The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60067

Please be advised that this information was generated on 2018-01-14 and may be subject to change.
THE WEIERSTRASS-STONE APPROXIMATION THEOREM
FOR p-ADIC C^n-FUNCTIONS

J. Araujo and Wim H. Schikhof

Abstract.
Let K be a non-Archimedean valued field. Then, on compact subsets of K, every K-valued C^n-function can be approximated in the C^n-topology by polynomial functions (Theorem 1.4). This result is extended to a Weierstrass-Stone type theorem (Theorem 2.10).

INTRODUCTION

The non-archimedean version of the classical Weierstrass Approximation Theorem - the case $n = 0$ of the Abstract - is well known and named after Kaplansky ([1], 5.28). To investigate the case $n = 1$ first let us return to the Archimedean case and consider a real-valued C^1-function f on the unit interval. To find a polynomial function P such that both $|f - P|$ and $|f' - P'|$ are smaller or equal than a prescribed $\varepsilon > 0$ one simply can apply the standard Weierstrass Theorem to f' obtaining a polynomial function Q for which $|f' - Q| \leq \varepsilon$. Then $x \mapsto P(x) := f(0) + \int_0^x Q(t)dt$ solves the problem.

Now let $f : X \to K$ be a C^1-function where K is a non-archimedean valued field and $X \subseteq K$ is compact. Lacking an indefinite integral the above method no longer works. There do exist continuous linear antiderivations ([3], §64) but they do not map polynomials into polynomials ([3], Ex. 30.C). A further complicating factor is that the natural norm for C^1-functions on X is given by

$$f \mapsto \max\{|f(x)| : x \in X\} \lor \max\left\{\left|\frac{f(x) - f(y)}{x - y}\right| : x, y \in X, x \neq y\right\}$$

rather than the more classical formula

$$f \mapsto \max\{|f(x)| : x \in X\} \lor \max\{|f'(x)| : x \in X\}.$$

(Observe that in the real case both formulas lead to the same norm thanks to the Mean Value Theorem, see [3], §§26,27 for further discussions.)
Thus, to obtain non-archimedean C^n-Weierstrass-Stone Theorems for $n \in \{1, 2, \ldots\}$ our methods will necessarily deviate from the 'classical' ones.

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation $|\cdot|$ is not trivial. For $a \in K$, $r > 0$ we write $B(a, r) := \{x \in K : |x-a| \leq r\}$, the 'closed' ball about a with radius r. 'Clopen' is an abbreviation for 'closed and open'. The function $x \mapsto x$ ($x \in K$) is denoted ξ. The K-valued characteristic function of a subset Y of K is written χ_Y. For a set Z, a function $f : Z \to K$ and a set $W \subset Z$ we define $\|f\|_W := \sup\{|f(z)| : z \in W\}$ (allowing the value ∞). The cardinality of a set Γ is $\#\Gamma$. $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$, $\mathbb{N} := \{1, 2, 3, \ldots\}$.

We now recall some facts from [2], [3] on C^n-theory.

2. For a set $Y \subset K$, $n \in \mathbb{N}$ we set $\nabla^n Y := \{(y_1, y_2, \ldots, y_n) \in Y^n : i \neq j \Rightarrow y_i \neq y_j\}$. For $f : Y \to K$, $n \in \mathbb{N}_0$ we define its nth difference quotient $\Phi_n f : \nabla^{n+1} Y \to K$ inductively by $\Phi_0 f := f$ and the formula

$$\Phi_n f(y_1, \ldots, y_{n+1}) = \frac{\Phi_{n-1} f(y_1, y_3, \ldots, y_{n+1}) - \Phi_{n-1} f(y_2, y_3, \ldots, y_{n+1})}{y_1 - y_2}$$

f is called a C^n-function if $\Phi_n f$ can be extended to a continuous function on Y^{n+1}.

The set of all C^n-functions $Y \to K$ is denoted $C^n(Y \to K)$. The function $f : Y \to K$ is a C^∞-function if it is in $C^\infty(Y \to K) := \bigcap_{n=0}^{\infty} C^n(Y \to K)$. The space $C^0(Y \to K)$, consisting of all continuous functions $Y \to K$ is sometimes written as $C(Y \to K)$.

FROM NOW ON IN THIS PAPER X IS A NONEMPTY COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an $f \in C^n(X \to K)$ that the continuous extension of $\Phi_n f$ to X^n is unique; we denote this extension by $\overline{\Phi}_n f$. Also we write

$$D_n f(a) := \overline{\Phi}_n f(a, a, \ldots, a) \quad (a \in X)$$

The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For each $n \in \mathbb{N}_0$ the space $C^n(X \to K)$ is a K-algebra under pointwise operations.

(ii) $C^0(X \to K) \supset C^1(X \to K) \supset \ldots$
(iii) If \(f \in C^n(X \to K) \) then \(f \) is \(n \) times differentiable and \(j!D_jf = f^{(j)} \) for each \(j \in \{0, 1, \ldots, n\} \). More generally, if \(i, j \in \{0, 1, \ldots, n\}, i+j \leq n \) then \(\binom{i+j}{i}D_iD_jf = D_{i+j}f \).

(iv) If \(f \in C^n(X \to K) \) then for \(x, y \in X \) we have Taylor's formula

\[
f(x) = f(y) + (x-y)D_if(y) + \cdots + (x-y)^{n-1}D_{n-1}f(y) + (x-y)^n\rho_1f(x, y),
\]

where \(\rho_1f(x, y) = \Phi_nf(x, y, y, \ldots, y) \).

