PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/60071

Please be advised that this information was generated on 2018-02-17 and may be subject to change.
COMPACTNESS OF p-ADIC INTEGRAL OPERATORS

J. Martínez Maurica and W.H. Schikhof

Abstract.
The p-adic counterparts of the classical integral operators are shown to be compact. This result is extended to integral operators \(C^n \to C^m \).

PRELIMINARIES
Throughout \(K \) is a non-archimedean valued complete field whose valuation \(|\cdot|\) is not trivial. For a compact topological space \(X \) the \(K \)-Banach space of all continuous functions \(f : X \to K \) with the norm \(f \mapsto \|f\|_\infty := \max\{|f(x)| : x \in X\} \) is denoted \(C(X \to K) \). The closed unit ball of a \(K \)-Banach space \(E \) is written \(B_E \). A (continuous) linear map \(T : E \to F \), where \(E, F \) are locally convex spaces over \(K \), is called compact if there is a neighbourhood \(U \) of 0 in \(E \) for which \(TU \) is a compactoid, where a subset \(Y \) of \(F \) is called a compactoid if for each neighbourhood \(V \) of 0 in \(F \) there exists a finitely generated absolutely convex set \(I \) such that \(Y \subseteq V + I \). The topological dual of \(E \) is \(E' \).

Further background on p-adic Functional Analysis can be found in [3].

1. INTEGRAL OPERATORS
Let \(X, Y \) be compact topological spaces, \(\mu \in C(Y \to K)' \), \(G \in C(X \times Y \to K) \). For each \(f \in C(Y \to K) \) and \(x \in X \) the function \(h_x : y \mapsto G(x, y)f(y) \) is continuous so the expression \(\mu(h_x) \) makes sense. Rather than \(\mu(h_x) \) we shall use the more convenient notation \(\int G(x, y)h(y)d\mu(y) \).

Theorem 1.1. With the above notations, the formula

\[
(Tf)(x) = \int G(x, y)f(y)d\mu(y)
\]

defines a compact operator \(T : C(Y \to K) \to C(X \to K) \).
Proof. We have seen already that \((Tf)(x)\) is well-defined. To prove continuity of \(Tf\), let \(a \in X\), \(\varepsilon > 0\). By compactness there is a neighbourhood \(U\) of \(a\) such that \(|G(x,y) - G(a,y)| \leq \varepsilon\) for all \(x \in U\) and \(y \in Y\). Then, for \(x \in U\)

\[
|(Tf)(x) - (Tf)(a)| = \left| \int (G(x,y) - G(a,y))f(y)d\mu(y) \right| \leq \varepsilon \|f\|_\infty \|\mu\|
\]

and the continuity of \(Tf\) follows; we even have equicontinuity of \(TB_{C(Y \to K)}\). From \(|\|Tf\|\| \leq \|G\|_\infty \|f\|_\infty \|\mu\|\) we obtain (uniform) boundedness of \(TB_{C(Y \to K)}\) implying compactness of \(T\) by the p-adic Ascoli Theorem [1] Theorem 1.8 and [2] Theorem 1.

In the next sections we shall interpret \(T\) as a map \(C^n(Y \to K) \to C^n(X \to K)\). To this end we need some preliminary definitions and results that will be treated in §2 and §3.

2. \(C^n\)-FUNCTIONS OF ONE VARIABLE

We recall some definitions of [5], §29. For a subset \(X\) of \(K\) and \(n \in \mathbb{N}\) we set

\[
\nabla^n X := \{(x_1, x_2, \ldots, x_n) \in X^n : \text{if } i \neq j \text{ then } x_i \neq x_j\}.
\]

The \(n\)th difference quotient \(\Phi_n f : \nabla^{n+1} X \to K\) of a function \(f : X \to K\) is inductively given by \(\Phi_0 f := f\) and, for \(n \in \mathbb{N}\), by the formula

\[
(\Phi_n f)(x_1, x_2, \ldots, x_{n+1}) = \frac{(\Phi_{n-1} f)(x_1, x_3, \ldots, x_{n+1}) - (\Phi_{n-1} f)(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}.
\]

We say that \(f\) is a \(C^n\)-function (\(f \in C^n(X \to K)\), or shortly \(f \in C^n\)) if \(\Phi_n f\) can be extended to a continuous function \(X^{n+1} \to K\). If \(X\) has no isolated points the above extension is unique and denoted \(\overline{\Phi}_n f\). We set

\[
D_n f(x) := (\overline{\Phi}_n f)(x, x, \ldots, x) \quad (x \in X).
\]

Then ([5] Theorem 29.5) \(n! D_n f = f^{(n)}\) (so that \(D_n f = f^{(n)}/n!\) if the characteristic of \(K\) is zero). The set \(C^n(X \to K)\) is a \(K\)-algebra under pointwise operations.

