COMPACTIFICATION AND COMPACTOIDIFICATION

E. Beckenstein, L. Narici, and W. Schikhof

Abstract. After discussing some of the many ways to get the Banaschewski compactification $\beta_0 T$ of an arbitrary ultraregular space T, we develop another construction of $\beta_0 T$ in Th. 2.1. Using those ideas, we develop an analog of $\beta_0 T$—what we call a compactoidification κT of an ultraregular space T in Sec. 3; κT is, in essence, a complete absolutely convex compactoid 'superset' of T to which continuous maps of T with precompact range into any complete absolutely convex compactoid subset may be 'continuously extended.'

1991 Mathematics subject classification: 46S10, 54D35, 54C45

1 The Many Faces

For any topological spaces X and Y, $C(X,Y)$ and $C^*(X,Y)$ denote the spaces of continuous maps of X into Y and the continuous maps of X into Y with relatively compact range, respectively. To say that a topological space X is ultraregular or ultranormal means, respectively, that the clopen sets are a basis or disjoint closed subsets of X may be separated by clopen sets. A synonym for ultraregular is 0-dimensional. We have a slight preference for the former in order to avoid confusion with other notions of dimension. Throughout the discussion, T denotes at least a Hausdorff space. For an ultraregular space E containing at least two points and ultraregular T, B. Banaschewski [2] discovered a compactification $\beta_0 T$ of T in which every $x \in C^*(T,E)$ may be continuously extended to $\beta_0 x \in C(\beta_0 T, E)$. $\beta_0 T$ is nowadays usually called the Banaschewski compactification of T. It functions as the natural analog of the Stone-Čech compactification (βT for ultranormal T) in non-Archimedean analysis. Like the Stone-Čech compactification, the Banaschewski compactification is a protean entity, assuming many different guises. We discuss some of them in this section and then develop a new one in Sec. 2.

1.1 As a completion

Let E be an ultraregular space containing at least two points and let T be ultraregular. Let $C^*(T,E)$ denote the weakest uniform structure on T making each $x \in C^*(T,E)$ uniformly continuous into the compact space $\text{cl} \ x(T)$ equipped with its unique compatible uniform
structure. By [1], pp. 92-93, since \(T \) is ultraregular, \(C^* (T, E) \) is compatible with the topology on \(T \) and \(C^* (T, E) \) is a precompact uniform structure on \(T \). Since \(C^* (T, E) \) is precompact, its completion \(\beta_0 T \) is compact and is called the Banaschewski compactification of \(T \). \(\beta_0 T \) is ultranormal ([2], p. 131, Satz 2 or [1], p. 93, Theorem 1)—hence ultraregular—and, by the usual process of extension by continuity function from a dense subspace to the whole space, each \(x \in C^* (T, E) \) may be continuously extended to a unique continuous function \(\beta_0 x \in C^* (\beta_0 T, E) \). \(\beta_0 T \) is unique in a sense we discuss in the context of \(E \)-compactifications (Th. 1.6). At this point the reader may find the notation \(\beta_0 T \) curious. Why \(\beta_0 T \) and not \(\beta E T \)?

As long as \(E \) is ultraregular and contains at least two points ([1], p. 93, [8], pp. 240-243), the uniformity \(C^* (T, E) \) does not depend on \(E \). A fundamental system of entourages for \(C^* (T, E) \), no matter what \(E \) is, is defined by the sets

\[
V_\mathcal{P} = \bigcup \{ V \times V : V \in \mathcal{P} \}
\]

where \(\mathcal{P} \) is any finite open (therefore clopen) cover of \(T \) by pairwise disjoint sets. The completion of \(T \) with respect to this uniformity is the way Banaschewski obtained \(\beta_0 T \). The definition of \(\beta_0 T \) as the completion of \(C^* (T, E) \) where \(E \) is the discrete space of integers first given in [7], though the idea of treating compactifications as completions is due to Nachbin. The connection with the Stone-Cech compactification is the following.

Definition 1.1 Let \(\mathcal{P} \) be a finite clopen cover of a topological space \(S \) by pairwise disjoint sets and let \(V \) denote the uniformity generated by \(V_\mathcal{P} \). We say that \(S \) is strongly ultraregular if \(V = C^* (T, \mathbb{R}) \).

Theorem 1.2 ([8], pp. 251-2) (a) Every ultranormal \(T_1 \)-space \(S \) is strongly ultraregular.

(b) If a topological space \(S \) is strongly ultraregular then \(\beta_0 S = \beta S \).