4. Since \(X \) is compact the difference quotients \(\Phi_i f \) \((0 \leq i \leq n) \) are bounded if \(f \in C^n(X \to K) \). We set

\[
\|f\|_{n,X} := \max\{\|\Phi_i f\|_{n+1,X} : 0 \leq i \leq n\}.
\]

Then \(\|f\|_{0,X} = \|f\|_X \). We quote the following from [2] and [3].

Proposition 0.4. Let \(n \in \mathbb{N}_0 \).

(i) The function \(\| \|_{n,X} \) is a norm on \(C^n(X \to K) \) making it into a \(K \)-Banach algebra.

(ii) The local polynomials form a dense subset of \(C^n(X \to K) \).

(iii) The function

\[
f \mapsto \|f\|_{n,X} := \max_{0 \leq i \leq n-1} \|D_if\|_X \vee \|\rho_1f\|_X
\]

(see Proposition 0.3 (iv)) also is a norm on \(C^n(X \to K) \). We have

\[
\|f\|_{n,X} = \max\{\|D_if\|_{n-i,X} : 0 \leq i \leq n\} \quad (f \in C^n(X \to K)).
\]

Remarks

1. Proposition 0.4 (ii) will also follow from Proposition 2.8.

2. In general \(\| \|_{n,X} \) is not equivalent to \(\| \|_{n,X} \) for \(n \geq 3 \) (see [3], Example 83.2).
1 THE WEIERSTRASS THEOREM FOR C^n-FUNCTIONS

The following product rule for difference quotients is easily proved by induction with respect to \(j \).

Let \(f, g : X \to K \), let \(j \in \mathbb{N}_0 \). Then for all \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X \) we have

\[
\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^j \Phi_k f(x_1, \ldots, x_{k+1}) \Phi_{j-k} g(x_{k+1}, \ldots, x_{j+1}).
\]

Or, less precise,

\[
\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^j \Phi_k f(z_k) \Phi_{j-k} g(u_{j-k})
\]

for certain \(z_k \in \nabla^{k+1}X \), \(u_{j-k} \in \nabla^{j-k+1}X \).

In the sequel we need an extension of this formula to finite products of functions. The proof is straightforward by induction with respect to \(N \).

Lemma 1.1. (Product Rule) Let \(h_1, \ldots, h_N : X \to K \), let \(j \in \mathbb{N}_0 \). Then for all \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X \) we have

\[
\Phi_j\left(\prod_{s=1}^N h_s\right)(x_1, \ldots, x_{j+1}) = \sum_{\sigma} \prod_{s=1}^N \Phi_{j_s}(z_{\sigma,s})
\]

where the sum is taken over all \(\sigma := (j_1, \ldots, j_N) \in \mathbb{N}_0^N \) for which \(j_1 + \cdots + j_N = j \) and where \(z_{\sigma,s} \in \nabla^{j_s+1}X \) for each \(s \in \{1, \ldots, N\} \). (In fact, \(z_{\sigma,1} = (x_1, \ldots, x_{j_1+1}), z_{\sigma,2} = (x_{j_1+1}, \ldots, x_{j_1+j_2+1}), \ldots, z_{\sigma,N} = (x_{j_1+\cdots+j_{N-1}+1}, \ldots, x_{j+1}) \).

The following key lemma grew out of [1], 5.28.

Lemma 1.2. Let \(0 < \delta < 1, 0 < \varepsilon < 1 \), let \(B = B_0 \cup B_1 \cup \cdots \cup B_m \) where \(B_0, \ldots, B_m \) are pairwise disjoint 'closed' balls in \(K \) of radius \(\delta \). Then, for each \(n \in \{0, 1, \ldots\} \) there exists a polynomial function \(P : K \to K \) such that \(\|P - \xi B_0\|_{n,B} \leq \varepsilon \).

Proof. We may assume \(0 \in B_0 \). Choose \(c_1 \in B_1, \ldots, c_m \in B_m \); we may assume that \(|c_1| \leq |c_2| \leq \cdots \leq |c_m| \). Then \(\delta < |c_1| \). We shall prove the following statement by induction with respect to \(n \).

Let \(k \in \mathbb{N} \) be such that \((\delta/|c_1|)^k \leq \varepsilon n^k, k > n \). Let \(t_1, t_2, \ldots, t_m \in \mathbb{N} \) be such that for all \(\ell \in \{1, \ldots, m\} \)

\[
\left| \frac{c_{t_{\ell}}}{c_{t_{\ell-1}}} \right|^{t_{\ell}} \leq \varepsilon n^k
\]
defines a polynomial function \(P : K \to K \) for which
\[
\| P - \xi_{B_0} \|_{n, B} \leq \varepsilon.
\]
The case \(n = 0 \) is proved in [1], 5.28. To prove the step \(n - 1 \to n \) we first observe that from the induction hypothesis (with \(\varepsilon \) replaced by \(\varepsilon \delta \)) it follows that
\[
\| P - \xi_{B_0} \|_{n-1, B} \leq \varepsilon \delta
\]
So it remains to be shown that
\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]
for all \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B \). Now, if \(|x_i - x_j| > \delta \) for some \(i, j \in \{1, \ldots, n + 1\} \) we have, using (2),
\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| = |x_i - x_j|^{-1} |\Phi_{n-1}(P - \xi_{B_0})(x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_{n+1}) - \Phi_{n-1}(P - \xi_{B_0})(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})| \leq \delta^{-1} \varepsilon \delta = \varepsilon.
\]
So this reduces the proof of (3) to the case where \(|x_i - x_j| \leq \delta \) for all \(i, j \in \{1, \ldots, n + 1\} \); in other words we may assume that \(x_1, \ldots, x_{n+1} \) are all in the same \(B_\ell \) for some \(\ell \in \{0,1,\ldots,m\} \). But then, after observing that \(n \geq 1 \), we have \(\Phi_n \xi_{B_0}(x_1, \ldots, x_{n+1}) = 0 \) so it suffices to prove the following.
If \(\ell \in \{0,1,\ldots,m\} \) and \(x_1, \ldots, x_{n+1} \in B_\ell \) are pairwise distinct then
\[
|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]
To prove it we introduce, with \(\ell \in \{1,\ldots,m\} \) fixed, the constants \(M_i (i \in \{1,\ldots,n\}) \) by
\[
M_i := \begin{cases} 1 & \text{if } i > \ell \\ \delta/|c_1| & \text{if } i = \ell \\ |c_\ell/c_i|^k & \text{if } i < \ell \end{cases}
\]
and use the following three steps.

