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Abstract

Let k be a field of characteristic zero and F : k3 → k3 a polynomial map of the form
F = x + H, where H is homogeneous of degree d ≥ 2. We show that the Jacobian
Conjecture is true for such mappings. More precisely, we show that if JH is nilpotent
there exists an invertible linear map T such that T−1HT = (0, h2(x1), h3(x1, x2)),
where the hi are homogeneous of degree d.
As a consequence of this result, we show that all generalized Drużkowski mappings
F = x+H = (x1 +Ld

1, . . . , xn +Ld
n), where Li are linear forms for all i and d ≥ 2, are

linearly triangularizable if JH is nilpotent and rk JH ≤ 3.

Introduction

The Jacobian Conjecture asserts that every polynomial map F : Cn → Cn satisfying the
Jacobian hypothesis, i.e. det JF ∈ C∗ is invertible. It was shown in [1] and [14] that it
suffices to prove the Jacobian Conjecture for all polynomial maps of the form F = x+H,
where H = (H1, . . . ,Hn) and each Hi is a homogeneous polynomial of some fixed degree
d (which we may assume to be 3). For such F the Jacobian hypothesis det JF ∈ C∗ is
well-known to be equivalent to the nilpotency of the matrix JH ([1] or [6]). Therefore one
is naturally led to the study of nilpotent Jacobians. A fundamental open problem in this
respect is the following, which was formulated as a conjecture problem by various authors
([5], [6], [8], [9], [10]).

Homogeneous Dependence Problem

HDP (n). Let H = (H1, . . . ,Hn) : kn → kn be homogeneous of degree d ≥ 2 such that
JH is nilpotent. Are the rows of JH linearly dependent over k or equivalently are the Hi

linearly dependent over k (k is a field of characteristic zero).

Affirmative answers are known in the following cases:
rk JH ≤ 1 (also if H is not homogeneous), [1], [6]. In particular, this holds for the case
n = 2. The case n = 3 and d = 3 (Wright [13], 1993) and n = 4, d = 3 (Hubbers, [8], 1994,
see also [6]). One of the main results of this paper (Theorem 1.2) gives an affirmative answer
for n = 3 (d arbitrary). As a consequence we will show that in dimension 3 the Jacobian
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Conjecture is true for all polynomial maps of the form F = x+H with H homogeneous (of
degree d). More precisely we show that those maps are linearly triangularizable, i.e. there
exists T ∈ Gl3(k) such that T−1FT = (x1, x2 + h2(x1), x3 + h3(x1, x2)), where h2 and h3
are homogeneous of degree d. This generalizes the case d = 3 obtained by Wright in [13].

1 The main results and some preliminaries

Throughout this paper k is a field of characteristic zero. The main result is

Theorem 1.1 Let H = (H1, H2, H3) : k3 → k3 be homogeneous of degree d ≥ 2. If JH is
nilpotent then there exists T ∈ Gl3(k) such that T−1HT = (0, h2(x1), h3(x1, x2)), where the
hi are homogeneous of degree d. In particular the polynomial map F = x+H is invertible
if det JF ∈ k∗

The proof of this result consists of two cases: (JH)2x = 0 and (JH)2x 6= 0. To see the
first case we give some easy generalities on homogeneous polynomial maps. So let H :=
(H1, . . . ,Hn) : kn → kn be a homogeneous polynomial map of degree d ≥ 2. Let IH denote
the (prime) ideal of relations between the Hi, i.e. the set of all R ∈ k[y] := k[y1, . . . , yn]
such that R(H) = 0. Then IH is a homogeneous ideal. Consequently, writing Hi = gH̃i,
where g := gcd(Hi), we get that IH = I

H̃
. So obviously dim k[y]/IH = dim k[y]/I

H̃
. Hence

trdegk k(H) = trdegk k(H̃) which by [6, 1.2.9] implies that rk JH = rk JH̃.
Next we associate to H the k-derivation DH by the formula

D := DH =
∑

Hj∂j .

Observe that Dxi = Hi and that D2xi =
∑
Hj∂j(Hi) is the i-th component of JH · H.