1.2 As an \(E \)-Compactification

Tihonov proved that a completely regular space \(T \) may be characterized as one that is homeomorphic to a subspace of a product \([0,1]^m \) of unit intervals. Even though his name is not associated with it, he created the first version of the Stone-Čech compactification \(\beta T \) of \(T \) by then taking the closure of \(T \) in \([0,1]^m \). Engelking and Mrówka [5] developed analogous notions of \(E \)-completely regular space \(T \) and \(E \)-compactification \(\beta E T \). Let \(S \) and \(E \) be two topological spaces. \(S \) is called \(E \)-completely regular if it is homeomorphic to a subspace of the \(m \)-fold topological product \(E^m \) for some cardinal \(m \). If \(E = \mathbb{R} \) or \([0,1]\), this is the familiar notion of complete regularity. With \(2 \) denoting the discrete space \([0,1]\), it happens that

Theorem 1.3 ([16], p. 17) A topological space \(S \) is 2-completely regular if and only if it is an ultraregular \(T_0 \)-space.

An \(E \)-compact space is one which is homeomorphic to a closed subspace of a topological product \(E^m \) for some cardinal \(m \). The 2-compact spaces are characterized as follows:

Theorem 1.4 ([5], p.430, Example (iii)) A topological space \(S \) is 2-compact if and only if it is compact and ultraregular.
An E-compactification βET of an E-completely regular space T is

1. an E-compact space which contains T as a dense subset and
2. ("the E-extension property") each $x \in C(T, E)$ may be extended to $\beta E x \in C(\beta ET, E)$.

The following analogs of properties of the Stone-Cech compactification obtain for E-compactifications.

Theorem 1.5 ([5], p. 433, Theorem 4, [16], pp. 25-27, 4.3 and 4.4). An E-completely regular (Hausdorff) space T has a Hausdorff E-compactification βET with the following properties:

(a) If S is an E-compact space then every continuous function $x : T \to S$ has a continuous extension $\bar{x} : \beta ET \to S$.

(b) The space βET is unique in the sense that if S is an E-compact space containing T as a dense subset and such that every continuous $x : T \to E$ has a continuous extension to S, then S is homeomorphic to βET under a homeomorphism that is the identity on T.

(c) T is E-compact if and only if $T = \beta ET$.

How does this apply to $\beta_0 T$? Ultraregular spaces T are 2-completely regular by Th. 1.3. Since $\beta_0 T$ is compact and ultranormal, it follows that $\beta_0 T$ is 2-compact by Th. 1.4. Therefore, by Th. 1.5(b) it follows that

Theorem 1.6 UNIQUENESS OF $\beta_0 T$. $\beta_0 T$ is homeomorphic to βET under a homeomorphism that is the identity on T, as would be any ultraregular compactification of an ultraregular T with the E-extension property.

1.3 As a Space of Characters

Let F be an ultraregular Hausdorff topological field so that $X = C^*(T, F)$ may be considered as an F-algebra. A **character** of X is a nonzero algebra homomorphism from X into F. Let the set H of characters of X be equipped with the weakest topology for which the maps $H \to F$, $h \mapsto h(x)$, are continuous for each $x \in C^*(T, F)$. For each $p \in \beta_0 T$, let p^* denote the evaluation map at p, the map $C^*(T, F) \to F$, $x \mapsto \beta_0 x(p)$. It is trivial to verify that each p^* is a character of $C^*(T, F)$. But more is true: You get all the characters of $C^*(T, F)$ this way. In fact, the map

$$A : \beta_0 T \to H$$

$$p \mapsto p^*$$

establishes a homeomorphism between $\beta_0 T$ and H. The details may be found in [1], Theorem 3 and [8], Theorem 8.15.
1.4 Characters Again

Once again \(\beta_0 T \) is realized as a space of nonzero homomorphisms—ring homomorphisms this time—into the very simple (discrete) field \(\mathbb{2} \) with 2 elements.

A commutative ring \(X \) with identity in which each element is idempotent is called a Boolean ring. A subcollection \(X \) of the set of subsets of a given set \(T \) which is closed under union, intersection and set difference of any two of its members is called a ring of sets. Such a collection forms a ring in the usual algebraic sense if addition and multiplication are taken to be symmetric difference and intersection, respectively. If the sets in \(X \) cover \(T \) then \(X \) is called a covering ring. Since \(X \) must have a multiplicative identity (i.e., with respect to intersection) any covering ring must contain \(T \) as an element. Any covering ring \(X \) generates (in the sense that it is a subbase for) a ultraregular topology on \(T \); the topology is ultraregular since the complement \(T - A \) of any open set (member of \(X \)) must belong to \(X \). In the converse direction, the class \(\text{Cl}(T) \) of clopen subsets obviously constitutes a covering ring of any topological space \(T \).

