THE \(p \)-ADIC KREIN-ŠMULIAN THEOREM

W.H. Schikhof

ABSTRACT. The natural non-archimedean version of the Krein-Šmulian Theorem holds essentially only when the base field is spherically complete (Corollary 1.6). For Banach spaces over nonspherically complete scalar fields two restricted versions of the Krein-Šmulian Theorem (Theorems 2.2 and 3.1) are proved.

INTRODUCTION. (For unexplained terms see below.) Consider the following statement (*).

\(*)\begin{align*}
\text{Let } E \text{ be a } K\text{-Banach space and let } A \subseteq E' \text{ be convex. If } A \cap B \\
is \text{w}'\text{-closed in } B \text{ for each bounded set } B \subseteq E' \text{ then } A \text{ is w}'\text{-closed.}
\end{align*}

If \(K = \mathbb{R} \) or \(\mathbb{C} \) then (*) is known as the Krein-Šmulian Theorem. By modifying classical techniques (in particular by using \(c \)-compactness arguments) (*) can also be proved if \(K \) is a spherically complete non-archimedean valued field ([4], Theorem 5.1). Now see the Abstract.

PRELIMINARIES. (For terms still unexplained see [2].) Throughout \(K \) is a nonarchimedean nontrivially valued field that is complete under the metric induced by the valuation \(| \cdot | \). We always assume that \(K \) is not spherically complete, so \(|K| := \{ |\lambda| : \lambda \in K \} \) is dense. If \(X \subseteq K \) is bounded, nonempty, we set \(\text{diam } X = \sup \{|x - y| : x, y \in X\} \).

Let \(E \) be a \(K \)-vector space. A nonempty subset \(A \) of \(E \) is absolutely convex if \(x, y \in A, \lambda, \mu \in K, |\lambda| \leq 1, |\mu| \leq 1 \) implies \(\lambda x + \mu y \in A \). For such \(A \) we set \(A^\ast := \bigcap\{ \lambda A : \lambda \in K, |\lambda| > 1 \} \). \(A \) is edged if \(A = A^\ast \). The smallest absolutely convex set containing \(X \subseteq E \) is denoted \(\text{co } X \). A nonempty set in \(E \) is convex (edged convex)
if it is an additive coset of an absolutely convex (edged absolutely convex) set. By definition, the empty set is convex. The algebraic dual of E is the vector space E^* consisting of all linear functions $E \to K$. The weakest topology on E for which all $f \in E^*$ are continuous is denoted $\sigma(E, E^*)$.

A seminorm on E is a map $p : E \to [0, \infty)$ such that $p(x) \geq 0$, $p(\lambda x) = |\lambda|p(x)$, $p(x+y) \leq \max(p(x), p(y))$ for all $x, y \in E$, $\lambda \in K$. We shall use expressions such as ‘p-convergence’, ‘p-closure’, ‘p-compactoid’, ‘p-orthogonal’ without further explanation. A seminorm p is of finite type if $\text{Ker } p$ has finite codimension, of countable type if $E/\text{Ker } p$ with the norm induced by p is of countable type. A seminorm p is polar if $p = \sup\{|f| : f \in E^*, |f| \leq p\}$. A seminorm p is a norm if $p(x) = 0$ implies $x = 0$. Norms are usually denoted $\| \|$ rather than p.

Let $(E, \| \|)$ be a normed space over K. Let $a \in E$, $r > 0$. We write $B_E(a, r) := \{x \in E : \|x-a\| \leq r\}$ and $B_E := B_E(0, 1)$. The dual space E' is the Banach space consisting of all continuous linear functions $E \to K$, normed by $f \mapsto \|f\| := \sup_{B_E} |f|$. The natural map $j_E : E \to E''$ is continuous. E is pseudoreflexive if j_E is an isometry (which is equivalent to polarity of the norm on E). A linear map T from a K-Banach space E to a K-Banach space F is a quotient map if T maps $\{x \in E : \|x\| < 1\}$ onto $\{x \in F, \|x\| < 1\}$.

