A NOTE ON p-ADIC REFLEXIVITY

by

W.H. Schikhof

Report 9203
February 1992
DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A note on p-adic reflexivity

by

W.H. Schikhof

ABSTRACT. For a nonarchimedean nontrivially valued complete field K consider the following statements (A), (B), (C) (for terminology, see §1).

(A) If D_1 and D_2 are closed subspaces of a K-Banach space E such that $D_1 + D_2 = E$ and $D_1 \cap D_2 = \{0\}$ and if D_1 and D_2 are (pseudo)reflexive then so is E.

(B) If D is a finite-dimensional subspace of a K-Banach space E and if E/D is pseudoreflexive then so is E.

(C) If D is a finite-dimensional subspace of a K-Banach space E and if E/D is reflexive then so is E.

The purpose of this note is to show that (A) is false and that (B) implies (C) rendering a solution of one Problem and a reduction of two other Problems of [1], §8.
§1. Preliminaries.

In this note K is a nonarchimedean valued field whose valuation $| |$ is complete and non-trivial. Norms on K-vector spaces are always assumed to be nonarchimedean i.e. to satisfy the strong triangle inequality.

Proposition 1.1 Let $(E, || ||)$ be a normed space over K, let D be a subspace of E, let q be a norm on D satisfying

$$
\frac{1}{2}d \leq q(d) \leq d \quad (d \in D).
$$

Then q can be extended to a norm $|| ||_1$ on E for which

$$
\frac{1}{2}x \leq ||x||_1 \leq x \quad (x \in E).
$$

Proof. Set

$$
||x||_1 := \inf_{d \in D} \max(||x - d||, q(d)).
$$

Immediate verification shows that $|| ||_1$ satisfies the requirements.

A K-Banach space E is called *pseudoreflexive* if the canonical map $j_E : E \to E''$ is an isometry, *reflexive* if E is pseudoreflexive and j_E is surjective. If K is spherically complete each K-Banach space is pseudoreflexive and the reflexive spaces are precisely the finite-dimensional ones. For such K the statements (A), (B), (C) of above are trivially true. Therefore from now on we assume that K is NOT SPHERICALLY COMPLETE implying that the valuation of K is dense. Then it is easy to see that a K-Banach space E is pseudoreflexive if and only if the norm is polar (recall that a seminorm p is polar if $p = \sup \{|f| : f \in E^*, |f| \leq p\}$ where E^* is the algebraic dual of E). Also, each closed subspace of a pseudoreflexive K-Banach space is pseudoreflexive.

A subspace D of a K-Banach space E is said to have the Weak Extension Property (WEP) if every $f \in D'$ can be extended to an element of E', in other words, if the adjoint $i' : E' \to D'$ of the inclusion map $i : D \to E$ is surjective.

A subspace D of a K-Banach space E is said to have the Extension Property (EP) if for each $\varepsilon > 0$ and $f \in D'$ there is an extension $\tilde{f} \in E'$ of f such that $||\tilde{f}|| \leq (1+\varepsilon)||f||$, in other words, if the adjoint $i' : E' \to D'$ of the inclusion map $i : D \to E$ is a quotient map.

Proposition 1.2. Let D be a closed subspace of a K-Banach space E, let $f \in D'$, $\varepsilon > 0$, $x \in E \setminus D$. Then f can be extended to an $\tilde{f} \in (Kx + D)'$ such that $||\tilde{f}|| \leq (1+\varepsilon)||f||$.

2
Proof. We may suppose that \(\text{dist}(x, D) > t\|x\| \) where \(t := (1 + \varepsilon)^{-1} \). Then \(\|\lambda x + d\| \geq t \max(||\lambda x||, ||d||) \) for all \(\lambda \in K \) and \(d \in D \). The formula \(\tilde{f}(\lambda x + d) = f(d) \) defines an extension \(\tilde{f} \in (Kx + D)^* \) of \(f \). For each \(\lambda \in K, d \in D \) we have \(|\tilde{f}(\lambda x + d)| = |f(d)| \leq \|f\|\|d\| \leq \|f\|\max(||\lambda x||, ||d||) \) \(\leq \|f\|t^{-1}\|\lambda x + d\| \) and we see that \(\|\tilde{f}\| \leq (1 + \varepsilon)\|f\| \).

COROLLARY 1.3. Any finite codimensional subspace of a \(K \)-Banach space has the EP.