Since by Euler’s formula H = 1
dJH · x, it follows that

D2xi = the i-th component of
1

d
(JH)2 · x. (1)

Proposition 1.2 If H is homogeneous, then (JH)2x = 0, if and only if x+H is a quasi-
translation, i.e. x+H is invertible with inverse x−H. Furthermore, if H is homogeneous
and x+H is a quasi-translation, then H ◦H = 0 and rk JH ≤ n− 2.

Proof.
i) Assume that H is homogeneous and x−H is the inverse of x+H. Then H(x+H) = H.

Using this equation we get by induction on n that H(x + nH) = H for all n ∈ N
(just make the substitution x → x + H). Consequently, H(x + tH) = H, where
t is a polynomial indeterminate. Differentiating to t and substituting t = 0 gives
JH ·H = 0. Now apply Eulers formula to get (JH)2 · x = 0.

ii) Assume H is homogeneous and (JH)2x = 0. By (1), D is locally nilpotent and
expD = x+H with inverse exp(−D) = x−H. Looking at the component of highest
degree in the equation (x+H) ◦ (x−H) = x we get H ◦H = 0.
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iii) Observe that DH = gDH̃ . Since DH is locally nilpotent, it follows from [6, 1.3.34 and

1.3.35] that D2
H̃

(xi) = 0 for all i. So by i), H̃ ◦ H̃ = 0. If rk JH = n − 1 then, as

observed above, rkJH̃ = n− 1, whence dim k[y]/IH̃ = n− 1. So IH̃ is a prime ideal

generated by one irreducible polynomial R. Since H̃ ◦ H̃ = 0 we get H̃i ∈ IH̃ for all

i, so R divides all H̃i, contradicting the fact that gcd H̃i = 1 2

Corollary 1.3 Theorem 1.1 holds if (JH)2x = 0.

Proof. By 1.2 we get rk JH ≤ 1, so trdegk k(H) ≤ 1. We may assume that H3 6= 0. Then
in particular H1 and H3 are algebraically dependent over k and hence linearly dependent
over k (by the homogeneity of the Hi). Say H1 = c1H3 and similarly H2 = c2H3 for some
ci ∈ k. Put

T :=

1 0 −c1
0 1 −c2
0 0 1

 .

Then THT−1 = (0, 0, h3). Since the Jacobian of this matrix is nilpotent, the trace of this
Jacobian equals zero, i.e. ∂3(h3) = 0, which implies that h3 ∈ k[x1, x2] 2

The proof of 1.1 in case (JH)2x 6= 0 is based on

Theorem 1.4 The homogeneous dependence problem has an affirmative answer for n = 3.

In case (JH)2x = 0 we just proved 1.4. However if (JH)2x 6= 0 the proof is much more
involved and will be postponed to the next section. Using 1.4 we are now able to give

Proof of 1.1

By 1.3 we may assume that (JH)2x 6= 0. Following Wright in [13] we may furthermore
assume that the formulas of (4) below hold, where the terms are ordered lexicographically
according x1 > x2 > x3 (for more details see the beginning of the next section). It is
proved there that for such a H the nilpotency of JH implies that H1 = 0. Consequently
Jx2,x3(H2, H3) is nilpotent as well. Viewing H2, H3 in k(x1)[x2, x3] it then follows from
the fact that the two-dimensional Dependence Problem has an affirmative answer (see [6],
7.1.7i)), that there exist c1, c2 ∈ k[x1], not both zero such that

c1 · (H2 −H2(0, 0)) + c2 · (H3 −H3(0, 0)) = 0 (2)

We may assume that gcd(c1, c2) = 1. So the elements ci(0) ∈ k are not both zero. Writing
c1 and c2 as a sum of homogeneous components and using that the Hi are homogeneous
of the same degree d, it follows from (2) that c1(0)H2 + c2(0)H3 = cxd1, for some c ∈ k.
Looking at the term xd−1

1 x2 in this equation gives c2(0) = 0 and c1(0)H2 = cxd1, whence
H2 = 1

dx
d
1. Since H1 = 0 it then follows from trJH = 0 that ∂3(H3) = 0 i.e. H3 ∈ k[x1, x2],

which shows that H is on triangular form 2
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2 A structure theorem for nilpotent Jacobians of rank ≤ 2

Throughout this section we have the following notation:
k is an algebraically closed field of characteristic zero, k[x] := k[x1, . . . , xn], where n ≥ 3
and H := (H1, . . . ,Hn) : kn → kn a homogeneous polynomial map of degree d ≥ 2. The
main result of this section is:

Theorem 2.1 Assume rk JH ≤ 2 and let g := gcd(Hi). Then there exist hi ∈ k[t1, t2]
homogeneous of the same degree s or zero and p and q in k[x] homogeneous of the same
degree r such that Hi = ghi(p, q) for all i.