Let \(X \) be a Boolean ring and endow \(2^X \) with the product topology. The Stone space \(S(X) \) of the Boolean ring \(X \) is the subspace of \(2^X \) of all nonzero ring homomorphisms of \(X \) into \(\mathbb{2} \). \(S(X) \) is called the Stone space because of Stone's use of it in his remarkable characterization of compact ultraregular spaces.

THE STONE REPRESENTATION THEOREM ([12], Theorem 4, [12], [4] p.227 or [6], pp. 77-80) If \(T \) is a compact ultraregular space, then \(T \) is homeomorphic to the Stone space of the Boolean ring \(\text{Cl}(T) \) of clopen subsets of \(T \). Conversely, the Stone space \(S(X) \) of any Boolean ring \(X \) is a compact ultraregular Hausdorff space and \(X \) is ring-isomorphic to the Boolean ring \(\text{Cl}(T) \) of clopen subsets of \(S(X) \).

If \(T \) is ultraregular then \(\beta_0 T \) is the Stone space of \(\text{Cl}(T) \). Indeed, the map \(\beta : T \to S(\text{Cl}(T)), t \mapsto \beta t \), defined for \(t \in T \) and \(K \in \text{Cl}(T) \) by

\[
(\beta t)(K) = \begin{cases}
1 & t \in K \\
0 & t \notin K
\end{cases}
\]

is a homeomorphism of \(T \) onto a dense subset of the compact ultraregular Hausdorff space \(S(\text{Cl}(T)) \).

1.5 As a Space of Measures

Let \(T \) be ultraregular and let \(\text{Cl}(T) \) be the ring (algebra, actually, since \(T \in \text{Cl}(T) \)) of clopen subsets of \(T \), and let \(F \) be an ultraregular Hausdorff topological field. A 0-1 measure on \(T \) is a finitely additive set function \(m : \text{Cl}(T) \to \{0,1\} \subset F \) satisfying the condition:

\[
m(U) = 0 \quad \text{and} \quad U \supset V \in \text{Cl}(T) \implies m(V) = 0
\]

in other words, that clopen subsets of sets of measure 0 also have measure 0. Measures \(m_t \) 'concentrated at points \(t \in T \)' (also called 'purely atomic' or 'the point mass at \(t \)') which
are 1 on a clopen set \(U \) if \(t \in U \) and 0 otherwise are 0-1 measures on \(T \). The weak clopen topology for the collection \(M \) of all 0-1 measures on \(T \) has as a neighborhood base \(m_0 \in M \) sets of the form

\[
V(m_0; S_1, \ldots, S_n) = \{m \in M : m(S_j) = m_0(S_j), j = 1, \ldots, n\}
\]

where the \(S_j \) are clopen sets and \(n \in \mathbb{N} \). It is trivial to verify that the map \(t \rightarrow m_t \) is a homeomorphism of \(T \) into \(M \). Using the techniques of [1] one can demonstrate that \(M \) is a compact ultranormal Hausdorff space to which any \(\mu \in \mathcal{M}(T, F) \) may be continuously extended. It follows that \(\beta_0 T = M \) in the sense of Th. 1.6.

Last, let us mention that \(\beta_0 T \) may also be realized as a Wallman compactification utilizing the lattice of clopen subsets of \(T \).

2 A New Approach

A construction of \(\beta_0 T \) using the methods of non-Archimedean functional analysis is presented in Theorem 2.1. The proof hinges on the fact that, for a local field \(F \), if \(U \) is a neighborhood of 0 in a locally \(F \)-convex space \(X \) then its polar \(U^\circ \) is \(\sigma(X', X) \)-compact ([15], Th. 4.11). Note that \(\sigma(X', X) \) is ultraregular since the seminorms \(p_x(f) = |f(x)|, x \in X, f \in X' \), are non-Archimedean.

Theorem 2.1 Let \(F \) be a local field, let \(T \) be ultraregular and let \(C^*(T, F) \) denote the sup-normed space of all continuous \(F \)-valued functions on \(T \) with relatively compact range. There is an ultranormal compactification \(\beta_0 T \) of \(T \) such that any \(x \in C^*(T, F) \) may be continuously extended to a function \(\beta_0 x \in C(\beta_0 T, F) \).