Step 1. For each \(\ell \in \{0,1,\ldots,n\} \), \(i \in \{1,\ldots,n\} \) we have
\[
|\Phi_j(1 - (x_i/c_i)^k)| \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{-i}(\delta/|c_1|)^k & \text{if } \ell = 0, j > 0 \\ \delta^{-i} M_i & \text{if } \ell > 0. \end{cases}
\]
Proof.

a. The case $j = 0$. Then for $x \in B_t$ we have

- if $i > \ell$ then $|1 - (\frac{x}{c_i})^k| = 1$
- if $i = \ell$ then $|1 - (\frac{x}{c_i})^k| = \frac{\delta}{|c_i|} \leq \delta$
- if $i < \ell$ then $|1 - (\frac{x}{c_i})^k| = |\frac{x}{c_i}|^k = \frac{\delta}{|c_i|^k}$

and the statement follows.

b. The case $j > 0$. Then $\Phi_j(1) = 0$ so that

$$\Phi_j(1 - (\frac{X}{c_i})^k) = \frac{1}{c_i^k} \Phi_j(\lambda^k)$$

Let $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_t$. By the Product Rule 1.1, $\Phi_j(\lambda^k)(x_1, \ldots, x_{j+1})$ is a sum of terms of the form $\prod_{s=1}^{k} (\Phi_j, \lambda^k)(z_s)$. Such a term is 0 if one of the j_s is > 1, so we only have to deal with $j_s = 0$ (then $\Phi_j, \lambda^k = \lambda^k$) or $j_s = 1$ (then $\Phi_j, \lambda = 1$). The latter case occurs j times (as $\sum_{s=1}^{k} j_s = j$) and it follows that

$$\prod_{s=1}^{k} (\Phi_j, \lambda^k)(z_s)$$

is a product of $k-j$ distinct terms taken from $\{x_1, \ldots, x_{j+1}\}$ (observe that, indeed, $j < k$ since $j \leq n < k$), so its absolute value is $\leq |c_{\ell}|^{k-j}$. It follows that $\|\Phi_j(1 - (\frac{X}{c_i})^k)\|_{\nu^{j+1} B_t} \leq |c_{\ell}|^{k-j}/|c_i|^k$ from which we conclude

- if $\ell = 0$: $|c_{\ell}|^{k-j}/|c_i|^k \leq \delta^{k-j}/|c_i|^k = \delta^{j}(\delta/|c_i|)^k$,
- if $\ell > 0$: $|c_{\ell}|^{k-j}/|c_i|^k \leq |c_{\ell}^{-j}| < \delta^{-j} = \delta^{-j}M_i$
- if $i = \ell > 0$: $|c_{\ell}|^{k-j}/|c_i|^k \leq |c_{\ell}^{-j}| \leq c_{\ell}^{-j} = \delta^{-j}(\frac{\delta}{|c_i|})^j \leq \delta^{-j}M_i$
- if $i < \ell$: $|c_{\ell}|^{k-j}/|c_i|^k \leq |c_{\ell}^{-j}| |c_i|^k \leq \delta^{-j}M_i$

and step 1 is proved.

Step 2. For each $j \in \{0, 1, \ldots, n\}$, $i \in \{1, \ldots, n\}$ we have

$$\|\Phi_j(1 - (\frac{X}{c_i})^k)^{i_{\ell}}\|_{\nu^{j+1} B_t} \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{-j}(|\frac{\delta}{|c_i|}|)^k & \text{if } \ell = 0, j > 0 \\ \delta^{-j}M_i^{i_{\ell}} & \text{if } \ell > 0 \end{cases}$$

Proof. The case $j = 0$ follows directly from Step 1, part a, so assume $j > 0$. By the Product Rule 1.1 applied to $h_s = 1 - (\frac{X}{c_i})^k$ for all $s \in \{1, \ldots, s\}$ we have for $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_t$ that $\Phi_j(1 - (\frac{X}{c_i})^k)^{i_{\ell}}(x_1, \ldots, x_{j+1})$ is a sum of terms of the form

$$\prod_{s=1}^{s_i} \Phi_j, 1 - (\frac{X}{c_i})^k)(z_s)$$
where \(j_1 + \cdots + j_s = j \). If \(\ell = 0 \) it follows from Step 1 that the value of (5) is
\[
\leq \prod \delta^{-j_i}(\frac{\delta}{|c_i|})^{t_i}
\]
where the product is taken over all \(s \) in the nonempty set \(\Gamma := \{s \in \{1, \ldots, t_i\} : j_s > 0\} \), so the product is \(\leq \delta^{-j}(\frac{\delta}{|c_i|})^{t_i} \). If \(\ell > 0 \) it follows from Step 1 that the value of (5) is \(\leq \prod_{s=1}^{t_i} \delta^{-j_s} M_i = \delta^{-j} M_i^{t_i} \).

