The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60062

Please be advised that this information was generated on 2018-02-12 and may be subject to change.
Abstract. For a closed subspace D of ℓ^∞ over a non-archimedean valued base field we study in this paper the property

1. There exists a continuous linear projection P from ℓ^∞ onto D with $\|P\| \leq 1$ (D is orthocomplemented in ℓ^∞)

as related to the properties 2,3,4 below.

2. For every continuous linear functional $f \in D'$ there exists a continuous linear extension $\tilde{f} \in (\ell^\infty)'$ with $\|\tilde{f}\| = \|f\|$ (D has the Hahn-Banach property in ℓ^∞).

3. The canonical quotient map $\pi_E : E \to E/D$ is strict, i.e. for each $z \in E/D$ there exists $x \in E$ with $\pi_E(x) = z$ and $\|x\| = \|z\|$ (D is strict in ℓ^∞).

4. D is weakly closed in ℓ^∞.

Also, certain duality arguments allow us to obtain several descriptions of the orthocomplemented subspaces of c_0. In particular it is shown (Theorem 4.3) that, if K is not spherically complete, a closed hyperplane H in c_0 having the Hahn-Banach property in c_0 is orthocomplemented.

1. PRELIMINARIES. Throughout K is a non-archimedean valued field that is complete with respect to the metric induced by the non-trivial valuation $|\cdot|$. Also, $(E, \|\cdot\|)$ will be a (non-archimedean) Banach space over K.

For a Banach space F over K and a continuous linear map T from E into F, the kernel of T is the set

$$\text{Ker } T = \{x \in E : Tx = 0\}.$$

Also, the norm of T is given by

$$\|T\| = \sup \left\{ \frac{\|Tx\|}{\|x\|} : x \in E \setminus \{0\} \right\}$$

When there exists a linear isometry from E onto F we say that E and F are isometrically isomorphic and we write $E \simeq F$.

(1) Research partially supported by Comision Mixta Caja Cantabria-Universidad de Cantabria.
The dual space E' of E consisting of all the continuous linear maps from E to K is again a Banach space. We set

$$J_E(x)(x') = x'(x) \quad (x \in E, x' \in E').$$

E is called reflexive is J_E is an isometry from E onto E''.

For a closed subspace D of E we say that

a) D has the HB-property (resp. HB$^+$-property) in E if for every $f \in D'$ (resp. for every $\varepsilon > 0$ and for every $f \in D'$) there exists a continuous linear map $\hat{f} \in E'$ extending f such that $\|\hat{f}\| = \|f\|$ (resp. $\|\hat{f}\| \leq (1 + \varepsilon)\|f\|$).

b) D is strict in E if the quotient map $\pi_E : E \to E/D$ is strict (i.e. for every $z \in E/D$ there exists an $x \in E$ for which $\pi_E(x) = z$ and $\|x\| = \|z\|$).

c) D is orthocomplemented in E if there exists a closed subspace G of E such that $D \cap G = \{0\}$, $E = D + G$ and

$$\|x + y\| = \max(\|x\|, \|y\|) \quad (x \in D, y \in G)$$

(such a G is called an orthogonal complement of D in E).

It is not difficult to prove the following Propositions which include some elementary (but useful) descriptions for the orthocomplemented and the strict subspaces of an arbitrary Banach space.

Proposition 1.1. For a closed subspace D of E the following are equivalent.

i) D is orthocomplemented in E.

ii) There exists a continuous linear isometry $\varphi : E/D \to E$ such that $\pi_E \circ \varphi$ is the identity on E/D.

iii) There exists a continuous linear projection P from E onto D with $\|P\| = 1$ (This P is called an orthoprojection from E onto D).

Proposition 1.2. For a closed subspace D of E the following properties are equivalent:

i) D is strict in E.

ii) There exists a (non-necessarily linear) map $\varphi : E/D \to E$ such that $\|\varphi(x)\| = \|x\|$ for all $x \in E/D$ and $\pi_E \circ \varphi$ is the identity on E/D.

iii) For each $x \in E$, D is orthocomplemented in $D + Kx$.

Clearly, D is orthocomplemented in $E \Rightarrow D$ has the HB-property and D is strict in E.

If E' separates the points of E then D is orthocomplemented in $E \Rightarrow D$ is weakly closed in E.

Most of what we are about to do concerns converses of the above implications when $E = \ell^\infty$ or c_0. Firstly we consider (co)finite-dimensional subspaces (sections 3,4) and
later on arbitrary closed subspaces of ℓ^∞ and c_0 (section 5). We assume that K is not spherically complete, since if K is spherically complete every closed subspace of E is weakly closed and has the HB-property in E ([3], Theorems 4.2, 4.7) and also every finite-dimensional subspace of E is orthocomplemented ([7], Lemma 4.35). The basic machinery to our purpose is included in section 2.

The following problem arises in a natural way in this paper (see Problem 4 in section 5):

Problem. Suppose K is not spherically complete. Let D be a weakly closed subspace of ℓ^∞ such that D is strict and has the HB-property in ℓ^∞. Does it follow that D is orthocomplemented in ℓ^∞?

In fact we do not know the answer of this problem for any infinite-dimensional Banach space E (instead of ℓ^∞) over a non-spherically complete field K.

However, if K is spherically complete, the situation is completely different. Indeed, suppose that $|K| = [0, \infty)$. By a standard construction we can make a strict quotient map $\pi : c_0(I) \to \ell^\infty$ if I has adequate cardinal. Now, $D = \ker \pi$ is a weakly closed subspace which is strict and has the HB-property in $c_0(I)$. If D were orthocomplemented then ℓ^∞ would be isometrically isomorphic to a closed subspace of $c_0(I)$ and so ℓ^∞ has an orthogonal base: a contradiction ([7], Corollary 5.18).

For some other unexplained concepts and notations that we will use in the sequel, we refer to [3] and [7].