Proof. For \(t \in T \), let \(t^* \) denote the evaluation map \(x \mapsto x(t) \) for any \(x \in C^*(T, F) \). We note that each such \(t^* \) is a continuous linear form (algebra homomorphism, actually) and is of norm one. Thus \(T^* = \{t^* : t \in T\} \subset U \) where \(U \) denotes the unit ball of the norm-dual \(C^*(T, F)' \) of \(C^*(T, F) \). Furthermore, the map \(i : T \rightarrow C^*(T, F)', t \mapsto t^* \), embeds \(T \) homeomorphically in \(C^*(T, F)' \) endowed with its weak-* topology by the following argument. The map \(i \) is obviously injective. If a net \(t_s \rightarrow t \in T \) then \(x(t_s) \rightarrow x(t) \) for any \(x \in C^*(T, F) \); hence \(t_s^* \rightarrow t^* \) and therefore \(i \) is continuous. To see that \(i \) is a homeomorphism onto \(i(K) \), let \(K \) be a closed subset of \(T \). Since \(T \) is ultraregular, if \(t \notin K \) then there exists \(x \in C^*(T, F) \) such that \(x(t) = 0 \) and \(|x(K)| = r > 1 \). Hence the polar \(\{x\}^\circ \) of \(\{x\} \) is a neighborhood of \(t^* \) disjoint from \(K^* \) and \(K^* \) is a closed subset of \(i(K) \). As \(U \) is the polar of the unit ball of \(C^*(T, F) \), it follows that \(U \) is weak-*-compact ([15], Th. 4.11). Therefore the closure \(cT \) in \(U \) of \((\text{the homeomorphic image of } T^*) \) is compact in \(C^*(T, F)' \) endowed with the weak-* topology. As to the continuous extendibility of \(x \in C^*(T, F) \), consider the canonical image \(Jx \) of \(x \) in the second algebraic dual of \(C^*(T, F) \), i.e., for any \(f \in C^*(T, F)' \), \(Jx(f) = f(x) \). Clearly \(Jx \) is weak-continuous on \(C^*(T, F)' \); so, therefore, is its restriction \(\beta_0 x = Jx|_{cT} \). Should this be called \(c_T^r \) rather than \(cT \)? No topologically significant changes occur for different \(F's \): the compactness of the ultraregular space \(cT \) and the fact that \(T \) is \(C^* \)-embedded in \(cT \) imply that \(cT = \beta_0 T \) by Th. 1.6.
3 Compactoidification

In this section we construct a compactoidification κT of an ultraregular space T. $(F, |\cdot|)$ denotes a complete nontrivially ultravalued field throughout. As usual, we abbreviate ‘F-convex’ to ‘convex.’ A map f defined on an absolutely convex subset A of a vector space over F with values in some absolutely convex set in a vector space over F is called affine if $f(ax + by) = af(x) + bf(y)$ for all $x, y \in A$ and all $a, b \in F$ with $|a| \leq 1$ and $|b| \leq 1$.

Definition 3.1 A compactoidification of an ultraregular space T is a pair $(i, \kappa T)$ where κT is a complete absolutely convex compactoid subset of some Hausdorff locally convex space E over F and $i : T \to \kappa T$ is a continuous map with precompact range for which following extendibility property holds: For any complete absolutely convex compactoid subset A of some Hausdorff locally convex space E over F and any continuous map $j : T \to A$ with precompact range, there exists a unique continuous affine map $J : \kappa T \to A$ such that $J \circ i = j$.

\[\kappa T \]
\[i \uparrow \]
\[T \quad \xrightarrow{J} \quad A \]

Theorem 3.2 A compactoidification is unique in the following natural sense: if $(i_1, \kappa_1 T)$ and $(i_2, \kappa_2 T)$ are compactoidifications of T then there exists a unique affine homeomorphism $J_1 : \kappa_1 T \to \kappa_2 T$ such that $J_1 \circ i_1 = i_2$. Moreover, the map i must be injective.