The statement of Step 1 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to \(h_i = (1 - (\frac{X}{c_i})^{k_i}) \) for \(i \in \{1, \ldots, m\} \) tells us that for \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B_\ell \) the expression \(\Phi_n P(x_1, \ldots, x_{n+1}) \) is a sum of terms of the form
\[
\prod_{i=1}^{m} \Phi_{n_i}(1 - (\frac{X}{c_i})^{k_i})(z_s)
\]
where \(n_1 + \cdots + n_m = n \). If \(\ell = 0 \) we have by Step 2 that the value of (6) is \(\leq \prod \delta^{-n_i}(\frac{\delta}{|c_i|})^{t_i} \) where the product is taken over \(i \) in the nonempty set \(\Gamma := \{i : n_i \neq 0\} \), so the product is \(\leq \delta^{-n}(\frac{\delta}{|c_i|})^{k} \leq \delta^{-n} \cdot \varepsilon \delta^n = \varepsilon \), where we used the assumption \((\delta/|c_i|)^k \leq \varepsilon \delta^n \). We see that \(|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon \) if \((x_1, \ldots, x_n) \in B_0 \).

Now let \(\ell > 0 \). By Step 2 we have that the absolute value of (6) is \(\leq \prod_{i=1}^{m} \delta^{-n_i} M_i^{t_i} = \delta^{-n} M_1^{t_1} \cdots M_m^{t_m} = \delta^{-n} \cdot |\frac{c_i}{c_1}|^{k_1} \cdots |\frac{c_i}{c_{i-1}}|^{k_{t_i}|k_i|} \frac{k}{k_i} \) which is \(\leq \delta^{-n} \varepsilon \delta^n \) by (1). This proves (4) and the Lemma.

Corollary 1.3. For every locally constant \(f : X \to K \), for every \(n \in \mathbb{N}_0 \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(||f - P||_{n,X} \leq \varepsilon \).

Proof. There exist a \(\delta \in (0,1) \), pairwise disjoint 'closed' balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(X \) and \(\lambda_1, \ldots, \lambda_m \in K \) such that
\[
f(x) = \sum_{i=1}^{m} \lambda_i \xi_B_i(x) \quad (x \in X)
\]
By Lemma 1.2 there exist polynomials \(P_1, \ldots, P_m \) such that \(||\xi_B_i - P_i||_{n,X} \leq ||\xi_B_i - P_i||_{n,\cup B_i} \leq \varepsilon (|\lambda_i| + 1)^{-1} \) for each \(i \in \{1, \ldots, m\} \). Then \(P := \sum_{i=1}^{m} \lambda_i P_i \) is a polynomial function and \(||f - P||_{n,X} \leq \max_i ||\lambda_i(\xi_B_i - P_i)||_{n,X} \leq \max_i |\lambda_i| \varepsilon (|\lambda_i| + 1)^{-1} \leq \varepsilon \).

Theorem 1.4. (\(C^n \)-Weierstrass Theorem) For each \(n \in \mathbb{N}_0 \), \(f \in C^n(X \to K) \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(||f - P||_{n,X} \leq \varepsilon \).

Proof. There is by Proposition 0.4 a local polynomial \(g : K \to K \) with \(||f - g||_{n,X} \leq \varepsilon \). This \(g \) has the form \(g = \sum_{i=1}^{m} Q_i h_i \) where \(Q_1, \ldots, Q_m \) are polynomials and \(h_1, \ldots, h_m \)
are locally constant. By Corollary 1.3 we can find polynomials P_1, \ldots, P_m for which
\[\|h_i - P_i\|_{n,X} \leq \varepsilon(\|Q_i\|_{n,X} + 1) \] for each i. Then $P := \sum_{i=1}^{m} Q_i P_i$ is a polynomial and
\[\|g - P\|_{n,X} \leq \varepsilon. \] It follows that $\|f - P\|_{n,X} \leq \max(\|f - g\|_{n,X}, \|g - P\|_{n,X}) \leq \varepsilon$.

Remarks.
1. In the case where $X = \mathbb{Z}_p$, $K \supseteq \mathbb{Q}_p$ the above Theorem 1.4 is not new: The Mahler base e_0, e_1, \ldots of $C(\mathbb{Z}_p \rightarrow K)$ defined by $e_m(x) = \left(\binom{x}{m} \right)$ is proved in [3], §54 to be a Schauder base for $C^n(\mathbb{Z}_p \rightarrow K)$, for each n.

2. It follows directly from Theorem 1.4 that the polynomial functions $X \rightarrow K$ form a dense subset of $C^\infty(X \rightarrow K)$.

2. A WEIERSTRASS-STONE THEOREM FOR C^n-FUNCTIONS

For this Theorem (2.10) we will need the continuity of $g \mapsto g \circ f$ in the C^n-topologies (Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of [3], §77.

Let $n \in \mathbb{N}$. For a function $h : \nabla^n X \rightarrow K$ we define $\Delta h : \nabla^{n+1} X \rightarrow K$ by the formula
\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, x_4, \ldots, x_{n+1}) - h(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}
\]
We have the following product rule.

Lemma 2.1. (Product Rule). Let $n \in \mathbb{N}$, let $h, t : \nabla^n X \rightarrow K$. Then for all $(x_1, x_2, \ldots, x_{n+1}) \in \nabla^{n+1} X$ we have
\[
\Delta(ht)(x_1, x_2, \ldots, x_{n+1}) = h(x_2, x_3, \ldots, x_{n+1})\Delta t(x_1, x_2, \ldots, x_{n+1}) + t(x_1, x_3, \ldots, x_{n+1})\Delta h(x_1, x_2, \ldots, x_{n+1}).
\]

Proof. Straightforward.

