A NOTE ON p-ADIC REFLEXIVITY

by

W.H. Schikhof
A note on p-adic reflexivity

by

W.H. Schikhof

ABSTRACT. For a nonarchimedean nontrivially valued complete field K consider the following statements (A), (B), (C) (for terminology, see §1).

(A) If D_1 and D_2 are closed subspaces of a K-Banach space E such that $D_1 + D_2 = E$ and $D_1 \cap D_2 = \{0\}$ and if D_1 and D_2 are (pseudo)reflexive then so is E.

(B) If D is a finite-dimensional subspace of a K-Banach space E and if E/D is pseudoreflexive then so is E.

(C) If D is a finite-dimensional subspace of a K-Banach space E and if E/D is reflexive then so is E.

The purpose of this note is to show that (A) is false and that (B) implies (C) rendering a solution of one Problem and a reduction of two other Problems of [1], §8.
In this note K is a nonarchimedean valued field whose valuation $|\cdot|$ is complete and non-trivial. Norms on K-vector spaces are always assumed to be nonarchimedean i.e. to satisfy the strong triangle inequality.

Proposition 1.1 Let $(E, || \cdot ||)$ be a normed space over K, let D be a subspace of E, let q be a norm on D satisfying

$$\frac{1}{2} |d| \leq q(d) \leq |d| \quad (d \in D).$$

Then q can be extended to a norm $\| \cdot \|_1$ on E for which

$$\frac{1}{2} \|x\| \leq \|x\|_1 \leq \|x\| \quad (x \in E).$$

Proof. Set

$$\|x\|_1 := \inf_{d \in D} \max\{\|x - d\|, q(d)\}.$$

Immediate verification shows that $\| \cdot \|_1$ satisfies the requirements.

A K-Banach space E is called pseudoreflexive if the canonical map $j_E : E \to E''$ is an isometry, reflexive if E is pseudoreflexive and j_E is surjective. If K is spherically complete each K-Banach space is pseudoreflexive and the reflexive spaces are precisely the finite-dimensional ones. For such K the statements (A), (B), (C) of above are trivially true. Therefore from now on we assume that K is NOT SPHERICALLY COMPLETE implying that the valuation of K is dense. Then it is easy to see that a K-Banach space E is pseudoreflexive if and only if the norm is polar (recall that a seminorm p is polar if $p = \sup\{|f| : f \in E^*, |f| \leq p\}$ where E^* is the algebraic dual of E). Also, each closed subspace of a pseudoreflexive K-Banach space is pseudoreflexive.

A subspace D of a K-Banach space E is said to have the **Weak Extension Property** (WEP) if every $f \in D'$ can be extended to an element of E', in other words, if the adjoint $i' : E' \to D'$ of the inclusion map $i : D \to E$ is surjective.

A subspace D of a K-Banach space E is said to have the **Extension Property** (EP) if for each $\varepsilon > 0$ and $f \in D'$ there is an extension $\overline{f} \in E'$ of f such that $\|\overline{f}\| \leq (1 + \varepsilon)\|f\|$, in other words, if the adjoint $i' : E' \to D'$ of the inclusion map $i : D \to E$ is a quotient map.

Proposition 1.2. Let D be a closed subspace of a K-Banach space E, let $f \in D'$, $\varepsilon > 0$, $x \in E \setminus D$. Then f can be extended to an $\overline{f} \in (Kx + D)'$ such that $\|\overline{f}\| \leq (1 + \varepsilon)\|f\|$.

2
Proof. We may suppose that \(\text{dist}(x,D) \geq t\|x\| \) where \(t := (1 + \varepsilon)^{-1} \). Then \(\|\lambda x + d\| \geq t \max(\|\lambda x\|, \|d\|) \) for all \(\lambda \in K \) and \(d \in D \). The formula \(f(\lambda x + d) = f(d) \) defines an extension \(\tilde{f} \in (Kx + D)^* \) of \(f \). For each \(\lambda \in K \), \(d \in D \) we have \(|\tilde{f}(\lambda x + d)| = |f(d)| \leq \|f\| \|d\| \leq \|f\| t^{-1} \|\lambda x + d\| \) and we see that \(\|\tilde{f}\| \leq (1 + \varepsilon)\|f\| \).

