Abstract. The assessment of a probability distribution that is associated with a Bayesian network is a challenging task, even if its topology is sparse. Special probability distributions, based on the notion of causal independence, have therefore been proposed, as these allow defining a probability distribution in terms of Boolean combinations of local distributions. In Bayesian networks which need to model a large number of interactions among causal mechanisms even this approach becomes infeasible. We investigate the use of equivalence classes of binomial distributions as a means to define such very large Bayesian networks.

1 INTRODUCTION
As a consequence of the success of using Bayesian networks in solving realistic problems, increasingly complicated situations are being tackled. We are in particular interested in the modelling of biomedical knowledge, for example in fields such as genetics and immunology; in these fields hundreds to thousands of interactions between variables may need to be captured in a probabilistic model. Clearly, such models cannot be constructed and handled without exploiting (potentially hypothetical) knowledge about underlying causal mechanisms and associated simplifying assumptions.

The aim of the present work was to develop a theory that allows defining interactions between a huge number of causal factors.

2 PRELIMINARIES

2.1 Bayesian networks and causal modelling
A Bayesian network \(B = (G, Pr) \) represents a factorised joint probability distribution on a set of variables \(V \). It consists of an acyclic directed graph \(G \), and a joint probability distribution \(Pr \) defined in terms of local probability distributions \(Pr(V_i \mid \pi(V_i)) \), for each node \(V_i \in V(G) \) given its parents \(\pi(V_i) \). In this paper, we assume all variables to be binary; as an abbreviation, we will often use \(v_i \) to denote \(V_i = \top \) (true) and \(\bar{v}_i \) to denote \(V_i = \bot \) (false). Bayesian networks are often seen as attractive tools because of the ease with which cause-effect relationships can be modelled.

2.2 Probabilistic representation of interactions

Causal independence [3] is a popular way to specify interactions among cause variables. The global structure of a causal independence model is shown in Figure 1; it expresses the idea that causes \(C_1, \ldots, C_n \) influence a given common effect \(E \) through intermediate variables \(I_1, \ldots, I_n \) and a deterministic function \(f \), called the interaction function. The conditional probability of the occurrence of the effect \(E \) given the causes \(C_1, \ldots, C_n \) can be computed as follows [3]:

\[
Pr(e \mid C_1, \ldots, C_n) = \sum_{f(I_1, \ldots, I_n) = 1} \prod_{1 \leq k \leq n} Pr(I_k \mid C_k)
\]

(1)

Absent causes do not contribute to the effect, i.e. \(Pr(i_k \mid \bar{c}_k) = 0 \). As an example, consider the interaction between insulin and glucagon, two important hormones involved in the regulation of glucose levels in blood; their effect on glucose levels in blood can be modelled by means of an exclusive OR (\(\oplus \)).

2.3 Symmetric causal independence models

The function \(f \) in equation (1) is actually a Boolean function. However, there are \(2^{2^n} \) different \(n \)-ary Boolean functions [2]. Consequently, the potential number of causal interaction models is huge. However, in the case of causal independence it is usually assumed that the function \(f \) is decomposable to identical, binary functions. In addition, it is attractive to assume that the order of the cause variables does not matter; thus, it makes sense to restrict causal independence models to symmetric Boolean functions, where the order of arguments is irrelevant.

There are 8 symmetric binary Boolean functions, of which 6 suitable as a basis for defining Boolean functions, as these are all commutative and associative [3]. Logical truth and falsity are constants, and act as the global extremes in a partial order among Boolean functions. As such they give rise to trivial causal independence models. The remaining four causal independence models are defined in terms of the logical OR, AND, XOR and bi-implication. We use \(* \) to denote a commutative, associative binary operator. Table 1 gives the truth tables for the \(n \)-ary Boolean functions of interest.

Table 1. The truth tables for some \(n \)-ary symmetric Boolean functions; \(k = \sum_{j=1}^{n} \nu(I_j) \), with \(\nu(I_j) = 1 \) if \(I_j \) is equal to true and 0 otherwise.

<table>
<thead>
<tr>
<th>(\nu(I_1 \lor \cdots \lor I_n))</th>
<th>(I_1 \land \cdots \land I_n)</th>
<th>(I_1 \oplus \cdots \oplus I_n)</th>
<th>(I_1 \Rightarrow \cdots \Rightarrow I_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k \geq 1)</td>
<td>(k = n)</td>
<td>(odd(k))</td>
<td>(even(n-k))</td>
</tr>
</tbody>
</table>
Due to space limitations, we only consider XOR and bi-implication in this paper. The function \(f_\oplus(I_1, \ldots, I_n) \) yields the value \(\text{true} \) if there are an odd number of variables \(I_k \) with the value \(\text{true} \). Therefore, in order to determine the probability of the effect variable \(E \), \(\Pr(e \mid C_1, \ldots, C_n) \), the probabilities for all cause variable combinations with an odd number of present causes have to be added. We have:

\[
\Pr(\oplus(e \mid C_1, \ldots, C_n)) = \sum_{I_1, \ldots, I_n} \Pr(I_k \mid C_k)
= \Pr(I_1 \mid C_1) \cdots \Pr(I_n \mid C_n) \cdot \sum_{1 \leq k \leq n} \sum_{j_1 = j_0 + 1}^{n-k+t} \frac{\Pr(I_j \mid C_j)}{\Pr(I_j \mid C_j)} \cdots \frac{\Pr(I_j \mid C_j)}{\Pr(I_j \mid C_j)}
\]

where \(t = 1, \ldots, k \) and \(j_0 = 0 \).