Lemma 2.2. Let $f : X \rightarrow K$, $n \in \mathbb{N}_0$. Let S_n be the set of the following functions defined on $\nabla^{n+1} X$.
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 f(x_{i_1}, x_{i_2}) \quad (1 \leq i_1 < i_2 \leq n + 1)
\]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 f(x_{i_1}, x_{i_2}, x_{i_3}) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)
\]
\[\vdots \]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n f(x_1, \ldots, x_{n+1}).
\]
For $k \in \mathbb{N}$, let R_n^k be the additive group generated by $S_n, S_n^2, \ldots, S_n^k$ where, for each $j \in \{1, \ldots, k\}$, S_n^j is the product set $\{h_1 h_2 \ldots h_j : h_i \in S_n \text{ for each } i \in \{1, \ldots, j\}\}$.
Then, for all $k, n \in \mathbb{N}$, $\Delta R_n^k \subseteq R_n^{k+1}$.

8
Proof. We use induction with respect to k. For the case $k = 1$ it suffices to prove $h \in \mathcal{S}_n \Rightarrow \Delta h \in R_{n+1}^1$. Then h has the form

$$(x_1, \ldots, x_{n+1}) \mapsto \Phi_j f(x_{i_1}, x_{i_2}, \ldots, x_{i_j+1})$$

for some $j \in \{2, 3, \ldots, n+1\}$ and so

$$\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, \ldots, x_{n+2}) - h(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δh is the null function), while if $i_1 = 1$ it equals

$$= \frac{\Phi_j f(x_1, x_{i_2+1}, \ldots, x_{i_j+1+1}) - \Phi_j f(x_2, x_{i_2+1}, \ldots, x_{i_j+1+1})}{x_1 - x_2}$$

and it follows that $\Delta h \in \mathcal{S}_{n+1} \subset R_{n+1}^1$. For the induction step assume $\Delta R_{n}^{k-1} \subset R_{n+1}^{k-1}$; it suffices to prove that $\Delta \mathcal{S}_{n}^{k} \subset R_{n+1}^{k}$. So let $h \in \mathcal{S}_{n}^{k}$ and write $h = h_1 H$, where $h_1 \in \mathcal{S}_n$, $H \in \mathcal{S}_{n}^{k-1}$. By the Product Rule 2.1 we have

$$\Delta h(x_1, \ldots, x_{n+2}) = h_1(x_2, x_3, \ldots, x_{n+2}) \Delta H(x_1, x_2, \ldots, x_{n+2}) +$$

$$+ H(x_1, x_3, \ldots, x_{n+2}) \Delta h_1(x_1, x_2, \ldots, x_{n+2}).$$

The fact that $h_1 \in \mathcal{S}_n$ makes

$$(x_1, x_2, \ldots, x_{n+2}) \mapsto h_1(x_1, x_3, \ldots, x_{n+2})$$

into an element of \mathcal{S}_{n+1}. Similarly, since $H \in \mathcal{S}_{n}^{k-1}$, the function

$$(x_1, x_2, \ldots, x_{n+2}) \mapsto H(x_2, x_3, \ldots, x_{n+2})$$

is in \mathcal{S}_{n+1}. By our first induction step, $\Delta h_1 \in R_{n+1}^1$ and by the induction hypothesis $\Delta H \in R_{n+1}^{k-1}$. Hence,

$$\Delta h \in \mathcal{S}_{n+1} R_{n+1}^{k-1} + \mathcal{S}_{n+1}^1 R_{n+1}^1$$

$$\subset R_{n+1}^1 R_{n+1}^{k-1} + R_{n+1}^{k-1} R_{n+1}^1 \subset R_{n+1}^k.$$

Lemma 2.3. Let f, n, S_n, k, R_n^k be as in the previous lemma. Let $f(X) \subset Y \subset K$ where Y has no isolated points. Let $g : Y \rightarrow K$ be a C^n-function. Let B_n be the set of the following functions defined on $\nabla^{n+1} X$.

$$(x_1, \ldots, x_{n+1}) \mapsto \overline{\Phi}_1 g(f(x_{i_1}), f(x_{i_2})) \quad \quad (1 \leq i_1 < i_2 \leq n + 1)$$

$$(x_1, \ldots, x_{n+1}) \mapsto \overline{\Phi}_2 g(f(x_{i_1}), f(x_{i_2}), f(x_{i_3})) \quad \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)$$

$$\vdots$$

$$(x_1, \ldots, x_{n+1}) \mapsto \overline{\Phi}_n g(f(x_1), f(x_2), \ldots, f(x_{n+1})).$$
Let A_n be the additive group generated by $B_nR^n_n$. Then

$$\Delta A_n \subseteq A_{n+1}.$$

Proof. We prove: $h \in B_nR^n_n \Rightarrow \Delta h \in A_{n+1}$. Write $h = br$ where $b \in B_n$, $r \in R^n_n$. By the Product Rule 2.1 we have for all $(x_1, x_2, \ldots, x_{n+2}) \in \nabla^{n+2}X$

$$\Delta h(x_1, x_2, \ldots, x_{n+2}) = b(x_2, x_3, \ldots, x_{n+2})\Delta r(x_1, x_2, \ldots, x_{n+2}) + r(x_1, x_3, \ldots, x_{n+2})\Delta b(x_1, x_2, \ldots, x_{n+2}).$$

We have:

(i) $b \in B_n$ so $(x_1, \ldots, x_{n+2}) \mapsto b(x_2, x_3, \ldots, x_{n+1})$ is in B_{n+1}.