Let (E, τ) be a locally convex space over K. It is called of finite (countable) type if every continuous seminorm is of finite (countable) type. (E, τ) is strongly polar if each continuous seminorm is polar, polar if there exists a base of polar continuous seminorms. Let $E' = (E, \tau)'$ be the space of all continuous linear functions $E \to K$. The weak topology $w = \sigma(E, E')$ is the weakest topology on E such that all $f \in E'$ are continuous. Similarly, the weak-star topology $w' = \sigma(E', E)$ is the weakest topology on E' such that for each $x \in E$ the evaluation $f \mapsto f(x)$ ($f \in E'$) is continuous. It is well known (see [5]) that the natural map $E \to (E', \sigma(E', E))'$ is surjective. Let $X \subset E$, $Y \subset E'$. We set $X^0 := \{f \in E' : |f(x)| \leq 1 \text{ for all } x \in X\}$ and $Y_0 := \{x \in E : |f(x)| \leq 1 \text{ for all } f \in Y\}$. X is a polar set if $X_0 = X$. For a ball $B_E(0, r)$ in a normed space E we have $B_E(0, r)^0 = B_E(0, 1/r)$. If E is pseudoreflexive, $B_{E'}(0, r)_0 = B_E(0, 1/r)$. The closure of a set $X \subset E$ is \overline{X}. Instead of $\overline{\text{co } X}$ we write $\overline{\text{co } X}$. Let E, F be locally convex spaces over K. The adjoint of a continuous linear map $T : E \to F$ is the map $T' : F' \to E'$ defined by $f \mapsto f \circ T$. Following [1] we say that a subspace D of E has the Weak Extension Property (WEP) if the adjoint
The p-adic Krein-Smulian theorem

$E' \to D'$ of the inclusion map $D \to E$ is surjective.

§1. FAILURE OF THE KREIN-ŠMULIAN THEOREM

The key theorem of this section is the following. Recall that K is not spherically complete.

THEOREM 1.1. Let τ_1, τ_2 be locally convex topologies on a K-vector space E such that τ_2 is of finite type while τ_1 is not. Then there exists a τ_1-closed absolutely convex set in E that is not τ_2-closed.

We signal the following corollary which is in sharp contrast to the theory over spherically complete base fields.

COROLLARY 1.2. Let E be a locally K-convex space whose topology is not the weak topology. Then there exists a closed absolutely convex set in E that is not weakly closed.

The proof of Theorem 1.1 runs in a few steps. Let us say that a seminorm q on a K-vector space is **special** if $q(x) \in |K|$ for each $x \in E$ and if for all $x, y \in E$

$$x \perp y \text{ in the sense of } q \implies q(x) = 0 \text{ or } q(y) = 0$$

LEMMA 1.3. On a normed space of countable type over K there exists an equivalent special norm.

Proof. Let $(\bar{K}, | |)$ be the spherical completion of $(K, | |)$ in the sense of [2], Theorem 4.49. Then $| |$, considered as a norm on the K-vector space \bar{K} is special. (Indeed, we have $|\bar{K}| = |K|$. If $x, y \in \bar{K}$, $x \perp y$, $y \neq 0$ then $xy^{-1} \perp 1$ so $xy^{-1} \perp K$. But \bar{K} is an immediate extension of K so $xy^{-1} = 0$ i.e. $x = 0$.) As \bar{K} is infinite dimensional over K we can, for a given normed space E of countable type over K, make a K-linear homeomorphism T of E into \bar{K}. Then $x \mapsto |Tx|$ is the required norm.

LEMMA 1.4. Let E be a strongly polar locally convex space over K. If E is not of finite type then there exists a continuous special seminorm q on E, q not of finite type.