2. **GENERAL FACTS**

In this section we include some general results which will be useful in the rest of the paper.

First, we are going to see (Propositions 2.1 - 2.7) that strictness and the HB-property behave sometimes as "opposites" of one another.

Proposition 2.1. Let D be a closed subspace of E.

i) If D is strict in E and $E/D \simeq c_0(I; s)$ for some set I and $s : I \to (0, +\infty)$, then D is orthocomplemented in E.

ii) If D has the HB-property in E and $D \simeq \ell^\infty(I; s)$ for some set I and some $s : I \to (0, +\infty)$, then D is orthocomplemented in E (compare Theorem 1.2 of [5]).

Proof.

i) Let $\{u_i : i \in I\}$ be an orthogonal base of E/D. By strictness, there exists

$\{z_i : i \in I\} \subset E$ such that $\pi_E(z_i) = u_i$ and $\|z_i\| = \|u_i\|$ for all $i \in I$. A standard argument shows that $\varphi : E/D \to E$ given by the formula $\sum_{i \in I} \lambda_i u_i \to$
$\sum_{i \in I} \lambda_i z_i$ is a linear isometry for which $\pi_E \circ \varphi$ is the identity on E/D. Hence, D is orthocomplemented.

ii) For each $i \in I$ the coordinate function $f_i \in D'$ given by $f_i(x) = x_i \ (x = (x_i)_{i \in I} \in \ell^\infty(I, s))$ has norm $s(i)^{-1}$. By the HB-property, f_i extends to an $\tilde{f}_i \in E'$ with $\|\tilde{f}_i\| = s(i)^{-1}$. Then, $P : E \to D; x \to (\tilde{f}_i(x))_{i \in I}$ is an orthoprojection from E onto D.

As a special case we obtain

Corollary 2.2. If D is a closed hyperplane (resp. a one-dimensional subspace) in E, then D is strict (resp. D has the HB-property) in E iff D is orthocomplemented in E.

Remarks 2.3.

1.- Observe that if D is a closed hyperplane of E, there is an $f \in E' - \{0\}$ such that $D = \ker f$. Then, D is orthocomplemented iff $\|f\| = \max \{|f(x)| : x \in E\setminus\{0\}\}$. In fact, if $a \in E$ one can easily see that Ka is an orthogonal complement of D iff $\|f\| = \frac{|f(a)|}{\|a\|}$.

2.- If K is spherically complete the finite (co)dimensional version of the above Corollary 2.2 holds. Indeed, observe that if $\dim E/D < \infty$, then E/D has an orthogonal base ([7], Lemma 5.5). Also, every finite-dimensional subspace of E is orthocomplemented ([7], Lemma 4.35).

3.- But, for non-spherically complete fields K the generalization in Remark 2 does not hold. In fact, let $\pi : c_0 \to K^2_\ell$ be a strict surjection ([6], 2.3, Remark 1). Then, $\ker \pi$ is a strict two-codimensional subspace of c_0 that cannot be orthocomplemented since K^2_ℓ has no orthogonal base ([7], p.68).

On the other hand, the adjoint of π is an isometry $\pi' : (K^2_\ell)' \to \ell^\infty$ and by construction $\text{Im} \pi'$ has the HB-property in ℓ^∞. But it will follow from Theorem 3.3 that it is not orthocomplemented in ℓ^∞.

However we do have the following related statement.

Proposition 2.4.

i) If D is a closed subspace of E of finite codimension and if all hyperplanes H containing D are strict (orthocomplemented) in E, then D is orthocomplemented in E.

ii) If D is a finite-dimensional subspace of E and if every one-dimensional subspace of D has the HB-property (is orthocomplemented) in E, then D is orthocomplemented in E.
Proof.
i) For a proof by induction with respect to the codimension of D it suffices to show that, for closed subspaces D_1, D_2 of finite codimension, containing D from

\[D_1 \subset D_2, \dim D_2/D_1 = 1 \text{ and } D_2 \text{ is orthocomplemented in } E, \]

it follows that D_1 is orthocomplemented in E.

To see that, let P be an orthoprojection from E onto D_2. Then, $\dim \ker P = \text{codim } D_1 - 1$ and so $D_1 + \ker P$ is a closed hyperplane of E. There is an orthoprojection Q from E onto $D_1 + \ker P$. Hence, PQ is an orthoprojection from E onto D_1.

ii) Almost identical to the proof of Lemma 4.35,iii) of [7].

The next two Propositions stress the duality between strictness and the HB-property.

Proposition 2.5. For a closed subspace D of E and its polar D^0 we have

i) If D is orthocomplemented in E, then D^0 is orthocomplemented in E'.

ii) If D has the HB-property in E, then D^0 is strict in E'.

iii) If D is strict in E and E/D is reflexive, then D^0 has the HB-property in E'.

Proof.
i) If S is an orthogonal complement of D in E, then S^0 is an orthogonal complement of D^0 in E'.

ii) If $i : D \hookrightarrow E$ is the canonical inclusion then its adjoint $i' : E' \rightarrow D'$ is a strict map. Hence, its kernel, D^0, is strict in E'.

iii) The quotient map $\pi_E : E \rightarrow E/D$ has an isometrical adjoint $\pi'_E : (E/D)' \rightarrow E'$ for which $\pi'_E((E/D)') = D^0$. Hence, to show that D^0 has the HB-property in E' it suffices to prove that for any $\varphi \in (E/D)'$ there exists a $\tilde{\varphi} \in E''$ such $\|\tilde{\varphi}\| = \|\varphi\|$ and $\tilde{\varphi} \circ \pi'_E = \varphi$. By the reflexivity of E/D, there is a $z \in E/D$ such that $\varphi = J_{E/D}(z)$ and $\|z\| = \|\varphi\|$. Also, by strictness there is an $x \in E$ with $\pi_E(x) = z$ and $\|x\| = \|z\|$. Then, $\tilde{\varphi} = J_E(x)$ satisfies the required conditions.