Corollary 1.3. Any finite codimensional subspace of a \(K \)-Banach space has the EP.

Proposition 1.4. Let \(F,G,H \) be \(K \)-Banach spaces, let

\[F \xrightarrow{T_1} G \xrightarrow{T_2} H \]

be continuous linear maps such that \(\text{Im} \ T_1 = \text{Ker} \ T_2 \). Suppose that \(T_2 G \) is a closed subspace of \(H \) with the WEP. Then for the adjoints

\[H^1 \xrightarrow{T_2'} G' \xrightarrow{T_1'} F' \]

we have \(\text{Im} \ T_2' = \text{Ker} \ T_1' \).

Proof. Obviously \(T_1' \circ T_2' = (T_2 \circ T_1)' = 0 \) whence \(\text{Im} \ T_2' \subset \text{Ker} \ T_1' \). Conversely, suppose \(f \in \text{Ker} \ T_1 \) i.e. \(f \circ T_1 = 0 \):

\[F \xrightarrow{T_2} G \xrightarrow{T_3} H \]

\[\downarrow f \]

\[K \]

Then \(f = 0 \) on \(\text{Ker} \ T_2 \) so there exist unique linear maps \(f_1 : G/\text{Ker} \ T_2 \to K \) and \(i : G/\text{Ker} \ T_2 \to H \) making

\[G \xrightarrow{T_2} H \]

\[f \]

\[\downarrow \pi \]

\[i \]

\[K \xleftarrow{f_1} G/\text{Ker} \ T_2 \]

commute (here \(\pi \) is, of course, the quotient map). The maps \(f_1 \) and \(i \) are continuous and \(i \) is even a homeomorphism onto \(T_2 G \) by the Banach Open Mapping Theorem. The map \(z \mapsto f_1(i^{-1}(z)) \) \((z \in T_2 G)\) extends to an \(f_2 \in H' \) which obviously makes
It is known that the spaces c_0 and ℓ^∞ (whose standard norms will be denoted $\|\|$) are reflexive and each others dual by means of the pairing

$$(x, y) \mapsto \sum_{i=1}^{\infty} \xi_i \eta_i$$

$x = (\xi_1, \xi_2, \ldots) \in c_0$, $y = (\eta_1, \eta_2, \ldots) \in \ell^\infty$. Then, if $y = (\eta_1, \eta_2, \ldots) \in \ell^\infty$ then

$$\lim_{n \to \infty} y_n = y \text{ weakly, where } y_n := (\eta_1, \eta_2, \ldots, \eta_n, 0, 0, \ldots).$$
§2. (A) is false.

2.1. We construct an equivalent nonpolar norm \(p \) on \(\ell^\infty \).
Set
\[
p(x) := \max\left(\frac{1}{2}||x||, \text{dist}(x,c_0)\right).
\]
We have \(\frac{1}{2}||x|| \leq p(x) \leq ||x|| \) for all \(x \in \ell^\infty \) and, since \(p(1,1,\ldots) = ||(1,1,\ldots)|| = 1 \), \(p \neq \frac{1}{2}|| \). To arrive at the non-polarity of \(p \) we prove that \(f \in (\ell^\infty)^* \), \(|f| \leq p \) implies \(|f| \leq \frac{1}{2}|| \). Let \(x = (\xi_1,\xi_2,\ldots) \in \ell^\infty \). Then \(x = \lim x_n \) weakly where \(x_n := (\xi_1,\xi_2,\ldots,\xi_n,0,0,\ldots) \). Now \(f \) is in \((\ell^\infty)' \) and \(x_n \in c_0 \) and therefore \(|f(x)| = \lim_{n \to \infty} |f(x_n)| \leq \sup_n p(x_n) = \sup_n \frac{1}{2}||x_n|| \leq \frac{1}{2} \sup_n ||\xi_n|| = \frac{1}{2}||x||. \)

This way we have obtained a Banach space \(E \) with two norms \(|| \|_1, || \|_2 \), each one defining the topology while \((E, || \|_1) \) is reflexive and \((E, || \|_2) \) is not.