Proof. There is a continuous seminorm of infinite type p on E. The p-continuous linear functions form an infinite dimensional space so we can find linearly independent
180 Schikhof

\(f_1, f_2, \ldots \in E' \) such that \(n|f_n| \leq \rho \) for each \(n \in \mathbb{N} \). The formula \(\hat{p}(x) = \max_n |f_n(x)| \) defines a continuous seminorm \(\hat{p} \) on \(E \), of infinite countable type. Now Lemma 1.3 (applied to \(E/\text{Ker} \hat{p} \)) leads to a special seminorm \(q \) equivalent to \(\hat{p} \).

Remark. The conclusion of Lemma 1.4 holds for any polar space \(E \) that is not of finite type.

LEMMA 1.5. Let \(q \) be a special seminorm on a \(K \)-vector space \(E \). If \(q \) is not of finite type then \(\{ x \in E : q(x) < 1 \} \) is not \(\sigma(E, E^*) \)-closed.

Proof. Let \(x \in E, q(x) = 1 \) (such \(x \) exist!). We shall prove that \(x \) is in the \(\sigma(E, E^*) \)-closure of \(A := \{ x \in E : q(x) < 1 \} \) by producing, for given \(f_1, \ldots, f_n \in E^* \), a point \(a \in A \) such that \(f_i(x-a) = 0 \) for \(i \in \{1, \ldots, n\} \).

(i) Suppose \(f_1(x-a) \neq 0 \) for all \(a \in A \). Then \(f_1(x) \notin f_1(A) \) so, by convexity, \(f_1(A) \) is bounded and \(f_1 \) is \(q \)-continuous. We have

\[
|f_1(x)| \geq \text{diam } f_1(A) = \sup \{|f_1(a)| : q(a) < 1\} = \|f_1\|
\]

where \(\|f_1\| \) is the operator seminorm of \(f_1 \) with respect to \(q \). For each \(y \in \text{Ker} f_1 \)

\[
\|f_1\| q(x-y) \geq |f_1(x-y)| = |f_1(x)| \geq \|f_1\|
\]

and we find \(x \perp y \) in the sense of \(q \). As \(q \) is special and \(q(x) = 1 \) we must have \(q = 0 \) on \(\text{Ker} f_1 \) implying that \(q \) is of finite type, a contradiction. Thus, we may conclude that there exists an \(a_1 \in A \) with \(f_1(x-a_1) = 0 \).

(ii) Now we repeat the argument in (i) where \(E \) is replaced by \(\text{Ker} f_1, q \) by \(q|\text{Ker} f_1 \), \(x \) by \(x-a_1 \), \(A \) by \(A \cap \text{Ker} f_1 \) and \(f_1 \) by \(f_2|\text{Ker} f_1 \). (Indeed, \(q|\text{Ker} f_1 \) is special, of infinite type and \(q(x-a_1) = 1 \)). So there exists an \(a_2 \in A \cap \text{Ker} f_1 \) such that \(f_2(x-a_1-a_2) = 0 \). Observe that also \(f_1(x-a_1-a_2) = 0 \). In this spirit we arrive inductively at points \(a_1, a_2, \ldots, a_n \in A \) such that \(f_1(x-a) = 0 \) \((i \in \{1, \ldots, n\})\) where \(a := \sum_{i=1}^n a_i \in A \).

Proof of Theorem 1.1. If \((E, \tau_1) \) is not strongly polar, choose any nonpolar continuous seminorm \(q \) and set \(A := \{ x \in E : q(x) \leq 1 \} \). \(A \) is \(\tau_1 \)-closed but, as \(q \) is not polar and \(A \) is edged, \(A \) is not \(\sigma(E, E^*) \)-closed so certainly \(A \) is not \(\tau_2 \)-closed. If \((E, \tau_1) \) is strongly polar, let \(q \) be as in Lemma 1.4. By Lemma 1.5 the set \(A := \{ x \in E : q(x) < 1 \} \) is not \(\sigma(E, E^*) \)-closed, so not \(\tau_2 \)-closed.
Part (i) of the next corollary demonstrates the failure of the Krein-Šmulian Theorem for nonspherically complete base fields.

COROLLARY 1.6. Let E be a normed space over K such that E' is infinite dimensional.