Now, we consider the converse of Proposition 2.5.

Proposition 2.6. Let D be a closed subspace of E.

i) Let D^0 be orthocomplemented (resp. D^0 have the HB-property in E). If in addition E is reflexive and D is weakly closed then D is orthocomplemented (resp. D is strict) in E.

ii) If D^0 is strict in E' and D has the HB+-property in E, then D has the HB-property in E.

57
Proof.

i) By the previous Proposition the bipolar of D, $D^{\ast\ast}$, is orthocomplemented (strict) in E''. By reflexivity and weak closedness D is orthocomplemented (strict) in E.

ii) Let $i' : E' \to D'$ be the adjoint map of the canonical inclusion $i : D \to E$ and let $\rho : D' \to E'/D^0$ the natural map making the diagram

$$
\begin{array}{ccc}
E' & \xrightarrow{i'} & D' \\
\pi_{E'} \uparrow & & \nearrow \rho \\
E'/D^0
\end{array}
$$

commute. It follows easily from the HB$^+$-property of D that ρ is an isometrical isomorphism. Now, $\pi_{E'}$ is strict. Hence, so is i', i.e. D has the HB-property.

Although in the above results the HB-property and strictness seem dual properties, sometimes they have similar behaviour. This is the case in the next few propositions.

Observe that if D is a closed subspace of E and S is a closed subspace of D, then we have in a natural way the following commutative diagram

$$
\begin{array}{ccc}
D & \xrightarrow{i_1} & E \\
\downarrow \pi_D & & \downarrow \pi_E \\
D/S & \xrightarrow{i_2} & E/S
\end{array}
$$

where i_1, π_E, π_D are the obvious maps and i_2 makes the diagram commute.

Proposition 2.7. Let D be a closed subspace of E and let S be a closed subspace of D. If D is strict (resp. has the HB-property, is orthocomplemented) in E, then $i_2(D/S)$ is strict (resp. has the HB-property, is orthocomplemented) in E/S.

Proof. Suppose that D is strict. Let $x \in E$. There is a $d \in D$ such that

$$
\|x - i_1(d)\| \leq \|x - i_1(d')\| \quad (d' \in D).
$$

Now, for all $s' \in S$, $d' \in D$, we have

$$
\|\pi_E(x) - i_2\pi_D(d)\| = \|\pi_E(x) - \pi_E(i_1(d))\| \\
\leq \|x - i_1(d)\| \leq \|x - i_1(d') - s'\|
$$

Hence, $\|\pi_E(x) - i_2\pi_D(d)\| \leq \|\pi_E(x) - i_2\pi_D(d')\|$ for all $d' \in D$ and we see that the distance of $\pi_E(x)$ to $i_2(D/S)$ is attained, which means that $i_2(D/S)$ is strict in E/S.

58
Now, assume that D has the HB-property and let $f \in (D/S)'$. Then $f \circ \pi_D \in D'$ so by assumption there is a $g \in E'$ such that $\|g\| = \|f \circ \pi_D\| = \|f\|$ and $g \circ i_1 = f \circ \pi_D$. Since $S \subseteq \text{Ker } g$ there is a unique $\tilde{f} \in (E/S)'$ such that $\tilde{f} \circ \pi_E = g$ (see the diagram).

\[
\begin{array}{ccc}
D & \xrightarrow{i_1} & E \\
\downarrow \pi_D & & \downarrow \pi_E \\
D/S & \xrightarrow{i_2} & E/S \\
\end{array}
\]

One verifies without pain that then also $\tilde{f} \circ i_2 = f$ and that $\|\tilde{f}\| = \|f\|$.

Finally, suppose that D is orthocomplemented and let $P : E \to D$ be an orthoprojection from E onto D. Since $S \subseteq \text{Ker}(\pi_D \circ P)$, there is a unique continuous linear map $Q : E/S \to D/S$ such that $Q \circ \pi_E = \pi_D \circ P$ and $\|Q\| \leq 1$. Also, $Q \circ i_2 \pi_D(x) = \pi_D(x)$ for all $x \in D$. So, since π_D is surjective, we conclude that $Q \circ i_2$ is the identity on D/S, which implies that $i_2(D/S)$ is orthocomplemented in E/S.

A partial converse of Proposition 2.7 is the following.

Proposition 2.8. Let D be a closed subspace of E. If for each closed subspace S of D with $\dim D/S = 1$ we have that $i_2(D/S)$ has the HB-property in E/S, then D has the HB-property in E.

Proof. Let $f \in D' \setminus \{0\}$ and let $S = \text{Ker } f$. Then $f = \rho_1 \circ \pi_D$ where $\rho_1 : D/S \to K$ is a similarity (i.e. there exists a nonzero real number c such that $|\rho_1(z)| = c\|z\|$ for all $z \in D/S$). By assumption and Corollary 2.2, there is an orthoprojection $\rho_2 : E/S \to D/S$ such that $\rho_2 \circ i_2$ is the identity on D/S. Now set $\tilde{f} = \rho_1 \cdot \rho_2 \circ \pi_E$. Then, $\|\tilde{f}\| = \|f\|$ and $\tilde{f} \circ i_1 = f$, and we are done.

Remark 2.9. Putting together Propositions 2.7 and 2.8 we derive that a closed subspace D of E has the HB-property in E iff for every closed hyperplane S of D, $i_2(D/S)$ has the HB-property in E/S. (Compare with Theorem 2.3 of [1]).