The proof of theorem 2.1 is based on the following version of Bertini’s theorem, see [11, p.
79]:

Theorem 2.2 Let F (x, y) ∈ k[x1, . . . , xn, y1, . . . , ym]. Assume that F is irreducible over
k(y) and degy F = 1. If F (x, λ) is reducible for all λ ∈ km, then there exist an s ≥ 2,
p, q ∈ k[x] and ai(y) ∈ k[y] such that

F (x, y) =
s∑

i=0

ai(y)piqs−i

Proof of theorem 2.1.
i) We may assume that g = 1: namely write Hi = gH̃i. Then gcd(H̃i) = 1. Furthermore,

as observed in §1, rk JH̃ = rkJH. So we may replace H by H̃.
ii) Replacing H by T ◦ H for some T ∈ GLn(k), we may assume that H1, H2, . . . ,Hm

are linearly independent over k, and Hm+1 = Hm+2 = · · · = Hn = 0. If m = 1, then
h1 = 1, and we can take p = x1 and q = x2. If m = 2, then we can take p = H1 and
q = H2.

iii) Assume m ≥ 3. Consider the triple H1, H2, H3 and let R(H1, H2, H3) = 0 be a
non-trivial homogeneous relation. Write

R = R0(z2, z3) +R1(z2, z3)z1 + · · ·

its development after powers of z1. FromR(H) = 0 we get thatH1 dividesR0(H2, H3).
Write R0 =

∏
i(αiz2 + βiz3) using that R0 is homogeneous. If H1 is irreducible then

it divides αiH2 + βiH3 for some i, whence αiH2 + βiH3 = cH1 for some c ∈ k (look
at degrees), which contradicts the linear independence of the Hi over k. So H1 is
reducible.
In a similar way we get more generally

λ1H1 + · · ·+ λmHm is reducible for all λ = (λ1, . . . , λm) 6= 0 in km (3)

(namely if for example λ1 6= 0, replace the n-tuple (H1, . . . ,Hm) by (λ1H1 + · · · +
λmHm, H2, . . . ,Hm) and apply the previous argument).
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iv) Introduce m new variables y1, . . . , ym and define

F (x, y) := y1H1(x) + · · ·+ ymHm(x).

Then for all 0 6= λ ∈ km we get degx F (x, λ) = degx F (x, y). Since degy F (x, y) = 1
and gcd(Hi) = 1, it follows that F (x, y) is irreducible in k[x, y]. From (3), we get
that F (x, λ) is reducible for all λ. It then follows from theorem 2.2 that there exist
p, q ∈ k[x] and an s ≥ 2 such that

F (x, y) =

s∑
j=0

aj(y)p(x)s−jq(x)j .

Let ei denote the i-th standard basis vector of km. Then

Hi(x) = F (x, ei) =

s∑
j=0

aj(ei)p(x)s−jq(x)j = hi(p, q)

where

hi(t1, t2) =

s∑
j=0

aj(ej)t
s−j
1 tj2.

v) We show that p and q are homogeneous of the same degree. Assume the contrary.
Let

p = pe + · · ·+ pf and q = qe + · · ·+ qf

be the decompositions in homogeneous parts, with pe or qe 6= 0 and pf or qf 6= 0. Then
e < f and hi(p, q) = hi(pe, qe) + · · · + hi(pf , qf ). Since all hi(p, q) are homogeneous
of the same degree it follows from se < sf that either hi(pe, qe) = 0 for all i or
hi(pf , qf ) = 0 for all i, say hi(pe, qe) = 0 for all i. Let λit1 + µit2 be a factor of
hi(t1, t2) such that λipe + µiqe = 0. We may assume pe 6= 0. Consequently µ 6= 0 and
c := −qe/pe = λi/µi ∈ k. Hence λit1 +µit2 = µi(ct1 + t2) i.e. ct1 + t2 divides hi(t1, t2)
for all i, and hence cp + q divides hi(p, q) for all i which contradicts the fact that
gcd(hi(p, q)) = 1. So apparently p and q are homogeneous of the same degree, say r.
Obviously r ≥ 1 for if r = 0 then p, q ∈ k and hence the Hi are linearly dependent
over k 2