The function value \(f_\oplus(I_1, \ldots, I_n) \) is \(\text{true} \) if there are an even number of variables \(I_k \) with the value \(\text{false} \). Thus, to determine \(\Pr(e \mid C_1, \ldots, C_n) \) the probabilities for all cause variable combinations with an even number of absent causes have to be added:

\[
\Pr(\ominus(e \mid C_1, \ldots, C_n)) = \sum_{I_1, \ldots, I_n} \Pr(I_k \mid C_k)
= \Pr(I_1 \mid C_1) \cdots \Pr(I_n \mid C_n) \cdot \frac{1}{\sum_{even(k)} \sum_{j_1 = j_0 + 1}^{n-k+t} \frac{\Pr(I_j \mid C_j)}{\Pr(I_j \mid C_j)} \cdots \frac{\Pr(I_j \mid C_j)}{\Pr(I_j \mid C_j)}}
\]

\[\text{(3)}\]

where \(t = 1, \ldots, k \) and \(j_0 = 0 \).

3 EQUIVALENCE CLASSES OF BINOMIAL DISTRIBUTIONS

The larger the number of causal mechanisms \(n \) becomes, the more likely that the parameters \(\Pr(I_k \mid C_k) \) of a causal independence model become arbitrarily close to each other. Hence, one way to simplify the estimation of the probability distribution is to group parameters in particular equivalence classes.

The binomial distribution is one of the most commonly used discrete probability distribution. Cause variables can be treated as trials of an experiment satisfying the requirements of a binomial distribution, as the number of cause variables \(n \) is known in advance, all cause variables have two states, are independent, and the probability of occurrence of each cause is the same.

We organise the intermediate variables \(I_1, \ldots, I_n \) and their associated variables \(C_1, \ldots, C_n \) by their influence on the common effect \(E \), in accordance to the increasing order of the associated probabilistic parameters \(\Pr(I_k \mid C_k) \). Next, we choose a small \(\varepsilon \in \mathbb{R}^+ \), which determines how much the probabilities may vary inside an equivalence class. An intermediate variable \(I_k \) belongs to the \(t \)-th equivalence class if its probability of success \(\Pr(I_k \mid C_k) \) falls into the interval \([2(t-1)\varepsilon, 2t\varepsilon) \); we also assume that \(\Pr(I_k \mid C_k) = (2t-1)\varepsilon \).

4 ANALYSIS OF PROBABILISTIC BEHAVIOUR

In this section, we study the properties of the causal independence models introduced above.

Let \(S^*_1, S^*_2, \ldots \) be a sequence, abbreviated to \(\langle S^*_n \rangle \); throughout this section, a member \(S^*_n \) of this sequence represents a sum of products of probability distribution in an equivalence class of binomial distributions, i.e.:

\[S^*_n = \sum_{I_1, \ldots, I_n} \Pr(I_1 \mid C_1) \cdots \Pr(I_n \mid C_n) \]

Due to lack of space, only the situation for the XOR and bi-implication causal independence models are considered here. In addition to the expected bounds of 0 and 1, the sequences have an additional bound at \(\frac{1}{2} \).

Proposition 1 Let \(\langle S^*_n \rangle \) be a sequence as defined above. For each member \(S^*_n \) of the sequence it holds that:

- if \(p \in [0, \frac{1}{2}) \) then \(S^*_n \in [p, \frac{1}{2}) \) for \(* = \ominus \), and \(S^*_n \in [p, \frac{1}{2}) \cup \left[\frac{1}{2}, p^2 + (1 - p)^2 \right] \) for \(* = \leftrightarrow \);
- otherwise, if \(p \in \left(\frac{1}{2}, 1 \right) \) then \(S^*_n \in \left[2p(1-p), \frac{1}{2} \right) \cup \left(\frac{1}{2}, p \right] \) for \(* = \ominus \), and \(S^*_n \in \left(\frac{1}{2}, p \right] \) for \(* = \leftrightarrow \).

Proposition 2 A sequence \(\langle S^*_n \rangle \) is

- strictly monotonically increasing if \(p \in (0, \frac{1}{2}) \) and \(* = \ominus \),
- strictly monotonically decreasing if \(p \in (\frac{1}{2}, 1) \) and \(* = \leftrightarrow \),
- constant \(S^*_n = p \) if \(p \in \{0, \frac{1}{2} \} \) and \(* = \ominus \), \(p \in \{\frac{1}{2}, 1 \} \) and \(* = \leftrightarrow \),
- non monotonic if \(p \in (\frac{1}{2}, 1) \) and \(* = \ominus \), \(p \in [0, \frac{1}{2}) \) and \(* = \leftrightarrow \).

The propositions above yield insight into the behaviour of the sequences but leave questions about non-monotonic behaviour unanswered. We have proved (not shown here) that the sequences converge to \(\frac{1}{2} \). As \(F'\left(S^*_n \right) = 1 - 2p \) for \(* \in \{\ominus, \leftrightarrow\} \), the rate of convergence depends on the value of \(p \); the closer the value of \(p \) is to \(\frac{1}{2} \), the faster the sequence converges to \(\frac{1}{2} \). Figure 2 illustrates this behaviour; the plot for the bi-implication is similar.

5 DISCUSSION

In this chapter, we addressed the problem of parameter estimation in very large Bayesian networks. Our solution was to group local probability distributions into equivalence classes using probability intervals, and to use a suitably defined probability distribution as a basis for assessment. As far as we know, this is the first paper offering a systematic analysis of the global probabilistic patterns that occur in large Bayesian networks based on the theory of causal independence.

REFERENCES