Observe that if S, D are closed subspaces of E with $S \subseteq D$, then the formula

$$\pi_{E/D}(\pi_1(x)) = \pi_2 \circ \pi_E(x) \quad (x \in E)$$

defines an isometrical isomorphism $\pi_{E/D} : E/D \to (E/S)/(D/S)$ making the diagram

\[
\begin{array}{ccc}
D & \xrightarrow{i_1} & E & \xrightarrow{\pi_1} & E/D \\
\downarrow \pi_D & & \downarrow \pi_E & & \downarrow \pi_{E/D} \\
D/S & \xrightarrow{i_2} & E/S & \xrightarrow{\pi_2} & (E/S)/(D/S) \\
\end{array}
\]
Proposition 2.10 Let $S \subset D$ be closed subspaces of E. If S is strict (resp. has the HB-property, is orthocomplemented) in E and D/S is strict (resp. has the HB-property, is orthocomplemented) in E/S, then D is strict (resp. has the HB-property, is orthocomplemented) in E.

Proof.

a) Strictness: Let $z \in E/D$. Then, in the diagram (I), $\pi_{E/D}(z)$ admits a $y \in E/S$ such that $\pi_2(y) = \pi_{E/D}(z)$ and $\|y\| = \|\pi_{E/D}(z)\| = \|z\|$. Also, there is an $x \in E$ with $\pi_E(x) = y$ and $\|x\| = \|y\|$. Then, $\pi_1(x) = z$ and $\|x\| = \|y\| = \|z\|$. Hence, D is strict in E.

b) HB-property: Let $f \in D'$ and let $g \in E'$ be such that the restrictions $g|S$ and $f|S$ coincide and $\|g\| = \|f|S\|$. Now consider $h = f - g|D \in D'$. Since $h = 0$ on S there is a $h_1 \in (D/S)'$ with $h = h_1 \circ \pi_D$ and $\|h_1\| = \|h\|$. By assumption h_1 extends to a $h_2 \in (E/S)'$ (i.e. $h_2 \circ i_2 = h_1$) with $\|h_2\| = \|h_1\|$ (see the diagram).

Now set $j = h_2 \circ \pi_E$. We have that $\|j\| \leq \|f\|$ and $j \circ i_1 = h$. Then, $\tilde{f} = j + g$ is a continuous linear extension of f with $\|\tilde{f}\| = \|f\|$ and we are done.

c) Orthocomplementation: By using diagram (I), there is by assumption a $\rho_2 : (E/S)/(D/S) \to E/S$ such that $\pi_2 \circ \rho_2$ is the identity and also a $\rho_1 : E/S \to E$ such that $\pi_E \circ \rho_1$ is the identity, ρ_1 and ρ_2 being linear isometries. Now define $\tau : E/D \to E$ by $\tau = \rho_1 \circ \rho_2 \circ \pi_{E/D}$. We have that τ is a linear isometry for which $\pi_{E/D} \circ (\pi_1 \circ \tau) = \pi_{E/D}$, and so $\pi_1 \circ \tau$ is the identity.

3. FINITE-(CO)DIMENSIONAL ORTHOCOMPLEMENTED SUBSPACES OF ℓ^∞

As we have already announced in the Preliminaries,

FROM NOW ON IN THIS PAPER (EXCEPT IN 3.2) WE ASSUME THAT K IS NOT SPHERICALLY COMPLETE.
The results given in §2 can be applied now to obtain several descriptions of the finite-(co)dimensional subspaces of ℓ^∞ that have an orthogonal complement.

For subspaces of finite codimension the situation is satisfactory.

Proposition 3.1. Every closed finite-codimensional subspace of ℓ^∞ is orthocomplemented.

Proof. By reflexivity the map $D \to D^0$ is a bijection between the set of all finite-dimensional subspaces of c_0 and the set of all finite-codimensional subspaces of ℓ^∞. Since every finite-dimensional subspace of c_0 is orthocomplemented, we can apply Propositions 2.5 and 2.6 to derive our conclusion.

Remark 3.2. If K is spherically complete the conclusion above no longer holds.

Indeed, suppose that the valuation on K is dense. Let X be a maximal orthogonal subset of ℓ^∞ and let H be a closed hyperplane of ℓ^∞ containing X. Then H is not orthocomplemented in ℓ^∞.

The pictures changes when we consider finite-dimensional subspaces of ℓ^∞.

Theorem 3.3. For a finite-dimensional subspace D of ℓ^∞, the following properties are equivalent.

i) D is orthocomplemented in ℓ^∞.

ii) Every one-dimensional subspace of D is orthocomplemented (has the H.B-property) in ℓ^∞.

iii) For each $x = (x_n) \in D$, $\max_n |x_n|$ exists.

Proof. i) \Rightarrow ii): By Proposition 2.5, there exists an orthogonal complement S of D^0 in c_0. Then, $D \simeq S'$ in a natural way, and since S is finite-dimensional, there is an $n \in \mathbb{N}$ such that $D \simeq K^n$. So, every one-dimensional subspace of D is orthocomplemented in D (and hence in ℓ^∞, by i)).

ii) \Rightarrow i): It follows from Proposition 2.4 ii).

ii) \iff iii): Let $f \in c_0^\circ$. By Propositions 2.5 and 2.6 we have that Kf is orthocomplemented in c_0° iff $\text{Ker } f$ is orthocomplemented in ℓ^∞, and this happens iff $\|f\| = \max \{|f(x)| : \|x\| \leq 1\}$ (Remark 2.4.1). So, we conclude that Kf is orthocomplemented in c_0° iff $\|f\| = \max |f(e_n)|$ (where e_1, e_2, \ldots is the canonical base of c_0). This is precisely ii) \iff iii) (Recall that $c_0^\circ \simeq \ell^\infty$, [7]. Exercise 3.Q.i))

For one-dimensional subspaces we prove the following curious Theorem, which will be useful in the sequel.

Theorem 3.4. A one-dimensional subspace of ℓ^∞ is strict iff it is orthocomplemented.
Proof. Clearly the orthocomplementation property implies strictness (see the Preliminaries).