(i) There exists an absolutely convex set $A \subset E'$ such that $A \cap B$ is w'-closed in B for each bounded set $B \subset E'$ while A is not w'-closed.

(ii) There exists an absolutely convex set $A \subset E$ such that $A \cap B$ is w-closed in B for each bounded set $B \subset E$ while A is not w-closed.

Proof. (i) (E', w') is an infinite dimensional Hausdorff space of countable type so its dual (which is $j_E(E)$) is infinite dimensional. Thus, we can choose x_1, x_2, \ldots in E such that $j_E(x_1), j_E(x_2), \ldots$ are linearly independent and $\lim_{n \to \infty} \|x_n\| = 0$. The seminorm p on E' defined by

$$p(f) = \max_n |f(x_n)| = \max_n |j_E(x_n)(f)|$$

is therefore not of finite type. By Theorem 1.1 there exists an absolutely convex set $A \subset E'$ which is p-closed but not w'-closed. But it is easily seen that, on any bounded set $B \subset E'$, w'-convergence implies p-convergence. Thus, the p-closedness of A implies that $A \cap B$ is w'-closed in B.

(ii) Similar to the above proof but now with the seminorm $x \mapsto \max_n |f_n(x)|$ ($x \in E$), where f_1, f_2, \ldots is a linearly independent sequence in E' for which $\lim_{n \to \infty} \|f_n\| = 0$. We leave the details to the reader.

§2. SAVE THE KREIN-ŠMULIAN THEOREM! (PART ONE)

To save the Krein-Šmulian Theorem we shall concentrate on *edged* convex sets. As such sets are translates of edged absolutely convex sets no harm is done by considering only the latter. Thus, we arrive at

DEFINITION 2.1. A normed space E over K is a *Krein-Šmulian space* if the following holds. If $A \subset E'$ is absolutely convex and edged and if $A \cap B$ is w'-closed in B for each bounded set $B \subset E'$ then A is w'-closed.

Observe that, for an absolutely convex $A \subset E'$, the expression `$A \cap B$ is w'-closed in B for each bounded set $B \subset E'$' is equivalent to `for each $n \in \mathbb{N}$ the set $A \cap B_{E'}(0, n)$
is w'-closed' and, if A is a subspace, to 'A ∩ $B_{E'}$ is w'-closed'.

The main result of this section is

THEOREM 2.2. A strongly polar Banach space is a Krein-Šmulian space.

For the proof we need first a lemma on Banach spaces. Let us call a sequence $X_1 ⊃ X_2 ⊃ \ldots$ of closed absolutely convex subsets of a K-Banach space E quasi Cauchy if for each $\lambda \in K$, $|\lambda| > 1$ and $N \in \mathbb{N}$

$$X_n ⊂ \lambda(X_m + B_E(0, \frac{1}{N})) \quad (m, n \geq N)$$

LEMMA 2.3. Let $X_1 ⊃ X_2 ⊃ \ldots$ be a quasi Cauchy sequence in a K-Banach space. Set $X := \bigcap X_n$. Then, for each $n \in \mathbb{N}$ and $x_n \in X_n$, and each $\lambda \in K$, $|\lambda| > 1$ there is an $x \in \lambda X$ such that $\|x_n - x\| \leq \frac{|\lambda|}{n}$.

Proof. Choose $\lambda_1, \lambda_2, \ldots \in K$ with $|\lambda_i| > 1$ for each i, $\prod_{1}^{i} |\lambda_i| = |\lambda|$. We have

$$X_n ⊂ \lambda_1(X_{n+1} + B_E(0, \frac{1}{n})) \text{ whence } X_n ⊂ \lambda_1 X_{n+1} + B_E(0, \frac{|\lambda|}{n})$$

$$X_{n+1} ⊂ \lambda_2(X_{n+1} + B(0, \frac{1}{n+1})) \text{ whence } \lambda_1 X_{n+1} ⊂ \lambda_1 \lambda_2 X_{n+2} + B_E(0, \frac{|\lambda|}{n+1})$$

etc.