(ii) $r \in R^n_n$ so $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+2})$ is in R^n_{n+1} (in the previous proof we had $r \in S^i_n \Rightarrow$ the map $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in S^i_{n+1}, and (ii) follows from this).

(iii) $r \in R^n_n$ so $\Delta r \in R^n_{n+1}$ (Previous Lemma).

(iv) b has the form

$$(x_1, x_2, \ldots, x_{n+1}) \mapsto \Phi_j g(f(x_i), \ldots, f(x_{i+1}))$$

for some $j \in \{2, \ldots, n+1\}$ and so

$$\Delta b(x_1, x_2, \ldots, x_{n+2}) = \frac{b(x_1, x_3, x_4, \ldots, x_{n+2}) - b(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δb is the null function), while if $i_1 = 1$ it equals

$$\Phi_j g(f(x_1), f(x_{i_2+1}), \ldots, f(x_{i_{i+1}+1})) - \Phi_j g(f(x_2), f(x_{i_2+1}), \ldots, f(x_{i_{i+1}+1}))$$

$$= \frac{\Phi_{j+1} g(f(x_1), f(x_2), f(x_{i_2+1}), \ldots, f(x_{i_{i+1}+1}))}{x_1 - x_2} \Phi_1 f(x_1, x_2).$$

(if $f(x_1) = f(x_2)$ we have 0 at both sides). So we see that $\Delta b \in B_{n+1}R^n_{n+1}$. Combining (i) - (iv) we get $\Delta h \in B_{n+1}R^n_{n+1} + R^n_{n+1}B_{n+1}R^n_{n+1} \subseteq B_{n+1}R^n_{n+1} + B_{n+1} \cdot R^n_{n+1} \subseteq A_{n+1}$.

Corollary 2.4. With the notations as in the previous lemma we have $\Phi_n(g \circ f) \in A_n$ ($n \in \mathbb{N}$).

Proof. We proceed by induction on n. For the case $n = 1$ we write, for $(x_1, x_2) \in \nabla^2 X$,

$$\Phi_1(g \circ f)(x_1, x_2) = (x_1 - x_2)^{-1} \left(g(f(x_1)) - g(f(x_2)) \right) = \Phi_1 g(f(x_1), f(x_2)) \Phi_1 f(x_1, x_2).$$
Hence, $ \Phi_1(g \circ f) \in B_1S_1 \subseteq B_1R_1 \subseteq A_1$. To prove the step $n \to n+1$ observe that by the induction hypothesis, $\Phi_n(g \circ f) \in A_n$. By Lemma 2.3, $\Phi_{n+1}(g \circ f) = \Delta \Phi_n(g \circ f) \in A_{n+1}$.

Remark. From Corollary 2.4 it follows easily that the composition of two C^n-functions is again a C^n-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of $g \mapsto g \circ f$) Let $n \in \mathbb{N}_0$, let $f \in C^n(X \to K)$ and let $g \in C^n(Y \to K)$ where Y has no isolated points, $Y \supset f(X)$. Then $\|g \circ f\|_{n,X} \leq \|g\|_{n,Y} \max_{0 \leq i \leq n} \|f\|_i^{j,X}.$

Proof. We may assume $\|g\|_{n,Y} < \infty$. It suffices to prove $\|\Phi_n(g \circ f)\|_{\mathcal{V}^{n+1},X} \leq \|g\|_{n,Y} \|f\|_{n,X}^{n,X}$. Now $\|\Phi_0(g \circ f)\|_{\mathcal{V}^1,X} = \max_{x \in X} |g(f(x))| \leq \|g\|_{0,Y} \|f\|_{0,X}^0$ which proves the case $n = 0$. For $n \geq 1$ we apply Corollary 2.4 which says that $\Phi_n(g \circ f) \in A_n$ i.e. $\Phi_n(g \circ f)$ is a sum of functions in B_nS^n. By the definition of B_n we have

\[(*) \quad h \in B_n \Rightarrow \|h\|_{\mathcal{V}^{n+1},X} \leq \|g\|_{n,Y}\]

Similarly

\[k \in S_n \Rightarrow \|k\|_{\mathcal{V}^{n+1},X} \leq \max_{0 \leq i \leq n} \|\Phi_if\|_{\mathcal{V}^{i+1},X} \leq \|f\|_{n,X}\]

so that

\[(**) \quad k \in S^n_n \Rightarrow \|k\|_{\mathcal{V}^{n+1},X} \leq \|f\|_{n,X}^n\]

Combination of $(*)$ and $(**)$ yields $\|\Phi_n(g \circ f)\|_{\mathcal{V}^{n+1},X} \leq \|g\|_{n,Y} \|f\|_{n,X}^n$.

Proposition 2.5 enables us to prove

Proposition 2.6. Let $n \in \mathbb{N}_0$ and let A be a closed subalgebra of $C^n(X \to K)$. Suppose A separates the points of X and contains the constant functions. Then A contains all locally constant functions $X \to K$.

Proof. 1. We first prove that $f \in A$, $U \subseteq K$, U clopen implies $\xi_{f^{-1}(U)} \in A$. In fact, $f(U)$ is compact so there exist a $\delta \in (0,1)$ and finitely many disjoint balls B_1, \ldots, B_m in U of radius δ covering $f(U)$. Let $\varepsilon > 0$. By the Key Lemma 1.2 there exists, for each $i \in \{1, \ldots, m\}$ a polynomial P_i such that $\|\xi_{B_i} - P_i\|_{n,B} < \varepsilon$, where $B := \bigcup B_i$. Then $P := \Sigma P_i$ is a polynomial and $\|P - \xi_U\|_{n,B} = \|P - \xi_B\|_{n,B} = \|\Sigma (P_i - \xi_{B_i})\| < \varepsilon$.