3 The proof of theorem 1.4

First observe that in order to prove theorem 1.4 we may assume that k = C (using Lefschetz
principle). Furthermore by 1.3 we may assume that JH is nilpotent and (JH)2x 6= 0. Our
aim is to show that after a suitable linear coordinate change the first component of H equals
zero, which completes the proof of theorem 1.4. To find such a coordinate change we start
with an idea introduced by Wright in [13]: since (JH)2x 6= 0 we can choose v ∈ C3 with
(JH)(v)2v 6= 0. To such a vector associate the matrix

Tv := (v (JH)(v)v (JH)(v)2v).
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One easily verifies, using (JH)(v)3 = 0, that the columns of Tv are linearly independent
over C, so Tv is invertible. Put

Hv := T−1
v HTv.

Observe that JHv is also nilpotent. However Hv is nicer than H in the sense that (as one
easily verifies)

(JHv)(e1) = J2 :=

0 0 0
1 0 0
0 1 0

 .

So, replacing H by Hv, we may assume that (JH)(e1) = J2.

From now on in this section, we will write C[x, y, z] instead of C[x1, x2, x3]. Since
(JH)(e1) = J2, we get the following if we write each Hi as a sum of monomials ordered
lexicographically according to x > y > z:

H1 = 0xd + 0xd−1y + 0xd−1z + · · ·
H2 = 1

dx
d + 0xd−1y + 0xd−1z + · · ·

H3 = 0xd + 1xd−1y + 0xd−1z + · · ·
(4)

where “ · · · ” stands for terms lower in the lexicographical ordering. The remainder of this
section is devoted to showing that H1 = 0. For that purpose, we assume that H1 6= 0 in
order to arrive at a contradiction.

Proposition 3.1 With the notations of 2.1 and H as in (4) there exist p, q and g of the
form

q = xr + 0xr−1y + · · · , p = 0xr + 1xr−1y + · · · and g = xt + · · ·

(rs+ t = d). Furthermore then

h1(p, q) ≡ 0 (mod p2), h2(p, q) ≡
1

d
qs (mod p) and h3(p, q) ≡ qs−1p (mod p2).

Proof. Since gh2(p, q) = H2 = 1
dx

d + · · · it follows that g = xt + · · · and that we
may assume that q = xr + βxr−1y + · · · . Since xd−1y + · · · = H3 = gh3(p, q) it follows
that we may assume that p = xr−1y + · · · . Replacing q by q − βp we may assume that
β = 0. Looking again at the equations gh2(p, q) = 1

dx
d + · · · ( xd−1y + · · · = gh3(p, q))

and using that the hi(t1, t2) are homogeneous we obtain that h2(p, q) ≡ 1
dq

s (mod p) and
h3(p, q) ≡ qs−1p (mod p2). Finally, looking at the coefficient of xd xd−1y in the equation

0xd + 0xd−1y + · · · = H1 = gh1(p, q)

we get that h1(p, q) ≡ 0 (mod p2) 2

Corollary 3.2 Notations as in 3.1. Let p1 be an irreducible factor of p = xr−1y + · · · of
the form p1 = xmy + · · · , with m ≥ 0. Then p1 divides H2 − 1

dx
d.
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Proof. Since H1 ≡ 0 (mod p2) the elements of the first row of JH are ≡ 0 (mod p). It
follows that the sum of all 2 × 2 principal minors is zero. Consequently also the 2 × 2
principal minor

[H2, H3] := det Jy,z(H2, H3) ≡ 0 (mod p). (5)

Using that H2 ≡ 1
dgq

s (mod p) and H3 ≡ gqs−1p (mod p2) we get

gqs−1[
1

d
gqs, p] ≡ 0 (mod p). (6)

Looking at the lexicographical highest order term in p we obtain that p = p1a with
gcd(a, p1) = 1. Similarly gcd(p1, g) = gcd(p1, q) = 1. It then follows from (6) that[

1

d
gqs, p1

]
≡ 0 (mod p1).

