The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60064

Please be advised that this information was generated on 2017-10-30 and may be subject to change.
WEAK AND STRONG C'-COMPACTNESS IN NON-ARCHIMEDEAN
BANACH SPACES

by S. Borrey and W.H. Schikhof

communicated by J. Van Geel

ABSTRACT
Throughout \(K \) is a non-archimedean complete valued field with dense valuation \(|.| \). An absolutely convex set \(A \) of a \(K \)-Banach space \(E \) is called (weakly) \(c' \)-compact if \(\max_{x \in A} p(x) \) exists for each (weakly) continuous seminorm \(p \) on \(E \).
Assuming the continuum hypothesis, we shall prove that, if \(K \) has the cardinality of the continuum, in a strongly polar \(K \)-Banach space, each weakly \(c' \)-compact set is \(c' \)-compact.

INTRODUCTION
(For unexplained terms, see below and [2], [3] and [6]). It was proved in 1986 ([5], theorem 2.7) that each weakly \(c' \)-compact set is \(c' \)-compact if \(E \) is a \(K \)-Banach space with a base. Further progress came about in 1989 ([1], theorem 5.2.13) when the same conclusion could be drawn for an arbitrary Banach space over a spherically complete \(K \). However, if \(K \) is not spherically complete, the closed unit ball of (the polar space) \(E^* \) is weakly \(c' \)-compact but not \(c' \)-compact. ([5], example p. 9). So, quite naturally the following problem arises:
Let \(K \) be not spherically complete. Is every weakly \(c' \)-compact set in a strongly polar \(K \)-Banach space necessarily \(c' \)-compact?

In this note we give a partial solution (as stated in the abstract). The general problem remains open.

PRELIMINARIES
We assume that \(K \) is not spherically complete and that \(K \) has the cardinality of the continuum, for example \(K = C_p \), the completion of the algebraic closure of \(Q_p \). The residue class field of \(K \) is \(\mathbb{k} \) and the canonical map \(\{ \lambda \in K \mid |\lambda| \leq 1 \} \rightarrow \mathbb{k} \) is written \(\lambda \rightarrow \bar{\lambda} \).
Let \(E \) be a \(K \)-Banach space. Its dual is \(E^* \), the absolutely convex hull of a set \(S \subset E \) is denoted by \(\text{co}S \), the closure of \(\text{co}S \) by \(\bar{\text{co}}S \) and its \(K \)-linear span by \([S] \).
Recall that \(E \) is called strongly polar if every continuous seminorm \(p \) is polar.
(I.e. \(p = \sup \{ |f| \mid f \in E^*, |f| \leq p \} \)). We shall need the following results which are proved in [3]. Subspaces and images under continuous linear maps of strongly polar...
spaces are strongly polar. In a strongly polar space E every continuous linear function defined on a linear subspace can be extended to an element of E' and for every closed linear subspace D and $x \in E \setminus D$, there exists an $f \in E'$ that vanishes on D but $f(x) \neq 0$. Spaces of countable type are strongly polar.

1. TWO IMPLICATIONS OF THE CARDINALITY OF K

1.1. **THEOREM**: If $c_0(I)$ is strongly polar, then I is at most countable.

Proof: Suppose that I is uncountable. Then, using the continuum hypothesis, we have $\# E^\infty = \# K \leq \# I$. Hence, there exists a surjection of I onto the unit ball of L^∞ which extends to a continuous linear surjection $c_0(I) \to L^\infty$. Now L^∞ is not strongly polar so neither is $c_0(I)$.

1.2. **COROLLARY**: Let $t \in (0, 1]$. Any t-orthogonal set in a strongly polar space is at most countable.

2. WEAK AND STRONG C'-COMPACTNESS

2.1. **PRELIMINARIES**: Let E be a K-Banach space with norm $\|\cdot\|$. For a closed and absolutely convex subset A of E, we put $A^i = \{ \lambda a \mid \lambda \in K, |\lambda| < 1, a \in A \}$. Then A^i and $\overline{A^i}$ are absolutely convex. The quotient $V_A = A / \overline{A^i}$ is, in a natural way, a k-vector space. Let $\pi : A \to V_A$ denote the quotient map.

The formula $\|\pi(x)\| = \inf \{ \|x - a\| \mid a \in \overline{A^i} \}$ defines a norm on V_A for which it becomes a k-Banach space ([2], proposition 3.2).

Any k-Banach space has, for each $t \in (0,1)$, a t-orthogonal base ([2], proposition 3.5).

2.2. **LEMMA**: Let $A \subset E$ be closed, bounded and absolutely convex. Let $t \in (0,1)$ and let $(e_i)_{i \in I}$ be a family in A such that $(\pi(e_i))_{i \in I}$ is t-orthogonal and such that $\alpha = \inf_{i \in I} \|\pi(e_i)\| > 0$.