By Proposition 2.5

\[\|(P - \xi_U) \circ f\|_{n,X} \leq \|P - \xi_U\|_{n,B} \max_{0 \leq j \leq n} \|f\|_j^{j,X} \leq \varepsilon \max_{0 \leq j \leq n} \|f\|_j^{j,X}\]

and we see that there exists a sequence P_1, P_2, \ldots of polynomials such that
\[\|P_n \circ f - \xi U \circ f\|_{n, X} \to 0. \] Since \(A \) is an algebra with an identity we have \(P_n \circ f \in A \) for all \(n \). Then \(\xi_{f^{-1}(U)} = \xi_U \circ f = \lim_{n \to \infty} P_n \circ f \in A. \)

2. Now consider

\[B := \{ V \subset X, \xi_V \in A \}. \]

It is very easy to see that \(B \) is a ring of clopen subsets of \(X \) and that \(B \) covers \(X \). To show that \(B \) separates the points of \(X \) let \(x \in X, y \in X, x \neq y \). Then there is an \(f \in A \) for which \(f(x) \neq f(y) \). Set \(U := \{ \lambda \in K : |\lambda - f(x)| < |f(x) - f(y)| \} \). Then \(U \) is clopen in \(K \). By the first part of the proof, \(f^{-1}(U) \in B \). But \(x \notin f^{-1}(U) \) whereas \(y \notin f^{-1}(U) \).

By [1], Exercise 2.H \(B \) is the ring of all clopens of \(X \). It follows easily that all locally constant functions are in \(A \).

To arrive at the Weierstrass-Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let \(a_1, \ldots, a_m \in X \), let \(\delta_1, \ldots, \delta_m \) be in \((0,1)\) such that \(B(a_1, \delta_1), \ldots, B(a_m, \delta_m) \) form a disjoint covering of \(X \). Let \(n \in \mathbb{N}_0, h \in \mathcal{C}^n(X \to K) \) and suppose

\[D_j h(a_i) = 0 \quad \text{and} \quad |\Phi_{n-j} D_j h(x_1, \ldots, x_{n-j+1})| \leq \varepsilon \]

for all \(i \in \{1, \ldots, m\}, x_1, \ldots, x_{n+1} \in B(a_i, \delta_i) \cap X, j \in \{0,1, \ldots, n\} \). Then \(\|h\|_{n, X} \leq \varepsilon \).

Proof. We first prove that \(\|h\|_{n, X} \leq \varepsilon \) (see Proposition 0.4(iii)). Let \(i \in \{1, \ldots, m\} \). By Taylor's formula (Proposition 0.3(iv)) we have for \(x \in X \cap B_i : |h(x)| = \left| \sum_{s=0}^{n-1} (x - a_i)^s D_s h(a_i) + (x - a_i)^n \rho_1 h(x, a_i) \right| = |x - a_i|^n |\Phi_n h(x, a_i, a_i, \ldots, a_i)| \leq \delta^n \varepsilon.

Similarly we have for \(j \in \{0, \ldots, n-1\} \) and \(x \in X \cap B_i : |D_j h(x)| = \left| \sum_{s=0}^{n-1} (x - a_i)^s D_s h(a_i) + (x - a_i)^n \rho_1 (D_j h)(x, a_i) \right|. \]

Now using Proposition 0.3(iii) we see that \(D_i D_j h(a_i) = 0 \) so that

\[|D_j(x)| = |x - a_i|^{n-j} |\Phi_{n-j} D_j h(x, a_i, \ldots, a_i)| \leq \delta^{n-j} \varepsilon. \]

It follows that \(\|h\|_X, \|D_1 h\|_X, \ldots, \|D_{n-1} h\|_X \) are all \(\leq \varepsilon \). Now let \(x, y \in X \). If \(x, y \) are in the same \(B_i \) then \(|\rho_1 h(x, y)| = |\Phi_n h(x, y, y, \ldots, y)| \leq \varepsilon \) by assumption. If \(x \in B_i, y \in B_j \) and \(i \neq s \) then \(|x - y| \geq \delta := \max(\delta_i, \delta_s) \) and by Taylor's formula

\[h(x) = \sum_{l=0}^{n-1} (x - y)^l D_l h(y) + (x - y)^n \rho_1 h(x, y) \]

we obtain, using (\(\ast \)),

\[|\rho_1 h(x, y)| \leq \frac{|h(x) - h(y)|}{|(x - y)^n|} \vee \frac{|D_1 h(y)|}{|x - y|^{n-1}} \vee \cdots \vee \frac{|D_{n-1} h(y)|}{|x - y|} \leq \frac{\delta^n \varepsilon}{\delta^n} \vee \frac{\delta^{n-1} \varepsilon}{\delta^n} \vee \cdots \vee \frac{\delta \varepsilon}{\delta} \leq \varepsilon \]

12
and we have proved $\|h\|_{n,X}^\sim \leq \varepsilon$

Now to prove that even $\|h\|_{n,X} \leq \varepsilon$ observe that by Proposition 0.4(iii)

$$\|h\|_{n,X} = \|h\|_{n,X}^\sim \lor \|D_1 h\|_{n-1,X}^\sim \lor \cdots \lor \|D_n h\|_{0,X}^\sim.$$