Now suppose that \(D = Kx \ (x = (x_1, x_2, \ldots) \in \ell^\infty, x \neq 0) \). If \(D \) is not orthocomplemented then \(|x_n| < \|x\| \) for all \(n \) (Theorem 3.3). We are going to prove that there exists a \(y \in \ell^\infty \) such that the linear hull \([x, y]\) of \(\{x, y\} \) has no orthogonal base and by Proposition 1.2 we are done.

Let \(K = B_0 \) and let \(B_1 \supset B_2 \supset \ldots \) be bounded discs in \(K \) whose intersection is empty. For each \(n \in \mathbb{N} \) let \(r_n = \text{diam } B_n \) (the diameter of \(B_n \)). Define a function \(\varphi : K \to [0, +\infty) \) by the formula

\[
\varphi(\lambda) = \lim_{n \to \infty} \text{dist}(\lambda, B_n) \quad (\lambda \in K).
\]

Then \(\inf \{\varphi(\lambda) : \lambda \in K\} = d \), where \(d = \lim_{n \to \infty} r_n > 0 \), but \(d \) is not attained (observe that \(d \neq r_n \) for each \(n \in \mathbb{N} \)). We shall construct \(c_1, c_2, \ldots \in K \) such that

\[
\|y - \lambda x\| = \varphi(\lambda)\|x\| \quad (\lambda \in K)
\]

with \(y := (c_1 x_1, c_2 x_2, \ldots) \) (Then, \(\text{dist}(y, Kx) \) is not attained and it follows easily that \([x, y]\) has no orthogonal base).

Let \(n \in \mathbb{N} \). If \(x_n = 0 \) we set \(c_n = 0 \). Now let \(x_n \neq 0 \). Then, we may choose a \(k(n) \in \mathbb{N} \) for which

\[
|r_n - \lambda| x_n | \leq r_{k(n)} | x_n | \leq \|x\| \varphi(\lambda).
\]

and take \(c_n \in B_{k(n)} \setminus B_{k(n)+1} \).

Now let \(\lambda \in K \). First we prove that \(\|y - \lambda x\| \leq \varphi(\lambda)\|x\| \), i.e. that, for each \(n \in \mathbb{N} \),

\[
|c_n - \lambda| x_n | \leq \varphi(\lambda)\|x\|
\]

This is obvious when \(x_n = 0 \), so let \(x_n \neq 0 \). There is a unique \(m \in \{0, 1, 2, \ldots\} \) such that \(\lambda \in B_m \setminus B_{m+1} \). We distinguish two cases.

a) \(m \geq k(n) \). Then \(c_n \in B_{k(n)} \) and \(\lambda \in B_m \subset B_{k(n)} \). Hence, by (II) we obtain

\[
|c_n - \lambda| x_n | \leq r_{k(n)} | x_n | \leq \|x\| \varphi(\lambda).
\]

b) \(m < k(n) \). Then \(c_n \in B_{k(n)} \subset B_{m+1} \) while \(\lambda \notin B_{m+1} \) so that \(|c_n - \lambda| = \varphi(\lambda) \) and

\[
|c_n - \lambda| x_n | = \varphi(\lambda) | x_n | \leq \varphi(\lambda)\|x\|.
\]

To finish, we prove that \(\|y - \lambda x\| \geq \varphi(\lambda)\|x\| \). Let \(\varepsilon > 0 \). Without loss we can assume \(\varepsilon < r_m - d \). From our assumption on \(x \) it follows that \(J := \{n \in \mathbb{N} : \|x\| d < |x_n| (d + \varepsilon)\} \) is infinite. If \(n \in J \), then by (II)

\[
r_{k(n)} < d + \varepsilon < r_m
\]
so that \(k(n) > m \). Thus we are in case b) of above, so \(|c_n - \lambda| |x_n| > d \frac{\psi(\lambda)}{2 + \varepsilon} \|x\| \) and we are done.

Remark 3.5. Taking into account Corollary 2.2 and Theorem 3.4, for a one-dimensional subspace \(D \) of \(\ell^\infty \) one verifies

- \(D \) is orthocomplemented \(\iff \) \(D \) is strict \(\iff \) \(D \) has the HB-property.

We know that the implication \(D \) has the HB-property \(\Rightarrow \) \(D \) is orthocomplemented
does not hold for every finite-dimensional subspace \(D \) of \(\ell^\infty \). Next we will see (Corollary 3.7) that the implication

- \(D \) is strict \(\Rightarrow \) \(D \) has the HB-property

holds for every finite-dimensional (in fact for every weakly closed subspace) \(D \) of \(\ell^\infty \).

This will be a consequence of the following result.

Theorem 3.6. (Compare Theorem 2.3 of \([5]\)). Let \(M \) be a closed subspace of \(\ell^\infty \). The following are equivalent.

i) \(M \) is weakly closed in \(\ell^\infty \).

ii) \(\ell^\infty / M \simeq K^n \) for some \(n \in \mathbb{N} \) or \(\ell^\infty / M \simeq \ell^\infty \).

iii) \(\ell^\infty / M \) is reflexive.

iv) For every (for some) closed subspace \(S \) of \(M \) with \(\dim M / S = 1 \), \(S \) is weakly closed in \(\ell^\infty \).