PROPOSITION 1.4. Let \(F, G, H \) be \(K \)-Banach spaces, let

\[
F \xrightarrow{T_1} G \xrightarrow{T_2} H
\]

be continuous linear maps such that \(\text{Im} \, T_1 = \text{Ker} \, T_2 \). Suppose that \(T_2G \) is a closed subspace of \(H \) with the WEP. Then for the adjoints

\[
H^1 \xrightarrow{T_1'} G^* \xrightarrow{T_2'} F^*
\]

we have \(\text{Im} \, T_2' = \text{Ker} \, T_1' \).

Proof. Obviously \(T_1' \circ T_2' = (T_2 \circ T_1)' = 0 \) whence \(\text{Im} \, T_2' \subset \text{Ker} \, T_1' \). Conversely, suppose \(f \in \text{Ker} \, T_1 \) i.e. \(f \circ T_1 = 0 \):

\[
\begin{array}{ccc}
F & \xrightarrow{T_1} & G & \xrightarrow{T_2} & H \\
\downarrow f & & \downarrow j & & \downarrow K \\
K & & & &
\end{array}
\]

Then \(f = 0 \) on \(\text{Ker} \, T_2 \) so there exist unique linear maps \(f_1 : G/\text{Ker} \, T_2 \to K \) and \(i : G/\text{Ker} \, T_2 \to H \) making

\[
\begin{array}{ccc}
G & \xrightarrow{T_2} & H \\
\downarrow f & \downarrow \pi & \uparrow i \\
K & \xleftarrow{f_1} & G/\text{Ker} \, T_2
\end{array}
\]

commute (here \(\pi \) is, of course, the quotient map). The maps \(f_1 \) and \(i \) are continuous and \(i \) is even a homeomorphism onto \(T_2G \) by the Banach Open Mapping Theorem. The map \(z \mapsto f_1(i^{-1}(z)) \) \((z \in T_2G) \) extends to an \(f_2 \in H' \) which obviously makes
It is known that the spaces c_0 and ℓ^∞ (whose standard norms will be denoted $\| \|$) are reflexive and each others dual by means of the pairing

$$(x, y) \mapsto \sum_{i=1}^{\infty} \xi_i \eta_i$$

($x = (\xi_1, \xi_2, \ldots) \in c_0$, $y = (\eta_1, \eta_2, \ldots) \in \ell^\infty$). Then, if $y = (\eta_1, \eta_2, \ldots) \in \ell^\infty$ then $\lim_{n \to \infty} y_n = y$ weakly, where $y_n := (\eta_1, \eta_2, \ldots, \eta_n, 0, 0, \ldots)$.

\[G \xrightarrow{T_2} H \]
\[f \downarrow \not\sim f_2 \]
\[K \]
§2. \((A) \) is false.

2.1. We construct an equivalent nonpolar norm \(p \) on \(\ell^\infty \).

Set
\[
 p(x) := \max \left(\frac{1}{2} \|x\|, \text{dist}(x, c_0) \right).
\]

We have \(\frac{1}{2} \|x\| \leq p(x) \leq \|x\| \) for all \(x \in \ell^\infty \) and, since \(p(1, 1, 1, \ldots) = \|(1, 1, \ldots)\| = 1 \), \(p \neq \frac{1}{2} \|\cdot\| \). To arrive at the non-polarness of \(p \) we prove that \(f \in (\ell^\infty)^*, \ |f| \leq p \) implies \(|f| \leq \frac{1}{2} \|\cdot\| \). Let \(x = (\xi_1, \xi_2, \ldots) \in \ell^\infty \). Then \(x = \lim_{n \to \infty} x_n \) weakly where \(x_n := (\xi_1, \xi_2, \ldots, \xi_n, 0, 0, \ldots) \). Now \(f \) is in \((\ell^\infty)^*\) and \(x_n \in c_0 \) and therefore \(|f(x)| = \lim_{n \to \infty} |f(x_n)| \leq \sup_n p(x_n) = \sup_n \frac{1}{2} \|x_n\| \leq \frac{1}{2} \sup_n |\xi_n| = \frac{1}{2} \|x\| \).

This way we have obtained a Banach space \(E \) with two norms \(\|\cdot\|_1, \|\cdot\|_2 \), each one defining the topology while \((E, \|\cdot\|_1)\) is reflexive and \((E, \|\cdot\|_2)\) is not.