Proof. By definition, there exist unique continuous affine maps J_1 and J_2 such that $J_2 \circ i_1 = i_2$ and $J_1 \circ i_2 = i_1$. Thus, $J_1 \circ (J_2 \circ i_1) = J_1 \circ i_2 = i_1$.

\[\kappa_1 T \]
\[i_1 \uparrow \]
\[T \quad \xrightarrow{J_1} \quad \kappa_2 T \]

Since the identity map $I_1 : t \mapsto t$ of $\kappa_1 T$ onto $\kappa_1 T$ also satisfies $I_1 \circ i_1 = i_1$, it follows from the uniqueness that $I_1 = J_1 \circ J_2$. Similarly, $I_2 = J_2 \circ J_1$ where I_2 is the identity map of $\kappa_2 T$ onto $\kappa_2 T$. It follows that J_1 is a homeomorphism of $\kappa_1 T$ onto $\kappa_2 T$ and J_2 is its inverse. If $i_1(t_1) = i_1(t_2)$ then $i_2(t_1) = J_1 \circ i_1(t_1) = J_1 \circ i_1(t_2) = i_1(t_2)$ so if one of the maps i is 1-1, all such i must be. As shown in Theorem 3.3, there is an i that is 1-1.

In the notation of Sec. 2:

Theorem 3.3 Let T be ultraregular and let the continuous dual $C^*(T, F)'$ of $C^*(T, F)$ carry the weak-* topology. Then

(a) the closed absolutely convex hull κT of T^* is the unit ball U of $C^*(T, F)'$ and

(b) the pair $(i, \kappa T)$ is a compactoidification of T.

Proof. Clearly the absolute convex hull B of T^* is contained in the unit ball U of $C^*(T, F)'$. Since U is a complete compactoid by the p-adic Alaoglu theorem ([9], Prop.
Compactification and compactoidification

3.1), so, therefore, is the closed absolutely convex hull \(\kappa T \) of the compact set \(\text{cl } T^* \).

It follows from \([10], \text{Prop. 1.3}\) that if \(B \) is edged (i.e., if the valuation of \(F \) is dense then \(\text{cl } B = \cap \{ a(\text{cl } B) : a \in F , |a| > 1 \} \) and therefore \([9], \text{Th. 4.7}\) a polar set in \(C^*(T,F)' \).

If \(\text{cl } B \neq U \) there must exist \(g \in C^*(T,F)' \) such that \(|g| \leq 1 \) on \(B \) and \(|g(f)| > 1 \) for some \(f \in U - \text{cl } B \). Since \(g \) must be an evaluation map determined by some point \(x \in C^*(T,F) \) by \([9], \text{Lemma 7.1}\), we have found an \(x \) such that \(|x(t)| = |t^*(x)| \leq 1 \) for all \(t \in T \) but \(|f(x)| > 1 \). As this contradicts \(\|f\| \leq 1 \), the proof of (a) is complete.

(b) As in the proof of Th. 2.1, \(i \) is a homeomorphism onto the precompact set \(T^* \). To verify the extendibility requirement, let \(A \) be a complete absolutely convex compactoid and \(j : T \to A \) be continuous with precompact range. We define the affine extension \(J \) of \(j \) on the absolutely convex hull \(B \) of \(T^* \) by taking \(J(\sum_{i=1}^{n} a_i t_i^*) = \sum_{i=1}^{n} a_i j(t_i) \) for \(a_i \in F , |a_i| \leq 1 , i = 1, \ldots, n \). The definition makes sense because the \(t_i^* \) are linearly independent for distinct \(t_i \). Evidently \(j = J \circ i \). To prove the continuity of \(J \), let \(s \to \mu_s = \sum_{i=1}^{n} \alpha_i^* t_i^* \) be a net in \(B \) convergent to 0 in the weak-* topology. Let \([A] \) denote the linear span of \(A \) and note that for any \(f \in [A]' \), the map \(f \circ j \in C^*(T,F)' \), since \(j(T) \) is precompact. Thus,

\[
J(\mu_s) = J \left(\sum_{i=1}^{n} \alpha_i^* j(t_i^*) \right) = \sum_{i=1}^{n} \alpha_i^* f(j(t_i^*)) = \mu_s , (f \circ j) \to 0
\]

and we conclude that \(J(\mu_s) \to 0 \) in the weak topology of \([A] \). As \(A \) is of countable type, hence a polar space, the weak topology coincides with the initial one on the compactoid \(A \) \([9], \text{Th. 5.12}\) so \(J(\mu_s) \to 0 \) in \(A \). By continuity and ‘affinity,’ \(J \) extends uniquely to a continuous affine map of \(\text{cl } B = \kappa T \) into \(A \), since \(A \) is complete.

References

St. John's University
Staten Island, NY 10301 USA
e-mail: beckenst at sjuvm.stjohns.edu

St. John's University
Jamaica, NY 11439 USA
e-mail: naricil at sjuvm.stjohns.edu
fax: 718-380-0353

Matematisch Instituut
K. U. Nijmegen
Toernooiveld
6525 ED Nijmegen, The Netherlands
e-mail: schikhof at sci.kun.nl