Proof. The implications ii) \(\Rightarrow \) iii) and iii) \(\Rightarrow \) i) are obvious.

i)\(\Rightarrow \) ii): For a closed subspace \(D \) of \(c_0 \) the adjoint of the inclusion map \(D \to c_0 \) is a quotient map, so \(D' \simeq c_0 / D^0 \). By applying this for \(D := M^0 \) and by using \(M^{00} = M \) we obtain \((M^0)' \simeq c_0 / M^{00} \simeq \ell^\infty / M \). Since \(M^0 \) is a closed subspace of \(c_0 \), we have that \(M^0 \simeq K^n \) for some \(n \in \mathbb{N} \) (and so \(\ell^\infty / M \simeq K^n \)) or \(M^0 \simeq c_0 \) (and so \(\ell^\infty / M \simeq \ell^\infty \)).

i)\(\Rightarrow \) iv): If \(S \) is a closed subspace of \(M \) with \(\dim M / S = 1 \), then \(S \) is weakly closed in \(M \). By (c)\(\Rightarrow \) (f) in Theorem 2.3 of \([5]\), it follows that \(S \) is also weakly closed in \(\ell^\infty \).

iv)\(\Rightarrow \) i): Let \(S \) be a closed subspace of \(M \) as in iv). Since \((\ell^\infty / S)' \) separates the points of \(\ell^\infty / S \) and \(\dim M / S = 1 \), we have that \((((\ell^\infty / S) / (M / S)))' \) separates also the points of \((\ell^\infty / S) / (M / S)\) which is isometrically isomorphic to \(\ell^\infty / M \) (see diagram (I)). Hence, \(M \) is weakly closed in \(\ell^\infty \).

Corollary 3.7. If \(D \) is a weakly closed subspace of \(\ell^\infty \) and \(D \) is strict in \(\ell^\infty \), then \(D \) has the HB-property in \(\ell^\infty \).

Proof. Let \(S \) be a closed subspace of \(D \) with \(\dim D / S = 1 \). It suffices to prove that \(t_2(D / S) \) has the HB-property in \(\ell^\infty / S \) (Proposition 2.8).
By strictness and Proposition 2.7, \(i_2(D/S) \) is a one-dimensional and strict subspace of \(C^\infty/S \). But \(C^\infty/S \cong K^n \) for some \(n \) or \(C^\infty/S \cong \ell^\infty \) (Theorem 3.6). Now, the conclusion follows by Theorem 3.4.

Remark 3.8. Looking at Theorem 3.4 and Corollary 3.7 the following question arises in a natural way.

Problem 1. Is every finite-dimensional and strict subspace of \(\ell^\infty \) orthocomplemented in \(\ell^\infty \)?

Observe that this problem is equivalent to each one of the following questions.

Problem 2. Let \(D \) be a finite-dimensional strict subspace of \(\ell^\infty \). Is there any one-dimensional subspace \(Kx (x \in D \setminus \{0\}) \) of \(D \) that is strict (orthocomplemented) in \(\ell^\infty \), i.e. \(\|x\| = \max_n |x_n| \)?

Problem 3. Let \(D \) be a finite-dimensional strict subspace of \(\ell^\infty \), \(\dim D \geq 2 \). Is there any closed subspace \(G \) of \(D \) with \(0 \subsetneq G \subsetneq D \) such that \(G \) is strict (orthocomplemented) in \(\ell^\infty \)?

Indeed, it follows by Theorems 3.3 and 3.4 that if Problem 1 has an affirmative answer then so has Problem 2. Also, it is obvious to pass from Problem 2 to Problem 3. Finally, suppose that Problem 3 has an affirmative answer. We prove by induction that Problem 1 has also an affirmative answer. Let \(D \) be a \(n \)-dimensional strict subspace of \(\ell^\infty \). We may assume that \(n \geq 2 \) (Theorem 3.4). Let \(0 \subsetneq G \subsetneq D \) be such that \(G \) is strict (and hence orthocomplemented, by the induction hypothesis) in \(\ell^\infty \). Since \(D/G \) is strict in \(\ell^\infty/G \) (Proposition 2.7) and \(\ell^\infty/G \cong \ell^\infty \) (Theorem 3.6) it follows by the induction hypothesis that \(D/G \) is orthocomplemented in \(\ell^\infty/G \). Now the orthocomplementation of \(D \) follows from Proposition 2.10.

4. FINITE-(CO)DIMENSIONAL ORTHOCOMPLEMENTED SUBSPACES OF \(c_0 \)

It is well known that every finite-dimensional subspace of \(c_0 \) is orthocomplemented (see [7]).

We now translate the results we have found in the above section about orthocomplemented finite-dimensional subspaces of \(\ell^\infty \) into statements about finite-codimensional subspaces of \(c_0 \). The next lemma, which is a direct consequence of Propositions 2.5 and 2.6, contains the key to do that.
Lemma 4.1. Let D be a closed subspace of c_0 (resp. a weakly closed subspace of ℓ^∞). Then,

$$D \begin{cases} \text{is orthocomplemented} \\ \text{is strict} \\ \text{has the HB-property} \end{cases} \quad \text{in } c_0 \text{ (resp. in } \ell^\infty)$$

$$\iff D^0 \begin{cases} \text{is orthocomplemented} \\ \text{has the HB-property} \\ \text{is strict} \end{cases} \quad \text{in } \ell^\infty \text{ (resp. in } c_0),$$

(observe that every weakly closed subspace of ℓ^∞ has the HB$^+$-property, [5], Theorem 2.3).

Theorem 3.3 admits the following "dual":

Theorem 4.2. Let S be a closed subspace of c_0 with finite codimension. Then the following properties are equivalent

i) S is orthocomplemented in c_0.

ii) Every hyperplane containing S is orthocomplemented (strict) in c_0.

iii) If $f \in c_0$ and $f = 0$ on S, then $\|f\| = \max_n |f(e_n)|$ (where e_1, e_2, \ldots is the canonical base of c_0).

Analogously, Theorem 3.4 converts into the following result for closed hyperplanes of c_0.

Theorem 4.3. A closed hyperplane in c_0 has the HB-property in c_0 iff it is orthocomplemented in c_0.

In the same line, from Corollary 3.7 we deduce

Corollary 4.4. Every closed subspace of c_0 with the HB-property in c_0, is strict in c_0.

Finally, Problems 1-3 of the previous section give rise to the following equivalent questions.

Let S be a closed subspace of c_0 that has finite codimension and the HB-property in c_0.

Problem I. Is S orthocomplemented in c_0?