Observe that p1(0) := p1(y = 0, z = 0) = 0. So by lemma 3.3 below

1

d
gqs − 1

d
g(0)q(0)s ≡ 0 (mod p1) (7)

i.e. 1
dgq

s ≡ 1
dg(0)q(0)s = 1

dx
d (mod p1), since g(0) = xt, q(0) = xr and t+ rs = d. Since by

3.1 H2 ≡ 1
dgq

s (mod p1) the desired result follows 2

Lemma 3.3 Let A be U.F.D. and p, g ∈ A[y, z] such that p(0) = 0, p is irreducible in
A[x, y] and [p, g](= detJy,z(p, g)) ≡ 0 (mod p). Then p divides g − g(0).

Proof.
i) Put D := pz∂y−py∂z. So D is an A-derivation on A[y, z]. Extend D to a K-derivation

on K[y, z], where K is the quotient field of A. By Gauss’ lemma, p is irreducible in
K[y, z]. So by ii) below it follows that g − g(0) = h · p for some h ∈ K[y, z]. Let
c, d ∈ A\{0} be such that ch = dh̃ ∈ A[y, z], gcd(c, d) = 1 and the gcd of all coeffi-
cients of h̃ is equal to 1. Then the equation c(g − g(0)) = dh̃p shows that c is a unit
in A (if p1 is a prime factor of c it divides p, contradicting that p is irreducible in
A[y, z]). Consequently p divides g − g(0) as desired.

ii) It remains to prove the lemma in case A is a field, say A = k. First we assume that
k is algebraically closed. Put B := k[y, z]/(p). Then B is a domain and we get the
induced k-derivation D : B → B which by the hypothesis satisfied D(g) = 0. If g 6∈ k,
then trdegk k(g) = 1 (since k is algebraically closed!) Since also trdegkQ(B) = 1 the
extension k(g) ⊂ Q(B) is algebraic. Since D is zero on k(g) it is also zero on Q(B) ([6],
1.2.8). In particular D(y) = 0 i.e. pz ≡ 0 (mod p) and D(z) = 0 i.e. py ≡ 0 (mod p),
which gives a contradiction looking at degrees. So g ∈ k i.e. g − λ ∈ (p) for some
λ ∈ k. Since p(0) = 0 we get λ = g(0), so g − g(0) ∈ (p) as desired.
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iii) Finally we show that we may assume that k is algebraically closed. Consider p ∈
k[y, z]. Then p may become reducible, but, as one easily verifies, all its prime factors
only have multiplicity one, say p = p1 . . . ps. From [p, q] ≡ 0 (mod p) it follows that
[pi, g] ≡ 0 (mod pi) for all i. So by ii) g − g(0) ≡ 0 (mod pi) for all i, whence
g − g(0) ≡ 0 (mod p) 2

Corollary 3.4 Notations as in 3.2. If (a, b, c) ∈ C3 is a common zero of p1 and q, then
a = 0.

Proof. By 3.1 H2 ∈ (p, q) ⊂ (p1, q) (= the ideal generated by p1 and q). Also by 3.2
1
dx

d ∈ (H2, p1). So xd ∈ (p1, q) 2

Proof of theorem 1.4 (finished)

i) Since (JH)(e1) = J2 we have

(JH)(e1)e1 = e2, (JH)(e1)e2 = e3 and (JH)(e1)e3 = 0. (8)

Now let ε ≥ 0. Put v = (1, ε, 0) T = Tv and Hv = T−1
v HTv. From (8) we get Te1 = I3.

Consequently, if ε is close to zero the matrix Tv is invertible. By the argument in
the beginning of this section (JHv)(e1) = J2 and there exist pv and qv, homogeneous
of degree r as in 3.1. Now we are going to construct such pv and qv explicitly (see
formula (9) below). Therefore, observe that since Hi = ghi(p, q) for all i, it follows
that Hv1

Hv2

Hv3

 = T−1

(g ◦ T ) ·

h1(p ◦ T, q ◦ T )
h2(p ◦ T, q ◦ T )
h3(p ◦ T, q ◦ T )

 .