Now assume that \(X\) is a compact subset of \(K\) without isolated points. Then for an \(f \in C^n(X \to K)\) the functions \(f, \Phi_1 f, \ldots, \Phi_n f\) are all bounded so one may define

\[
\|f\|_n := \max(\|f\|_\infty, \|\Phi_1 f\|_\infty, \ldots, \|\Phi_n f\|_\infty)
\]

\[
(= \max(\|f\|_\infty, \|\overline{\Phi}_1 f\|_\infty, \ldots, \|\overline{\Phi}_n f\|_\infty)).
\]

28
It is shown in [4], Theorem 8.5 that $\|f\|_n$ is a norm on $C^n(X \to K)$ making it into a K-Banach space. Because also $\|fg\|_n \leq \|f\|_n \|g\|_n$ holds for $f, g \in C^n(X \to K)$ the space $C^n(X \to K)$ is even a K-Banach algebra.

Observe that, if $f \in C^n(X \to K)$ the functions $f, \Phi_1 f, \ldots, \Phi_n f$ are uniformly continuous.

3. C^n-FUNCTIONS OF TWO VARIABLES

Throughout §3 let $n, m \in \{0,1,2,\ldots\}$.

Let X be a subset of K, let Y be just a set and let $H : X \times Y \to K$. The nth difference quotient of H with respect to the first variable is by definition the function

$$(x_1, \ldots, x_{n+1}, y) \xmapsto \frac{\Phi_{n+1}^{(1)} H}{h_y} (x_1, \ldots, x_{n+1})$$

defined on $\nabla^{n+1} X \times Y$, where $h_y(x) := H(x, y) \ (x \in X, y \in Y)$.

Similarly, for a set X, a subset Y of K and a function $J : X \times Y \to K$ we define the mth difference quotient of J with respect to the second variable to be the map

$$(x, y_1, y_2, \ldots, y_{m+1}) \xmapsto \frac{\Phi_{m+1}^{(2)} J}{j_x^m} (y_1, \ldots, y_{m+1})$$

defined on $X \times \nabla^{m+1} Y$ where $j_x^m(y) := J(x, y) \ (x \in X, y \in Y)$.

We leave the proof of the following elementary lemma to the reader.

Lemma 3.1. Let X, Y be subsets of K, let $G : X \times Y \to K$. Then

$$\Phi_n^{(2)} \Phi_n^{(1)} G = \Phi_n^{(1)} \Phi_n^{(2)} G.$$

Now let X, Y be subsets of K without isolated points, and let $G : X \times Y \to K$. We say that $G \in C_n^{m,:}(X \times Y \to K)$ (or simply $G \in C_n^{m,:}$) if the function $\Phi_n^{(2)} \Phi_n^{(1)} G$ (or, equivalently, $\Phi_n^{(1)} \Phi_n^{(2)} G$) can be extended to a continuous function $X^{n+1} \times Y^{m+1} \to K$.

This extension is unique and denoted $\Phi_n^{(2)} \Phi_n^{(1)} G$ or $\Phi_n^{(1)} \Phi_n^{(2)} G$). Special cases are

$$D_n^{(1)} G(x, y) := (\Phi_n^{(2)} \Phi_n^{(1)} G)(x, x, \ldots, x, y)$$

$$D_n^{(2)} D_n^{(1)} (x, y) := (\Phi_n^{(2)} \Phi_n^{(1)} G)(x, x, \ldots, x, y, y, \ldots, y)$$

and also expressions like $D_n^{(2)} \Phi_n^{(1)} G$, $\Phi_n^{(2)} D_n^{(1)} G$ make sense. The following facts are easily established. If $G \in C_n^{m,:}$ and $j, k \in \{0,1,\ldots\}$, $j \leq n$, $k \leq m$ then $G \in C^{j,k}$. If $G \in C_n^{m,:}$ then

$$n!m! D_n^{(1)} D_m^{(2)} = \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G.$$

29
and in particular we have equality of mixed partial derivatives: \(\frac{\partial}{\partial x^n} \frac{\partial}{\partial y^m} G = \frac{\partial}{\partial y^m} \frac{\partial}{\partial x^n} G \). If \(G \in C^{n,0}(X \times Y) \) then for each \(y \in Y \) the function \(x \mapsto G(x,y) \) is in \(C^n(X \to K) \).