Problem II. Is there any closed hyperplane H in c_0 with $H \supset S$ such that H has the HB-property (is orthocomplemented) in c_0?
Problem III. If $2 \leq \text{codim } S$, is there a closed subspace T of c_0 with $S \nsubseteq T \nsubseteq c_0$ such that T has the HB-property (is orthocomplemented) in c_0?

5. SOME CONSEQUENCES AND REMARKS

Next we shall apply the results proved in the previous sections to study orthocomplementation for arbitrary closed subspaces of ℓ^∞ and c_0.

Theorem 5.1. Let D be a closed subspace of ℓ^∞. Then the following are equivalent.

i) D is orthocomplemented in ℓ^∞.

ii) $D \simeq K^n$ for some $n \in \mathbb{N}$ or $D \simeq \ell^\infty$ and D is strict (has the HB-property) in ℓ^∞.

iii) D is weakly closed and strict (has the HB-property) in ℓ^∞ and D' has an orthogonal base.

iv) D is weakly closed and for every closed subspace F of D with $\dim D/F < \infty$, D/F is orthocomplemented in ℓ^∞/F.

v) D is strict and there exists a closed subspace F of D with $\dim D/F = 1$ such that F is orthocomplemented in ℓ^∞.

vi) There exists a closed subspace F of D with $\dim D/F = 1$ such that F is orthocomplemented in ℓ^∞ and D/F is orthocomplemented (strict) in ℓ^∞/F.

Proof. i)\(\Rightarrow\)ii): Clearly D is strict and weakly closed. By Corollary 3.7, D has the HB-property in ℓ^∞.

Also, D' is isometrically isomorphic to a closed subspace of c_0 and so $D' \simeq K^n$ (for some $n \in \mathbb{N}$) or $D' \simeq c_0$. Since D is reflexive ([5], Lemma 2.2) we derive that $D \simeq K^n$ or $D \simeq \ell^\infty$.

ii)\(\Rightarrow\)iii): Follows from Theorem 2.3 of [5] and Corollary 3.7.

iii)\(\Rightarrow\)i): By reflexivity of D ([5], Lemma 2.2), $D \simeq \ell^\infty(I;s)$ for some set I and some $s : I \to (0, +\infty)$. Now, apply Proposition 2.1.

i)\(\Rightarrow\)iv): Follows from Proposition 2.7.

iv)\(\Rightarrow\)iii): By Proposition 2.8, D has the HB-property in ℓ^∞.

On the other hand, since $D' \simeq c_0/D^0$ is of countable type, it is enough to see that every finite-dimensional subspace G of c_0/D^0 has an orthogonal base. Let $\pi_0 : c_0 \to c_0/D^0$ be the canonical surjection. There is a finite-dimensional subspace M of c_0 with $\pi_0(M) = G$. Since $D^0 + M$ is weakly closed in c_0 ([?], Lemma 3.14 and [3], Theorem 4.7), there exists a weakly closed subspace S of ℓ^∞ such that $D^0 + M = S^0$.

By assumption and Proposition 2.7 we conclude that D^0 is orthocomplemented in S^0 (observe that $(\ell^\infty/S)' \simeq S^0$ and under this isometry $(D/S)^0$ maps onto D^0). Then, there is a closed subspace M_1 of c_0 which is an orthogonal complement of D^0 in S^0. In
particular, \(D^0 + M = D^0 + M_1 \). So, \(\pi_0(M_1) = G \). But \(M_1 \), being a subspace of \(c_0 \), has an orthogonal base. Hence, so has \(G \).

i) \(\Rightarrow \) v): Clearly \(D \) is strict in \(\ell^\infty \).

Now, let \(F \) be a closed subspace of \(D \) with \(\dim D/F = 1 \). By i) \(\Rightarrow \) ii) and Proposition 3.1 it follows that \(F \) is orthocomplemented in \(D \) (and hence in \(\ell^\infty \)).

v) \(\Rightarrow \) vi): Let \(F \) be a closed subspace of \(D \) with \(\dim D/F = 1 \). By strictness of \(D \) and Proposition 2.7 it follows that \(D/F \) is strict in \(\ell^\infty/F \). Since \(F \) is weakly closed in \(\ell^\infty \), we can apply Theorem 3.4 and Theorem 3.6 i) \(\Rightarrow \) ii) to conclude that \(D/F \) is orthocomplemented in \(\ell^\infty/F \).

vi) \(\Rightarrow \) i): Follows by Proposition 2.10.

Recall that an absolutely convex set \(A \) of a locally convex space over \(K \) is called:

a) \(c' \)-compact: if for each neighbourhood \(U \) of 0 there exists a finite set \(B \subseteq A \) such that \(A \subseteq U + \text{co} B \) (where \(\text{co} B \) is the absolutely convex hull of \(B \)).

b) \(KM \)-compactoid: if it is complete and there exists a compact set \(X \subseteq A \) such that \(A \) is the closed absolutely convex hull of \(X \) (for the general properties of such sets see [4]).

By using Proposition 2.3 of [2] and a proof similar to the one given for (d) \(\iff \) (i) in Theorem 2.3 of [5], it is not difficult to obtain the following.

Theorem 5.2. Let \(D \) be a closed subspace of \(\ell^\infty \). Then, properties i) - vi) of Theorem 5.1 are equivalent to

vii) \(D \) is strict (has the HB-property) in \(\ell^\infty \) and \(B_D = \{ x \in D : \|x\| \leq 1 \} \) is weakly \(KM \)-compactoid in \(\ell^\infty \).

viii) \(D \) is strict (has the HB-property) in \(\ell^\infty \) and \(B_D \) is weakly closed and weakly \(c' \)-compact in \(\ell^\infty \).

As in section 4, we can now dualize Theorems 5.1 and 5.2 to describe the orthocomplemented subspaces of \(c_0 \).