Furthermore p ◦ T and q ◦ T are homogeneous of degree r. So we can write

q ◦ T = qr(ε)x
r + qr−1(ε)x

r−1y + · · · ,
p ◦ T = pr(ε)x

r + pr−1(ε)x
r−1y + · · ·

where qi(ε) and pi(ε) are polynomials in ε. Since, as observed above, Te1 = I3, we get
Tv = I3 if ε = 0. So in that case (ε = 0), q ◦ T = q and p ◦ T = p, whence(

qr(0) qr−1(0)
pr(0) pr−1(0)

)
=

(
1 0
0 1

)
.

This implies that for ε close to 0 the matrix

Aε :=

(
qr(ε) qr−1(ε)
pr(ε) pr−1(ε)

)
is invertible. Consequently we get

A−1
ε

(
q ◦ T
p ◦ T

)
=

(
1 · xt + 0 · xr−1y + · · ·
0 · xr + 1 · xr−1y + · · ·

)
.
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So if we put (
qv
pv

)
= A−1

ε

(
q ◦ T
p ◦ T

)
. (9)

then we get that pv, qv and gv := g ◦ T satisfy the properties of proposition 3.1.
Furthermore, both qv and pv are C-linear combinations of q ◦ T and p ◦ T .

ii) Claim: for all ε > 0 sufficiently close to zero the vector v = (1, ε, 0) has the property
that Tv is invertible and that the first component of T−1

v θ is non-zero for every non-
trivial common zero θ of p and q in C3.

Let us first assume the claim. Then choose ε close to zero as in this claim. Then
by (9) the common zeros of pv and qv are the common zeros of p ◦ Tv and q ◦ Tv and
hence are all the elements of the form T−1

v θ where θ runs through all common zeros
of p and q. By the claim we may therefore assume (replacing p and q by pv and qv)
that all common zeros of p and q have their first component non-zero. However by
3.4, choosing a non-trivial common zero of p1 and q (which is obviously a common
zero of p and q) we get a contradiction!

iii) So it remains to prove the claim. The invertibility of Tv follows for small ε > 0 since
then v = (1, ε, 0) is close to e1 and Te1 = I3. Next, we show that for small ε > 0 and
θ as in the claim, the first component of T−1

v θ is nonzero. For that purpose, we first
observe that since gcd(p, q) = 1 p and q have only a finite number of common zeros
in P2(C). So it suffices to prove that for each 0 6= θ ∈ C3 the first component of T−1

v θ
is non-zero if ε is sufficiently close to zero. So let θ = (a, b, c) 6= 0 in C3.
In iv), we will show that the first row of T−1

v is of the form

(1 +O(ε) dλ(k − 1)εk +O(εk+1) −λkεk−1 +O(εk))

whence its components all have different order in ε, namely 0, k, and k−1 respectively
(here we use that k ≥ 2). It follows that for small ε > 0, no C-linear combination
of these components can be zero (except the trivial combination). In particular, the
first component of T−1

v θ is non-zero for small ε > 0.
iv) To compute T−1

v θ we first compute Tv = (v (JH)(v)v (JH)2(v)v). Observe that by
Euler’s formula JH(v)v = dH(v), so Tv = (v dH(v) dJH(v)H(v)).
Since p = yxr−1 + · · · and p2 divides H1 (by 3.1) there exists a k ≥ 2 such that
pk divides H1 but pk+1 does not divide H1. Consequently H1 = λykxd−k + · · · (use
that H1 = gh1(p, q), g = xt + · · · and q = xr + · · · ). Since v = (1, ε, 0) we get
H1(v) = λεk +O(εk+1). Furthermore (H1)x(v) = O(εk), (H1)y(v) = λkεk−1 +O(εk)
and (H1)z(v) = O(εk−1). Using the formulas H2 = 1

d · x
d + 0 · xd−1y + · · · and

H3 = 0 · xd + 1 · xd−1y + · · · we get

d

H1(v)
H2(v)
H3(v)

 =

dλεk +O(εk+1)
1 +O(ε)
dε+O(ε2)

 (10)

and

(JH)(v) =

 O(εk) λkεk−1 +O(εk) O(εk−1)
1 +O(ε) O(ε) O(1)
O(ε) 1 +O(ε) O(1)

 .
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Consequently

dJH(v)H(v) =

λkεk−1 +O(εk)
O(ε)

1 +O(ε)

 . (11)

So from (10) and (11) we get

Tv =

1 dλεk +O(εk+1) λkεk−1 +O(εk)
ε 1 +O(ε) O(ε)
0 dε+O(ε2) 1 +O(ε)

 .