So, given $x_n \in X_n$, we can find a sequence x_{n+1}, x_{n+2}, \ldots where $x_{n+1} \in \lambda_1 X_{n+1}$, $x_{n+2} \in \lambda_1 \lambda_2 X_{n+2}, \ldots$ such that for all $k \in \{0,1,2,\ldots\}$

$$\|x_{n+k} - x_{n+k+1}\| \leq \frac{|\lambda|}{n + k}.$$

By completeness $x := \lim_{k \to \infty} x_{n+k}$ exists. We have $\lambda^{-1} x_{n+1} \in \lambda^{-1} \lambda_1 X_{n+1} \subset X_{n+1}$; $\lambda^{-1} x_{n+2} \in \lambda^{-1} \lambda_1 \lambda_2 X_{n+2} \subset X_{n+2}$, etc., so $\lambda^{-1} x = \lim_{k \to \infty} \lambda^{-1} x_{n+k} \in \bigcap_{i \geq n+1} X_i = X$ and it follows that $x \in \lambda X$. Further, we have

$$\|x_n - x\| \leq \max\{\|x_n - x_{n+1}\|, \|x_{n+1} - x_{n+2}\|, \ldots\} \leq \max\{\frac{|\lambda|}{n}, \frac{|\lambda|}{n+1}, \ldots\} \leq \frac{|\lambda|}{n}.$$

Proof of Theorem 2.2. Let $A \subset E'$ be absolutely convex, edged and assume that $A \cap B_{E'}(0,n)$ is w'-closed for each $n \in \mathbb{N}$. Then $(A \cap B_{E'}(0,n)$ is also edged) $A \cap B_{E'}(0,n)$ is a polar set. Setting

$$X_n := (A \cap B_{E'}(0,n))_0 \quad (n \in \mathbb{N})$$

$$X := \bigcap_n X_n$$
one verifies immediately (i), (ii), (iii), (iv) below.

(i) Each X_n is a polar subset of E.

(ii) $X_n^0 = A \cap B_{E'}(0, n)$ for each $n \in \mathbb{N}$.

(iii) $X_1 \supset X_2 \supset \ldots$.

(iv) $X = A_0$.

(v) For each $N \in \mathbb{N}$ and $m, n \geq N$

$$X_n \subset (X_m + B_E(0, \frac{1}{N}))^0.$$

(Proof: $(X_m + B_E(0, \frac{1}{N}))^0 = X_m^0 \cap B_E(0, \frac{1}{N})^0 = A \cap B_{E'}(0, m) \cap B_{E'}(0, N) = A \cap B_{E'}(0, N)$, so $X_n \subset X_N = (A \cap B_{E'}(0, N))^0 = (X_m + B_E(0, \frac{1}{N}))^0$.)

(vi) X_1, X_2, \ldots is quasi Cauchy. (Proof. Let $\lambda \in K, |\lambda| > 1, N \in \mathbb{N}, m, n \geq N$.

The set $X_m + B_E(0, \frac{1}{N})$ is norm open hence norm closed. So $(X_m + B_E(0, \frac{1}{N}))^\circ$ is

norm closed and edged, hence polar (as E is strongly polar). It follows via (v), that

$X_n \subset (X_m + B_E(0, \frac{1}{N}))^0 \subset \lambda(X_m + B_E(0, \frac{1}{N})).$)

(vii) $X^0 \subset A$. (Proof. Let $f \in X^0, \lambda \in K, |\lambda| > 1$. It suffices to prove that $f \in \lambda A$.

Let $n \in \mathbb{N}$ be such that $\|f\| \leq n$. Choose any $x \in X_n$. By Lemma 2.3 there is a $y \in \lambda X$ with $\|x - y\| \leq \frac{|\lambda|}{n}$. We have

$$|f(x)| \leq |f(x-y)| + |f(y)|$$

$$\leq \|f\||x-y| + |\lambda| \leq n \cdot \frac{|\lambda|}{n} + |\lambda| = |\lambda|$$

and we see that $|\lambda^{-1} f| \leq 1$ on X_n, so $\lambda^{-1} f \in X_n^0 = A \cap B_{E'}(0, n) \subset A$ i.e. $f \in \lambda A$.)