2.2. Let us denote the product norm on \(\ell^\infty \times \ell^\infty \) again by \(|| \|. \) We construct a second norm \(|| \|_1 \) on \(\ell^\infty \times \ell^\infty \) as follows. First define a norm \(q \) on the diagonal \(\Delta := \{(x,x) : x \in \ell^\infty\} \) via
\[
q(x,x) := p(x)
\]
where \(p \) is as in 2.1. By Proposition 1.1 the formula
\[
||(x,y)||_1 := \inf_{t \in \ell^\infty} (\max ||(x,y) - (t,t)||, q(t,t))
\]
defines a norm \(|| \|_1 \) on \(\ell^\infty \times \ell^\infty \). This norm is not polar since its restriction to \(\Delta \) is not polar, but satisfies \(\frac{1}{2}||x|| \leq ||x||_1 \leq ||x|| \) for all \(x \in \ell^\infty \times \ell^\infty \).

2.3. Now we show that (A) is false. Let \(E := (\ell^\infty \times \ell^\infty, || \|_1) \), and set \(D_1 := \{(x,0) : x \in \ell^\infty\}, D_2 := \{(0,x) : x \in \ell^\infty\}. \) Then \(D_1 + D_2 = E, D_1 \cap D_2 = \{0\}. \) For each \(x \in \ell^\infty \) we have \(||(x,0)|| \geq ||(x,0)||_1 = \inf_{t \in \ell^\infty} \max(||(x-t,-t)||, q(t)) \geq \inf_{t \in \ell^\infty} ||(x-t,-t)|| \)
\[
= \inf_{t \in \ell^\infty} \max(||x-t||, ||t||) \geq ||x|| = ||(x,0)||.
\]
It follows that \(D_1 \) is isometrically isomorphic to \(\ell^\infty \), hence reflexive. By the same token \(D_2 \) is reflexive. But in 2.2 we have seen that \(E \) is not even pseudoreflexive.
§3. (B) implies (C).

In the next two lemmas D is a finite-dimensional subspace of a K-Banach space E with inclusion map $i : D \rightarrow E$ and quotient map $\pi : E \rightarrow E/D$. We consider the commutative diagram

$$
\begin{array}{ccc}
D & \xrightarrow{i} & E \\
\downarrow{j_D} & & \downarrow{j_E} \\
D'' & \xrightarrow{i''} & E'' \\
\end{array}
\xrightarrow{\pi''} E'' / (E/D)''
$$

LEMMA 3.1. $\text{Im } i'' = \text{Ker } \pi''$ and π'' is a quotient map.

Proof. Since π is surjective we have by Proposition 1.4 in $(E/D)' \xrightarrow{\pi'} E' \xrightarrow{i'} D'$ that $\text{Im } \pi' = \text{Ker } i'$. Now D' is finite-dimensional so $\text{Im } i'$ is closed and has the WEP. Hence, again by Proposition 1.4, $\text{Im } i'' = \text{Ker } \pi''$. To prove the second statement observe that π' is an isometry whose image has finite codimension and therefore has the EP by Corollary 1.3, so π'' is a quotient map.

LEMMA 3.2. j_E is surjective if and only if $j_{E/D}$ is surjective.

Proof. If j_E is surjective then so is $\pi'' \circ j_E = j_{E/D} \circ \pi$. Then $j_{E/D}$ must be surjective. Conversely, if $j_{E/D}$ is surjective, let $\Theta \in E''$. Then there is an $x \in E$ with $\pi''(\Theta) = j_{E/D}(\pi(x)) = \pi''(j_E(x))$. We see that $\Theta - j_E(x) \in \text{Ker } \pi'' = \text{Im } i''$ so by surjectivity of j_D we can find a $d \in D$ such that

$$
\Theta - j_E(x) = i''j_D(d) = j_Ei(d)
$$

Then $\Theta = j_E(x + i(d)) \in j_E(E)$ and the surjectivity of j_E is proved.

REMARK. In the same vein one can prove j_E injective $\Rightarrow j_{E/D}$ injective; a counterexample to the converse is given in [1], §8.

Also one has j_E is isometrical $\Rightarrow j_{E/D}$ is isometrical. Its converse is just statement (B) the truth of which is an open problem.

If we assume (B) and if E/D is reflexive we have that j_E is isometrical by (B) and surjective by Lemma 3.2. We may conclude that (B) implies (C).