted by the attachment energy method. The {001} and
{101h} orientations are predicted correctly.

Figure 4. In this figure, the growth rate vs supersaturation
curves are shown, from the Monte Carlo calculations on
various crystallographic orientations of the crystal graph of
venlafaxine free base. Below, the resulting morphology is
shown for ∆µ/kT ) 0.89. The morphology is corresponding very
well with the one observed experimentally (see Figure 2).
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2.2. Examples. 2.2.1. Venlafaxine Free Base. In
collaboration with the pharmaceutical company Synthon
B. V., we recently applied both the Hartman-Perdok
theory and the Monte Carlo growth simulations men-
tioned above to the problem of predicting the morphol-
ogy of the free base form of venlafaxine: (N,N-dimethyl)-
2-(1-hydroxycyclohex-1-yl)-2-(4-methoxyphenyl)ethyl-
amine.36 The experimental morphology has MI {002}
> {101h} > {012} and is shown in Figure 2.

From the connected net analysis, we find that two of
the three observed faces, {012} and {101h}, are singlet
connected nets. The third face, {002}, is not a singlet
face, but the two strongest connected nets of the {002}
orientation are not able to weaken each other as they
do not share any bonds or GUs. All other crystal-
lographic orientations have multiple connected nets that
do share bonds, and these orientations are not observed
in the experimental morphology. In short, only the
orientations that do not suffer from the weakening of
nets due to differential bonds or orientations that have
only one unique connected net are observed in the
morphology.

The morphology predicted from attachment energies
is shown in Figure 3. It can be seen that although the
three connected nets are observed in the experimental
morphology, the {012} orientation is not predicted.
Instead, we see the {011}, as its attachment energy is
a little bit lower than the attachment energy of {012}.
The attachment energy approach also does not correctly
predict the rectangular morphology of the {002} face;
instead, it predicts an almost square morphology.

From the Monte Carlo simulations, done at relative
supersaturations ∆µ/kT approximately between 0 and
1, the findings of the Hartman-Perdok theory are
corroborated as follows: the slowest growing faces are
the faces with only one connected net. In the case of
these growth simulations, however, the {012} face grows
slower than the {011} face; therefore, it dominates the
morphology. Also, the rectangular form of the {002} face
is predicted correctly. The predicted morphology and the

growth rate, dependent on the relative supersaturation,
are shown in Figure 4.

2.2.2. Paracetamol. Many studies have been devoted
to the crystal growth behavior of paracetamol (acetami-
nophen). All of these studies show that the growth
morphologies of paracetamol strongly depend on the
driving force for crystallization and are mainly deter-
mined by the {001}, {011}, {110}, and {201h} faces.
Studies of the surface topology of these faces show that
the spirals on the {110} face are not active and this face
grows via 2D nucleation. The other two faces grow via
spiral growth. Figure 5a,b shows the experimental
growth rate curves for some of the faces as measured
by Ristic and Sherwood and co-workers37 and by Shek-
unov.38 Both panels show a gradual increase in growth
rate for the spiral growth faces and a dead zone followed
by a rapid increase of growth rate for the {110} faces.
There is, however, some discrepancy between the two
plots about the order of the {201h} and the {001} faces.

The strong supersaturation dependence of the mor-
phology of paracetamol is mainly due to the growth
behavior of the {110} face. This growth behavior cannot
be explained based on the attachment energy method
or the BFDH law, since both methods do not include
temperature, growth mechanism, or supersaturation.
With Monte Carlo simulations, these parameters can
be introduced. Another advantage of this method is that
different growth mechanismss2D nucleation and spiral
growthscan be included. We have performed Monte
Carlo simulations for the four major faces and have
determined the growth rate as a function of the driving
force for crystallization. For the {110} face, only the 2D
nucleation mechanism is used; for the other faces, a
combination of spiral growth and 2D nucleation is used.
The results are shown in Figure 6. As can be seen in
this figure, the three faces with a spiral growth mech-
anism show a gradual increase in growth rate. The
{110} face on the other hand has a nucleation barrier
and then a rapid increase, crossing all other curves. The
supersaturation dependence of the morphology can

Figure 5. Growth rate vs supersaturation curves of paracetamol grown from aqueous solution as measured by (i) Ristic et al.
and (ii) Shekunov. Curve a represents growth and dissolution of {110}, curve b represents growth and dissolution of {201h}, and
curve c represents growth and dissolution of {001}.
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therefore be explained by the difference in growth
mechanism.

2.2.3. Morphology of Three Types of Fat Crys-
tals. In the following, we will very briefly mention
results of the application of the theory to explain the
morphology of three types of fat crystals.