Now (iv) combined with (vii) yields $A = X^0$ is w'-closed.

Corollary 2.4. A subspace of the dual of a strongly polar Banach space is w'-closed

as soon as its intersection with the closed unit ball is w'-closed.

Corollary 2.5. An edged absolutely convex subset A of ℓ^∞ is $\sigma(\ell^\infty, c_0)$-closed as

soon as $A \cap B_{\ell^\infty}(0, n)$ is $\sigma(\ell^\infty, c_0)$-closed for each $n \in \mathbb{N}$.

Proof. c_0 is a (reflexive) strongly polar space.

We also have:

Theorem 2.6. If E is a Krein-Šmulian space and $D \subset E$ is a closed subspace then

E/D is a Krein-Šmulian space.
Proof. Let $i : (E/D)' \to E'$ be the adjoint of the quotient map $E \to E/D$. It is easily seen that i is an isometry, that $\text{Im } i$ is w'-closed in E' and that i is a w' to w' homeomorphism $(E/D)' \to \text{Im } i$.

Now let A be an edged absolutely convex subset of $(E/D)'$ such that $A \cap B$ is w'-closed in B for each bounded set B in $(E/D)'$. Then $i(A)$ is edged. If $X \subset E'$ is bounded then $i(A) \cap X$ is w'-closed in X. (Proof. Let $j \mapsto a_j$ be a net in A such that $i(a_j) \in X$ for all j and let $w' - \lim_j a_j = b \in X$. As $\text{Im } i$ is w'-closed $b = i(a)$ for some $a \in i^{-1}(X)$. Then $w' - \lim_j a_j = a$. Now $a_j \in A \cap i^{-1}(X)$ for all j, $a \in i^{-1}(X)$ and $i^{-1}(X)$ is bounded, so by assumption on A we have $a \in A$, so $b \in i(A) \cap X.$) Since E is a Krein-Šmulian space, $i(A)$ is w'-closed in E' so that $A = i^{-1}(i(A))$ is w'-closed in $(E/D)'$.

Theorem 2.7. If E is a Krein-Šmulian space and if $D \subset E$ is a weakly closed subspace having the WEP then D is a Krein-Šmulian space.

Proof. Let $\pi : E' \to D'$ be the adjoint of the inclusion map $D \hookrightarrow E$. Then π is surjective and w' to w' continuous. If A is an edged absolutely convex set in D' and $\pi^{-1}(A)$ is w'-closed then A is w'-closed. (Proof. Let $g \in D'$, $g \notin A$. There is an $f \in E'$ with $\pi(f) = g$. Then $f \notin \pi^{-1}(A)$. Now $\pi^{-1}(A)$ is w'-closed and edged so there exists an $x \in E$ such that $f(x) = 1$ and $|h(x)| < 1$ for all $h \in \pi^{-1}(A)$. In particular, $|h(x)| < 1$ for all $h \in \text{Ker } \pi = D^0$ i.e. $h(x) = 0$ for all $h \in D^0$ so $x \in D_0^0 = D$. Then $g(x) = f(x) = 1$ and $|h(x)| < 1$ for all $h \in A.$)

Now let A be an absolutely convex edged subset of D' such that $A \cap B$ is $\sigma(D', D)$-closed in B for each bounded set $B \subset D'$. Then for such B, $\pi^{-1}(A) \cap \pi^{-1}(B)$ is $\sigma(E', E)$-closed in $\pi^{-1}(B)$. If $X \subset E'$ is bounded then $\pi(X)$ is bounded and $X \subset \pi^{-1}(\pi(X))$ so it follows that $\pi^{-1}(A) \cap X$ is w'-closed in X for each bounded set $X \subset E'$. Since E is Krein-Šmulian we have that $\pi^{-1}(A)$ is w'-closed, so by the remark above, A is w'-closed.