Then $(e_i)_{i \in I}$ is t'-orthogonal for some $t' \in (0,t]$.

Proof: Put $\beta = \sup_{i \in I} \|e_i\|$. Now, let $J \subset I$ be finite and put $x = \sum_{i \in J} \lambda_i e_i$ where $\lambda_i \in K^*$ for each $i \in J$. It is no restriction to assume that $\max_{i \in J} |\lambda_i| = 1$. Then we have the following:

$$\|x\| \geq \|\pi(x)\| = \|\sum_{i \in J} \overline{\lambda_i} \pi(e_i)\| \geq \lambda_{\max_{i \in J}} \|\pi(e_i)\| \geq \max_{i \in I} \|\pi(e_i)\| \geq \max_{i \in J} \|e_i\| \geq \alpha = \max_{i \in I} \|\lambda_i e_i\|. $$

It suffices to choose $t' = t \alpha \beta^{-1}$ to complete the proof.

2.3. **REMARK**: In the proof of lemma 2.2, the condition on the cardinality of K is redundant. (See also [2], lemma 3.11).
2.4. LEMMA: Let \(A \) be a closed, bounded and absolutely convex subset of a strongly polar \(K \)-Banach space \(E \). Then \(V_A \) is of countable type.

\textit{Proof}: Let \((\pi(e_i))_{i \in I} \) be a \(t \)-orthogonal base of \(V_A \) for some \(t \in (0,1) \).

For each \(n \in \mathbb{N}_0 \), put \(I_n = \{ i \in I \mid \|e_i\| \geq \frac{1}{n} \} \). By lemma 2.2, \((e_i)_{i \in I_n} \) is \(t' \)-orthogonal for some \(t' \in (0,1] \) and by corollary 1.2, the set \(I_n \) is at most countable. It follows that \(I = \bigcup_{n \in \mathbb{N}_0} I_n \) is countable, hence, \(V_A \) is of countable type.

2.5. THEOREM: Let \(A \) be an absolutely convex, weakly \(c' \)-compact subset of a strongly polar \(K \)-Banach space \(E \). Then \(A \) is \(c' \)-compact.

\textit{Proof}: We may assume that \(A \) is closed ([4], proposition 1.2). Weak \(c' \)-compactness implies weak boundedness, hence norm boundedness ([3], corollary 7.7). Choose \(t \in (0,1) \) and let \((e_n)_{n \in \mathbb{N}_0} \subseteq A \) be such that \((\pi(e_n))_{n \in \mathbb{N}_0} \) is a \(t \)-orthogonal base of \(V_A \). (Lemma 2.4).

We may assume that \(\|e_n\| \leq t^{-1} \pi(e_n) \) for each \(n \in \mathbb{N}_0 \). Put \(B = \overline{\text{co}}(e_n \mid n \in \mathbb{N}_0) \).

Then, as \(B \subseteq A \), obviously \(\overline{B} \subseteq \overline{A} \). Now, if this inclusion were strict, we could find (by strong polarmess) an \(f \in E' \) that vanishes on \(\overline{B} \) but not on \(\overline{A} \). By weak \(c' \)-compactness, \(\alpha = \max_{x \in A} |f(x)| \) exists and is non-zero. Clearly \(|f| < \alpha \) on \(A^1 \) and thus \(\|f\| < \alpha \) on \(\overline{A^1} \).

On the other hand, it is not difficult to see that \(A \subseteq B + \overline{A^1} \) (recall that \(\text{Ker} \pi = \overline{A^1} \)).

Hence, it follows that \(\|f\| < \alpha \) on \(A \) (since \(f \) vanishes on \(B \)) and this is a contradiction.

So, \(\overline{A} = \{ e_n \mid n \in \mathbb{N}_0 \} \). Now, again by strong polarmess, the weak topology of \(\overline{A} \) is the restriction to \(\overline{A} \) of the weak topology of \(E \). Hence, \(A \) is a closed, weakly \(c' \)-compact subset of a \(K \)-Banach space \(\overline{A} \) of countable type.

On the other hand, since \(\overline{A} \) is of countable type, it has a base. Now simply apply [5], theorem 2.7 to conclude that \(A \) is \(c' \)-compact in \(\overline{A} \) and thus in \(E \).

REFERENCES

[2] \textsc{Borrey, S.}: Weak \(c' \)-compactness in (strongly) polar Banach spaces over a non-archimedean, densely valued field. To appear in P-adic functional analysis. (Marcel Dekker Inc.)

(received April 1992)

W.H. Schikhof
Katholieke Universiteit Nijmegen
Mathematisch Instituut
Toernooiveld
6526 ED Nijmegen
The Netherlands

S. Borrey
Vrije Universiteit Brussel
Faculteit Toegepaste Wetenschappen
Dienst WISA
Pleinlaan, 2
1050 Brussel
Belgium