2.2. Let us denote the product norm on \(\ell^\infty \times \ell^\infty \) again by \(\|\cdot\| \). We construct a second norm \(\|\cdot\|_1 \) on \(\ell^\infty \times \ell^\infty \) as follows. First define a norm \(q \) on the diagonal \(\Delta := \{(x, x) : x \in \ell^\infty\} \) via
\[
 q(x, x) := p(x)
\]

where \(p \) is as in 2.1. By Proposition 1.1 the formula
\[
 \|((x, y), (t, t))\|_1 := \inf_{(t, t) \in \ell^\infty} \left(\max_{t \in \ell^\infty} \|((x, y) - (t, t))\|, q(t, t) \right)
\]
defines a norm \(\|\cdot\|_1 \) on \(\ell^\infty \times \ell^\infty \). This norm is not polar since its restriction to \(\Delta \) is not polar, but satisfies \(\frac{1}{2} \|x\| \leq \|x\|_1 \leq \|x\| \) for all \(z \in \ell^\infty \times \ell^\infty \).

2.3. Now we show that \((A) \) is false. Let \(E := (\ell^\infty \times \ell^\infty, \|\cdot\|_1) \), and set \(D_1 := \{(x, 0) : x \in \ell^\infty\}, D_2 := \{(0, x) : x \in \ell^\infty\} \). Then \(D_1 + D_2 = E, D_1 \cap D_2 = \{0\} \). For each \(x \in \ell^\infty \) we have
\[
 \|(x, 0)\| \geq \|(x, 0)\|_1 = \inf_{t \in \ell^\infty} \max_{t \in \ell^\infty} \|((x - t, -t))\|, q(t) \geq \inf_{t \in \ell^\infty} \|((x - t, -t))\| = \inf_{t \in \ell^\infty} \max_{t \in \ell^\infty} \|((x - t, -t))\| \geq \|x\| = \|(x, 0)\|.
\]
It follows that \(D_1 \) is isometrically isomorphic to \(\ell^\infty \), hence reflexive. By the same token \(D_2 \) is reflexive. But in 2.2 we have seen that \(E \) is not even pseudoreflexive.
§3. (B) implies (C).

In the next two lemmas D is a finite-dimensional subspace of a K-Banach space E with inclusion map $i : D \rightarrow E$ and quotient map $\pi : E \rightarrow E/D$. We consider the commutative diagram

\[
\begin{array}{ccc}
D & \xrightarrow{i} & E & \xrightarrow{\pi} & E/D \\
\downarrow{j_D} & & \downarrow{j_E} & & \downarrow{j_{E/D}} \\
D'' & \xrightarrow{i''} & E'' & \xrightarrow{\pi''} & (E/D)''
\end{array}
\]

Lemma 3.1. $\text{Im } i'' = \text{Ker } \pi''$ and π'' is a quotient map.

Proof. Since π is surjective we have by Proposition 1.4 in $(E/D)' \xrightarrow{\pi'} E' \xrightarrow{i'} D'$ that $\text{Im } \pi' = \text{Ker } i'$. Now D' is finite-dimensional so $\text{Im } i'$ is closed and has the WEP. Hence, again by Proposition 1.4, $\text{Im } i'' = \text{Ker } \pi''$. To prove the second statement observe that π' is an isometry whose image has finite codimension and therefore has the EP by Corollary 1.3, so π'' is a quotient map.

Lemma 3.2. j_E is surjective if and only if $j_{E/D}$ is surjective.

Proof. If j_E is surjective then so is $\pi'' \circ j_E = j_{E/D} \circ \pi$. Then $j_{E/D}$ must be surjective. Conversely, if $j_{E/D}$ is surjective, let $\Theta \in E''$.

Then there is an $x \in E$ with $\pi''(\Theta) = j_{E/D}(\pi(x)) = \pi''(j_E(x))$. We see that $\Theta - j_E(x) \in \text{Ker } \pi'' = \text{Im } i''$ so by surjectivity of j_D we can find a $d \in D$ such that

$$\Theta - j_E(x) = i'' j_D(d) = j_E i(d)$$

Then $\Theta = j_E(x + i(d)) \in j_E(E)$ and the surjectivity of j_E is proved.

Remark. In the same vein one can prove j_E injective $\Rightarrow j_{E/D}$ injective; a counterexample to the converse is given in [1], §8.

Also one has j_E is isometrical $\Rightarrow j_{E/D}$ is isometrical. Its converse is just statement (B) the truth of which is an open problem.

If we assume (B) and if E/D is reflexive we have that j_E is isometrical by (B) and surjective by Lemma 3.2. We may conclude that (B) implies (C).
REFERENCE