2.2.3.1. Morphology of Crystals of â-n.n.n-Tri-
acylglycerol. In 1992, a paper was published by
Bennema, Vogels, and de Jong39 in which an explana-
tion was given on the basis of attachment energies for
the morphology of the centrosymmetric â-n.n.n-triacyl-
glycerol crystals (corresponding to one of the three
known different fat crystal structures consisting of fat
molecules with three paraffin chains each with n carbon
atoms). It was derived from the theory that the MI of
the dominant faces parallel to the b-axis would be {001}
. {100} > {101}. This ratio of MI will give these
crystals (independent of the solvent) a planklike habit
(see Figure 7). The direction of elongation is parallel to
the b-axis.

It followed, however, from the paper of 1992 that for
the top faces of the observed planklike crystals a serious
discrepancy between the attachment energy morphology

and the experimental morphology was observed. In the
paper of 1992, we assumed that the strongest connected
net out of the 32 connected nets, corresponding to
alternative top faces not parallel to the b-axis, would
have the highest edge (free) energies and would have
the lowest growth rate and hence the highest MI.

Once the difference bonds were taken into account,
the morphology of the top faces of the fat crystal turned
out to be in perfect agreement with the observed top
faces of the growth forms. Moreover, the morphology of
the fast growing top faces of these fat crystals was
explained for different carbon chain lengths from 10 to
22 carbon atoms.35 Figure 8 shows the calculated
relative Ising temperatures as an estimate of the
relative roughening temperatures for the top faces of
these fat crystals as a function of the chain length n.

For these calculations, the step energies on these top
faces were determined by considering the difference
bonds mentioned above. The higher the roughening
temperature of a face (hkl), the lower its growth rate
and, therefore, the higher its MI. In Figure 9, the
experimental top faces are presented for â-10.10.10 and
â-16.16.16 showing that the (01l) top faces are present
for both fat crystals but that the (11l) faces present for
â-10.10.10 are replaced by (21l) faces for â-16.16.16. In
Figure 8, one observes the same order of MI as a result
of the strong difference in chain length dependence of
the Ising temperatures for the {111} and {210}.

In more recent publications, these results were com-
pared to the morphology of two other fat crystal
structures, namely, those of the â′-10.12.10 and the â′-
16.16.14 crystals.40 The former forms even more elon-
gated thin needles while the latter has relatively slowly
growing top faces resulting in lozenge-shaped crystals.
In all cases, the attachment energy method correctly
predicts thin crystals with relatively large (001) faces.
The aspect ratio of the side faces as compared to the
top faces, however, is predicted badly. A detailed study
of the bonding topology of the top faces as compared to
the side faces led to an explanation for these rather
extreme differences in morphology for these three fat
crystal structures. These studies were supported by
Monte Carlo simulations.34

Figure 6. Growth rates vs driving force of crystallization as
measured by the Monte Carlo simulations. The {201h}, {011},
and {001} faces (dashed lines) have screw dislocations. The
{110} face (solid line) grows via the 2D nucleation mechanism.

Figure 7. 16.16.16-Triacylglycerol crystals growing from a
spherulite at high supersaturation. The planklike habit can
be observed as larger fragments sticking out from the core of
the spherulite.

Figure 8. Relative Ising temperatures for the top faces of
â-n.n.n fat crystals as a function of the chain length n.
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3. Summary and Conclusions

In this paper, we have shown that the old science of
crystal morphology prediction is still evolving. Morphol-
ogy predictions such as the BFDH and attachment
energy methods have been used for years with varying
success, and discrepancies between model and experi-
ment were often attributed to effects of solvent or
unwanted impurities. Alternatively, some of these dis-
crepancies could be explained by the fact that the
methods mentioned above do not cover parameters such
as temperature, supersaturation, and growth mecha-
nism. Temperature mainly shows up in roughening of
crystal faces, usually resulting in relatively high growth
rates depending on the growth orientation (h k l).
Supersaturation and growth mechanism dependencies
lead to a change in relative growth rates of the various
faces of a crystal, frequently observed. All of these three
parameters are intimately related to the edge free
energy of steps on crystal surfaces. During the last five
years, it was realized that the edge free energy of a
crystal face is not always, and in fact quite often not,
simply determined by the slice energy of the corre-
sponding growth slice. Therefore, detailed studies of the
edge free energies are essential to understand crystal
growth behavior. For that study, we have shown that
the crystal graph is an essential tool. Real crystals
usually have rather complicated crystal graphs. Then,
Monte Carlo simulations on real crystals provide a
valuable tool to study the growth behavior. To under-
stand the results of these simulations, the existing
crystal growth theories, which are almost always based
on very simple crystal models, have to be generalized
to crystal growth mechanisms on real crystals. Some
first steps in this direction have recently been real-
ized.27,28 One of the essential tools to apply such

generalized crystal growth theories to real crystals will
be one that allows for the automated determination of
crystal growth steps on any face for a given crystal
structure. The latter will be possible using a program
called STEPLIFT, currently under development.41
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