So the first row of the adjoint matrix of Tv is of the form

(1 +O(ε) dλ(k − 1)εk +O(εk+1) −λkεk−1 +O(εk))

as well the first row of T−1
v , due to the adjoint formula for computing the inverse

matrix 2

4 An application and some final remarks

Before we make some final remarks concerning theorem 1.1 we first give an application.
Recall that a polynomial mapping F is called a Keller map if detJF ∈ k∗. Furthermore
a polynomial mapping H : kn → kn is called a generalized Drużkowski form if there exists
an integer d ≥ 2 such that each component Hi of H is a d-th power of a linear form. A
polynomial mapping F = x + H, where H is a generalized Drużkowski form, is called a
generalized Drużkowski mapping.
It was recently shown by Cheng in [4] that if H is a Drużkowski form such that JH is
nilpotent and rk JH ≤ 2, then H is linearly triangularizable. We can extend this result to
rk JH ≤ 3. More precisely,

Corollary 4.1 Let H be a generalized Drużkowski form with JH nilpotent. If rk JH ≤ 3,
then H is linearly triangularizable. In particular, the Jacobian conjecture holds for all
corresponding generalized Drużkowski mappings F = x+H.

Proof. This follows directly from theorem 1.1 and Theorem 2 of [4] 2

To conclude this paper we make some remarks on possible extensions of theorem 1.1.

• HDP (3) without the trace condition.

In 1.1 we showed that if H ∈ k[x1, x2, x3]
3 is homogeneous and JH is nilpotent, then

the components of H are linearly dependent over k and JH is linearly triangularizable.
One can ask whether these results can be proved under a weaker condition than the
nilpotency of JH. The nilpotency of JH can be split up into the following three
subconditions:

1. the determinant of JH is zero,
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2. the sum of the determinants of the three 2× 2 principal minors of JH is zero,
3. the trace of JH is zero.

Let us first consider showing linear dependence. Then subcondition 1. is necessary,
since without it there is not even algebraic dependence, let alone linear dependence.
But it is not enough for linear dependence, even if we add subcondition 3. to it, as
the following example makes clear:

H =

 x22
x21
x1x2


Furthermore since the sum of the determinants of the three 2 × 2 principal minors
of the JH with H as above equals −4x1x2, the eigenvalues of JH are 0, 2

√
x1x2 and

−2
√
x1x2. Since these are not all polynomials, it follows that JH with H as above is

also not linearly triangularizable.
So it remains to investigate what happens to the linear triangularizability and the
linear dependence in case the Jacobian of H satisfies the subconditions 1. and 2.
described above.
First the linear triangularizability: one easily verifies that the Jacobian of

H =

 0
x21x2x3
x22x

2
3


satisfies the subconditions 1. and 2. Furthermore the k-vector space V spanned by
the entries of JH has dimension 6. If JH was linearly triangularizable, then using
that it has one eigenvalue zero, one would have that dimV ≤ 5, a contradiction.
It therefore remains to see whether subconditions 1. and 2. are sufficient for the linear
dependence of the components of H. It turns out that the answer to this question is
positive. The proof of this result is given in the paper [3] of the first author.

• Possible generalizations of theorem 1.1 in case n ≥ 4.

Finally we make some comments on possible generalizations of theorem 1.1 to higher
dimensions.
First of all, it was already shown by Wright in [13] that in dim ≥ 4 the conditions H
homogeneous and JH nilpotent are not sufficient to imply that H is linear triangu-
larizable.
So the final question is: does HDP (n) has an affirmative answer if n ≥ 4 ? In [2] the
first author shows that the answer to this question is negative for all n ≥ 5. Therefore
it remains to investigate the question: does HDP (4) have an affirmative answer ?

References

[1] H. Bass, E. Connel and D. Wright, The Jacobian Conjecture: Reduction of Degree
and Formal Expansion of the Inverse, Bull. of the AMS, 7 (1982), 287-330.

11



[2] M. de Bondt, Quasi-translations and counterexamples to the homogeneous dependence
problem, to appear.

[3] M. de Bondt, Homogeneous quasi-translations and an article of P. Gordan and M.
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