4. **INTEGRAL OPERATORS ON \(C^n \)**

Theorem 4.1. Let \(X, Y \) be compact subsets of \(K \) without isolated points. Let \(G \in C^{n,m}(X \times Y \to K) \) and let \(\mu \in C^m(Y \to K)' \). Then the formula

\[
(Tf)(x) = \int G(x,y)f(y)d\mu(y)
\]

defines a continuous linear map \(T : C^m(Y \to K) \to C^n(X \to K) \). We have \(\|T\| \leq \|\mu\| \|G\|_{n,m} \) where

\[
\|G\|_{n,m} := \sup \{ \|\Phi_k^{(2)} \Phi_j^{(1)} G\|_{\infty} : 0 \leq j \leq n, 0 \leq k \leq m \}.
\]

Proof. Since \(G \in C^{0,m} \) the function \(y \mapsto G(x,y) \) is \(C^m \) for every \(x \in X \). So for \(f \in C^m(Y \to K) \) the product \(y \mapsto G(x,y)f(y) \) is a \(C^m \)-function on \(Y \). It follows that \((*)\) defines a \(K \)-linear map of \(C^m(Y \to K) \) into the space of all functions on \(X \). To check that \(Tf \) is a \(C^n \)-function let \(\varepsilon > 0 \). By uniform continuity there exists a \(\delta > 0 \) such that for all \(j \in \{0,1,\ldots,n\} \), \(k \in \{0,1,\ldots,m\} \), all \((x_1,\ldots,x_{j+1}),(x'_1,\ldots,x'_{j+1}) \in X^{j+1} \), all \((y_1,\ldots,y_{k+1}) \in Y^{k+1} \),

\[
(\forall) \quad |\Phi_k^{(2)} \Phi_j^{(1)} G(x_1,\ldots,x_{j+1},y_1,\ldots,y_{k+1}) - \Phi_k^{(2)} \Phi_j^{(1)} G(x'_1,\ldots,x'_{j+1},y_1,\ldots,y_{k+1})| < \varepsilon
\]

whenever \(|x_j-x'_j| < \delta, \ldots, |x_{j+1}-x'_{j+1}| < \delta \). Then for such \((x_1,\ldots,x_{n+1}) \) and \((x'_1,\ldots,x'_{n+1}) \) in \(\nabla^{n+1}X \) we have

\[
\Delta := |(\Phi_n Tf)(x_1,\ldots,x_{n+1}) - (\Phi_n Tf)(x'_1,\ldots,x'_{n+1})| \leq \|h\|_m \|f\|_m \|\mu\|
\]

where

\[
h(y) = \Phi_n^{(1)} G(x_1,\ldots,x_{n+1},y) - \Phi_n^{(1)} G(x'_1,\ldots,x'_{n+1},y) \quad (y \in Y).
\]

Now \(\|h\|_m = \max\{ \|\Phi_k h\|_{\infty} : 0 \leq k \leq m \} \) which is \(< \varepsilon \) by \((\forall)\). We see that \(\Delta \leq \|f\|_m \|\mu\|\varepsilon \). It follows that \(Tf \) is \(C^n \); we even may conclude that \(\{\Phi_n Tf : f \in C^m(Y \to K), \|f\|_m \leq 1\} \) is equicontinuous. To estimate \(\|T\| \), let \(j \in \{0,1,\ldots,n\} \) and \((x_1,\ldots,x_{j+1}) \in \nabla^{j+1}X \). Then
We see that \(\|T\| \leq \|\mu\| \|G\|_{n,m} \).