Observe that as a direct consequence of Propositions 2.7 and 2.8, we have

Lemma 5.3. Let \(D \) be a weakly closed subspace of \(\ell^\infty \) and let \(F \) be a closed subspace of \(D \) with \(\dim D/F < \infty \) (so, \(F \) is weakly closed, Theorem 3.6). Then, \(D/F \) is orthocomplemented (resp. is strict, has the HB-property) in \(\ell^\infty/F \) iff \(D^0 \) is orthocomplemented (resp. has the HB-property, is strict) in \(F^0 \).

Then, putting together Lemmas 4.1 and 5.3 we have that Theorems 5.1 and 5.2 convert into the following descriptions of the orthocomplemented subspaces of \(c_0 \).

Theorem 5.4. For a closed subspace \(S \) of \(c_0 \) the following properties are equivalent.
i) S is orthocomplemented in c_0.

ii) $c_0/S \cong K^n$ for some $n \in \mathbb{N}$ or $c_0/S \cong c_0$ and S has the HB-property (is strict) in c_0.

iii) S has the HB-property (is strict) in c_0 and c_0/S has an orthogonal base.

iv) S is orthocomplemented in any closed subspace T of c_0 with $T \supset S$ and $\dim T/S < \infty$.

v) S has the HB-property in c_0 and there exists a closed subspace T of c_0 with $T \supset S$ and $\dim T/S = 1$ such that T is orthocomplemented in c_0.

vi) There exists a closed subspace T of c_0 with $T \supset S$ and $\dim T/S = 1$ such that S is orthocomplemented in T and T is orthocomplemented in c_0.

vii) S has the HB-property (is strict) in c_0 and $B(c_0/S)'$ is weakly-$*$ KM-compactoid in $(c_0/S)'$.

viii) S has the HB-property (is strict) in c_0 and $B(c_0/S)'$ is weakly-$*$ c'-compact in $(c_0/S)'$.

Remarks 5.5.

1. There is a closed subspace D of ℓ^∞ with $D \cong \ell^\infty$ (and hence D is weakly closed [5], Theorem 2.3) such that D is not orthocomplemented in ℓ^∞.

Example: Choose $\lambda_1, \lambda_2, \ldots$ in K with $0 < |\lambda_1| < |\lambda_2| < \ldots \uparrow 1$. There are z_1, z_2, \ldots in c_0 with $|\lambda_1| \leq \|z_i\| < 1$ for all i such that every $x \in c_0$ with $\|x\| < 1$ can be written as $x = \sum_{i=1}^{\infty} \mu_i z_i$ where $|\mu_i| \leq 1$ for all i and $\mu_i \to 0$. Now, the map $T: c_0 \to c_0$ given by $T(\sum_{i=1}^{\infty} \lambda_i e_i) = \sum_{i=1}^{\infty} \lambda_i z_i$ is a continuous linear function mapping $\{x \in c_0 : \|x\| \leq 1\}$ onto $\{x \in c_0 : \|x\| < 1\}$: if $x \in c_0$ is such that $\|Tx\| = 1$, then $\|x\| > 1$. So T (and hence $\ker T$) is not strict. Thus, $D = (\ker T)^0$ satisfies the required conditions (Lemma 4.1).

2. There exists a closed subspace D of ℓ^∞ such that $D \cong K$ (hence D is weakly closed) and such that D is not orthocomplemented in ℓ^∞.

Example: We know (Remark 2.3.3) that there exists a linear isometry i from K_2^2 into ℓ^∞ (Recall that $K_2^2 \cong (K_2^2)'$). Since K_2^2 does not contain non-trivially mutually orthogonal elements, we derive that every one-dimensional subspace D of K_2^2 satisfies our requirements.

3. There exists a closed subspace D of ℓ^∞ with the HB-property in ℓ^∞ such that D' has an orthogonal base but D is not orthocomplemented in ℓ^∞.

Example: Take for D the closed subspace of ℓ^∞ constructed in [7], 4.1 (observe that since D is not reflexive, it is not orthocomplemented in ℓ^∞).

4. Looking at Theorem 5.1 and the above Remark the following question arises in a natural way.
Problem. Can we without harm remove the weak closedness of D in property iii) (when D is strict) or in property iv) of Theorem 5.1?

5. There is a weakly closed subspace D of ℓ^∞ such that D' has an orthogonal base but D is not orthocomplemented in ℓ^∞.

Example: Take $D = H^0$, where H is a closed hyperplane of c_0 which is not orthocomplemented in c_0 and apply Lemma 4.1.

6. There is a finite-dimensional (and hence weakly closed) subspace D of ℓ^∞ such that D has the HB-property in ℓ^∞ but is not orthocomplemented in ℓ^∞.

Example: See Remark 2.3.3.

7. Finally observe that Problems 1-3 appearing in Remark 3.8 are equivalent to

Problem 4. Let D be a weakly closed subspace of ℓ^∞ such that D is strict and has the HB-property in ℓ^∞. Does it follow that D is orthocomplemented in ℓ^∞?

Indeed, clearly if Problem 4 has an affirmative answer then so has Problem 1 (recall that every finite-dimensional and strict subspace of ℓ^∞ has the HB-property in ℓ^∞, Corollary 3.7).

Conversely, assume Problem 1 has an affirmative answer and let D be a weakly closed subspace of ℓ^∞ such that D is strict. Let F be a closed subspace of D with $\dim D/F < \infty$. By Theorem 5.1 i) \iff iv) it is enough to prove that D/F is orthocomplemented in ℓ^∞/F. For that observe that it follows from Proposition 2.7 that D/F is a one-dimensional and strict subspace of ℓ^∞/F. But F is weakly closed in ℓ^∞ and so $\ell^\infty/F \simeq K^n$ (for some n) or $\ell^\infty/F \simeq \ell^\infty$ (Theorem 3.6). By assumption D/F is orthocomplemented in ℓ^∞/F and we are done.

REFERENCES