To prove, for example, that $\|D_1 h\|_{n-1,X}^\sim \leq \varepsilon$ we observe that $D_1 h \in C^{n-1}(X \to K)$ and that for $i \in \{1, \ldots, m\}$ and $j \in \{0, 1, \ldots, n-2\}$ we have $D_j D_1 h(a_i) = (j+1)D_{j+1} h(a_i) = 0$ and for all $x_1, \ldots, x_n \in B(a_i, \delta_i)$ and $j \in \{0, 1, \ldots, n-2\}$

$$|\Phi_{n-1-j} D_j(D_1 h)(x_1, \ldots, x_{n-j})| = |(j+1)|\Phi_{n-1-j} D_{j+1} h(x_1, \ldots, x_{n-j})| \leq \varepsilon$$

by assumption. So the conditions of our Lemma (with $D_1 h$, $n-1$ in place of h, n respectively) are satisfied and by the first part of the proof we may conclude that $\|D_1 h\|_{n-1,X}^\sim \leq \varepsilon$. In a similar way we prove that $\|D_2 h\|_{n-2,X}^\sim \leq \varepsilon$, \ldots, $\|D_n f\|_{0,X}^\sim \leq \varepsilon$ and it follows that $\|h\|_{n,X} \leq \varepsilon$.

Proposition 2.8. Let $n \in \mathbb{N}_0$ and let A be a closed subalgebra of $C^n(X \to K)$ containing the locally constant functions. Let $g \in C^n(X \to K)$ and suppose for each $a \in X$ there exists an $f_a \in A$ with $D_i g(a) = D_i f_a(a)$ for $i \in \{0, 1, \ldots, n\}$. Then $g \in A$.

Proof. Let $\varepsilon > 0$. For each $a \in X$ choose an $f_a \in A$ with $f_a(a) = g(a)$, $D_1 f_a(a) = D_1 g(a), \ldots, D_n f_a(a) = D_n g(a)$. By continuity there exists a $\delta_a > 0$ such that, with $h_a := f_a - g$, $|\Phi_{n-j} D_j h_a(x_1, \ldots, x_{n-j+1})| \leq \varepsilon$ for all $j \in \{0, 1, \ldots, n\}$ and $x_1, \ldots, x_{n-j+1} \in B(a, \delta_a)$. The $B(a, \delta_a)$ cover X and by compactness there exists a finite disjoint subcovering $B(a_1, \delta_{a_1}), \ldots, B(a_m, \delta_{a_m})$. Set

$$f := \sum_{i=1}^m f_{a_i} \chi_{B(a_i, \delta_{a_i}) \cap X}$$

Then, by our assumption on A, $f \in A$. By Lemma 2.7, applied to $h := f - g$ and where $\delta_1, \ldots, \delta_m$ are replaced by $\delta_{a_1}, \ldots, \delta_{a_m}$ respectively, we then have $\|f - g\|_{n,X} \leq \varepsilon$. We see that $g \in A = A$.

Remark. It follows directly that the local polynomial functions $X \to K$ form a dense subset of $C^n(X \to K)$.

Proposition 2.9. Let $n \in \mathbb{N}$ and let A be a K-subalgebra of $C^n(X \to K)$ containing the constant functions. Suppose $f'(a) \neq 0$ for some $f \in A$, $a \in X$. Then there is a $g \in A$ with $g(a) = 0$, $g'(a) = 1$ and $D_2 g(a) = D_3 g(a) = \cdots = D_n g(a) = 0$.

Proof. By considering the function $f'(a)^{-1}(f - f(a))$ it follows that we may assume that $f(a) = 0$, $f'(a) = 1$. Then

$$f = (X - a) h$$

13
where \(h \) is continuous, \(h(a) = 1 \). To obtain the statement by induction with respect to \(n \) we only have to consider the induction step \(n - 1 \rightarrow n \) and, to prove that, we may assume that \(D_2 f(a) = \cdots = D_{n-1} f(a) = 0 \). From (*) we obtain

\[
f^n = (X - a)^n h^n
\]

and by uniqueness of the Taylor expansion of the \(C^n \)-function \(f^n \) we obtain \(f^n(a) = D_1 f^n(a) = \cdots = D_{n-1} f^n(a) = 0 \) and \(D_n f^n(a) = h^n(a) = 1 \). We see that \(g := f - D_n f(a) f^n \) is in \(A \) and that \(g(a) = 0, g'(a) = 1, D_2 g(a) = \cdots = D_{n-1} g(a) = 0 \) and \(D_n g(a) = D_n f(a) - D_n f(a) D_n f^n(a) = 0 \).

Theorem 2.10. (Weierstrass-Stone Theorem for \(C^n \)-functions). Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra that separates the points of \(X \) and that contains the constant functions. Suppose also that for each \(a \in X \) there exists an \(f \in A \) with \(f(a) \neq 0 \). Then \(A = C^n(X \rightarrow K) \).

Proof. By Proposition 2.9, for each \(a \in X \) there exists an \(f \in A \) with \(f(a) = 0, f'(a) = 1, D_i f(a) = 0 \) for \(i \in \{2, \ldots, n\} \). The function \(g := X \) satisfies \(g(a) = 0, g'(a) = 1, D_i g(a) = 0 \) for \(i \in \{2, \ldots, n\} \) so applying Proposition 2.8 (observe that \(A \) contains the locally constant functions by Proposition 2.6) we obtain that \(X \in A \). But then all polynomials are in \(A \) and \(A = C^n(X \rightarrow K) \) by the Weierstrass Theorem 1.4.

Remarks.

1. The case \(n = 0 \) yields, at least for those \(X \) that are embeddable into \(K \), the well known Kaplansky Theorem proved in [1], 6.15.

2. We leave it to the reader to establish a \(C^\infty \)-version of Theorem 2.10.

REFERENCES