Corollary 4.2. For all \(f \in C^n(Y \to K) \) and \(x \in X \)

\[
\frac{d^n(Tf)(x)}{dx^n} = \int \frac{\partial^n G(x,y)}{\partial x^n} f(y)d\mu(y).
\]

Proof. It is shown in the previous proof that

\[
(z \mapsto \Phi_n^{(1)}G(z,\cdot) \quad (z \in \nabla^{n+1}X)\]

has a continuous extension \(X^{n+1} \to C^n(Y \to K) \). Then, for \(x \in X \) we have (with \(z \in \nabla^{n+1}X \))

\[
D_n(Tf)(x) = \Phi_n^{(1)}(Tf)(x,x,x,\ldots,x) = \lim_{z \to (x,x,\ldots,x)} \Phi_n^{(1)}(Tf)(z)
= \lim_{z \to (x,x,\ldots,x)} \int \Phi_n^{(1)}G(z,y)f(y)d\mu(y) = \int \lim_{z \to (x,x,\ldots,x)} \Phi_n^{(1)}G(z,y)f(y)d\mu(y) = \int D^n_1 G(x,y)f(y)d\mu(y).
\]

5. COMPACTNESS OF INTEGRAL OPERATORS

To prove compactness of the operator \(T : C^n(Y \to K) \to C^n(X \to K) \) of the previous section we shall combine the \(p \)-adic Ascoli Theorem with the following.

Lemma 5.1. Let \(X \) be a subset of \(K \), without isolated points. Let \(n \in \{0,1,2,\ldots\} \). The map

\[
\tau_n : f \mapsto (f, \overline{\Phi}_1 f, \overline{\Phi}_2 f, \ldots, \overline{\Phi}_n f)
\]

embeds \(C^n(X \to K) \) linearly and isometrically into \(C(X) \times C(X^2) \times \ldots \times C(X^{n+1}) \).

Proof. Direct verification.

Lemma 5.2. Let \(Z_1, \ldots, Z_k (k \in \mathbb{N}) \) be compact topological spaces and let, for each \(i \in \{1, \ldots, k\} \), \(\pi_i \) be the obvious projection \(\prod_{j=1}^k C(Z_j \to K) \to C(Z_i \to K) \). Then a
subset S of $\prod_{j=1}^{k} C(Z_j \to K)$ is a compactoid if and only if for each $i \in \{1, \ldots, k\}$, $\pi_i(S)$
is bounded and equicontinuous in $C(Z_i \to K)$.

Proof. If S is a compactoid and $i \in \{1, \ldots, k\}$ then, since π_i is linear and continuous,$\pi_i(S)$ is a compactoid in $C(Z_i \to K)$, hence bounded and equicontinuous by the p-adic
Ascoli Theorem. Conversely, if every $\pi_i(S)$ is bounded and equicontinuous then each
$\pi_i(S)$ is a compactoid by the p-adic Ascoli Theorem, hence $\pi_1(S) \times \pi_2(S) \times \ldots \times \pi_k(S)$
is a compactoid. But then so is its subset S.

Theorem 5.3. The map T of Theorem 4.1. is compact.

Proof. By Lemma 5.1 it is enough to prove that $\tau_n \circ T$ is compact; from Lemma 5.2
we see that it suffices to show that, for each $i \in \{0, 1, \ldots, n\}$ the set

$$\{ \overline{T}_iTf : f \in C^m(Y \to K), \|f\|_m \leq 1 \}$$

is (pointwise) bounded and equicontinuous in $C(X^{i+1} \to K)$.

But this was already observed in the proof of Theorem 4.1 for $i = n$; a similar argument
works for each $i \in \{0, 1, \ldots, n\}$.

6. INTEGRAL OPERATORS ON C^∞

Let X, Y be compact subsets of K without isolated points. The space

$$C^\infty(X \to K) := \bigcap_n C^n(X \to K)$$

has a natural locally convex topology induced by the norms $\| \cdot \|_n$ ($n \in \{0, 1, 2, \ldots\}$).

If $G : X \times Y \to K$ is C^∞ (i.e. $G \in C^{n,m}(X \times Y \to K)$ for each $n, m \in \{0, 1, \ldots\}$) and
$\mu \in C^\infty(X \to K)'$ the formula

$$(\ast) \quad (Tf)(x) = \int G(x, y)f(y)d\mu(y)$$

defines a linear map $C^\infty(Y \to K) \to C^\infty(X \to K)$. By construction there is an
$m \in \{0, 1, \ldots\}$ and a $C > 0$ such that $|\mu(f)| \leq C\|f\|_m$ for all $f \in C^\infty(Y \to K)$. For
each $n \in \{0, 1, \ldots\}$ (\ast) is the restriction of a compact integral operator

$C^m(Y \to K) \to C^n(X \to K)$. It follows that T maps $\{ f \in C^m(Y \to K) : \|f\|_m \leq 1 \}$ into a compactoid
of $C^\infty(X \to K)$ i.e. that T is a compact map $C^\infty(Y \to K) \to C^\infty(X \to K)$.

32
REFERENCES