Remark. Not every Krein-Šmulian polar space is strongly polar; ℓ^∞ is an easy example. In §3 we will see that, if I is large enough, $c_0(I)$ is not Krein-Šmulian. This leads to the

Problem. Characterize the class of Krein-Šmulian spaces.

A concrete help would be the answer to the following two questions.
- Is \(c_0 \times c^\infty \) a Krein-Šmulian space? (More generally, if \(E_1 \) and \(E_2 \) are Krein-Šmulian spaces then does it follow that \(E_1 \times E_2 \) is Krein-Šmulian?)

- Is the subspace of \(D \) of \(c^\infty \) constructed in [2], Ex. 4J Krein-Šmulian?

§3. SAVE THE KREIN-ŠMULIAN THEOREM! (PART TWO)

In this section we shall prove the following version of the Krein-Šmulian Theorem. Observe that \((\alpha)\) holds for any polar \(K \)-Banach space.

THEOREM 3.1. For a normed space \(E \) over \(K \) the following are equivalent.

\((\alpha)\) \(J_E(E) \) is norm closed in \(E'' \).

\((\beta)\) If \(H \subset E' \) is a subspace of finite codimension and if \(H \cap B_{E'} \) is \(w' \)-closed then so is \(H \).

For a normed space \(E \) over \(K \) the \(bw' \)-topology (the 'bounded-weak-star topology') is by definition the strongest locally convex topology on \(E' \) that coincides with \(w' \) on bounded subsets of \(E' \).

PROPOSITION 3.2. Let \(E \) be a normed space over \(K \).

\((i)\) \(bw' \) is stronger than \(w' \) but weaker than the norm topology on \(E' \).

\((ii)\) \((E', bw') \) is of countable type.

\((iii)\) A seminorm \(p \) on \(E' \) is \(bw' \)-continuous if and only if \(p|B_{E'} \) is \(w' \)-continuous.

\((iv)\) For any locally convex space \((X, \tau) \) and any linear map \(T : E' \to X \) we have that \(T \) is \(bw' \) to \(\tau \) continuous if and only if \(T|B_{E'} \) is \(w' \) to \(\tau \) continuous.

Proof. \(E' = [B_{E'}] \) and \(B_{E'} \) is a \(w' \)-compactoid, hence a \(bw' \)-compactoid. This implies (ii). The other proofs are straightforward.

We know that \((E', w')' = j_E(E) ([5]))\). We now prove

PROPOSITION 3.3. For a normed space \(E \) over \(K \) the dual of \((E', bw')\) is the norm closure of \(j_E(E) \) in \(E'' \).

Proof. Every \(\theta \in \overline{j_E(E)} \) is, on \(B_{E'} \), the uniform limit of a sequence in \(j_E(E) \) so \(\theta|B_{E'} \) is \(w' \)-continuous and \(\theta \) is \(bw' \)-continuous (Proposition 3.2 (iv)). Thus \(\overline{j_E(E)} \subset (E', bw')' \). Conversely, let \(\theta \in (E', bw')' \). Then (Proposition 3.2 (i)) \(\theta \in E'' \). Let \(\varepsilon > 0 \); we shall
find an \(x \in E \) such that \(\|\theta - j_E(x)\| < \varepsilon \). Let \(\alpha \in K \), \(0 < |\alpha| < \varepsilon \). The \(w' \)-continuity of \(\theta|B_{E'} \) yields a finite set \(F \subset E \) such that \(f \in F^0 \cap B_{E'} \) implies \(|\theta(f)| \leq |\alpha| \), in other words

\[
f \in j_E(F)_0 \cap (B_{E''})_0 \implies |(\alpha^{-1}\theta)(f)| \leq 1.
\]

So we see that \(\alpha^{-1}\theta \in (j_E(F)_0 \cap (B_{E''})_0)^0 = (A + B_{E''})^0 \), where \(A = j_E(\operatorname{co} F) \). Now \(B_{E''} \) is \(w' \)-closed and \(A \) is finite dimensional so by [3], 1.4, \((A + B_{E''})^0 = (A + B_{E''})^e \).

For any \(\lambda \in K \) such that \(|\lambda| > 1 \) and \(|\lambda\alpha| < \varepsilon \) we have \(\alpha^{-1}\theta \in \lambda A + \lambda B_{E''} \), hence \(\theta \in j_E(E) + \alpha\lambda B_{E''} \) and there is an \(x \in E \) with \(\theta - j_E(x) \in \alpha\lambda B_{E''} \) i.e. \(\|\theta - j_E(x)\| < \varepsilon \).

Corollary 3.4. Let \(j_E(E) \) be closed in \(E'' \), let \(A \subset E' \) be absolutely convex and edged. Then \(A \) is \(w' \)-closed if and only if \(A \) is \(bw' \)-closed.

Proof. Let \(A \) be \(bw' \)-closed. As \(A \) is also edged and \((E', bw') \) is strongly polar (Proposition 3.2 (ii)), \(A \) is a polar set i.e. \(A = S_0 \) for some \(S \subset (E', bw')' \). But by Proposition 3.3 \(S \subset (E', w')' \) so that \(A \) is \(w' \)-closed.

Further, we need the following general lemma.

Lemma 3.5. Let \(A \) be a closed absolutely convex subset of a Hausdorff locally convex space over \(K \); let \(D \) be a finite dimensional subspace such that \(A \cap D = \{0\} \). Then \(A + D \) is closed and the addition map is a homeomorphism \(A \times D \to A + D \).

Proof. (i) If addition is homeomorphic then \(A + D \) is closed. In fact, let \(i \to a_i + d_i \) be a net in \(A + D \) (where \(a_i \in A \), \(d_i \in D \) for each \(i \)), converging to some \(z \). Then \((i,j) \to a_i - a_j + d_i - d_j \) converges to 0. By homeomorphism, \(d_i - d_j \to 0 \), by completeness of \(D \), \(d_i \to d \) for some \(d \in D \). Then \(a_i \to z - d \) and, by closedness of \(A \), \(z - d \in A \). We see that \(z \in A + D \).

(ii) Assume \(n := \dim D = 1 \), say \(D = Kx \) for some nonzero \(x \). Let \(i \to a_i + \lambda_i x \) (\(a_i \in A \), \(\lambda_i \in K \)) be a net in \(A + D \) converging to 0. If not \(\lambda_i \to 0 \) we may assume \(|\lambda_i| \geq |\alpha| > 0 \) for all \(i \) and some \(\alpha \in K \). Then \(\alpha \lambda_i^{-1}(a_i + \lambda_i x) \to 0 \) so \(\alpha x = -\lim_{i} \alpha \lambda_i^{-1} a_i \in A = A \) conflicting \(Kx \cap A = \{0\} \). Thus, addition is homeomorphic and via (i) the lemma is proved if \(n = 1 \).

(iii) The proof of the induction step \(n-1 \to n \) is now standard and left to the reader.

Proof of Theorem 3.1.

(i) Suppose \((\alpha)\), and let \(H \subset E' \) be a subspace of finite codimension such that \(H \cap B_{E'} \) is \(w' \)-closed. Then \(H \cap B_{E'} \) is norm closed, hence so is \(H \). For some \(t \in (0,1) \) \(H \) has a
t-orthogonal complement D. Let $P : E' \to D$ be the obvious projection. For $\lambda \in K$, $|\lambda| \geq t^{-1}$ we have

$$B_{E'} \subset \lambda(H \cap B_{E'}) + \lambda(D \cap B_{E'}) \subset \lambda(H \cap B_{E'}) + D.$$

Let $i \mapsto f_i$ be a net in $B_{E'}$, $w' - \lim f_i = 0$. Then, by Lemma 3.5, $\lim P f_i = 0$. We see that $P|B_{E'}$ is continuous, so (Proposition 3.2 (iv)) P is bw' to norm continuous and Ker $P = H$ is bw'-closed, hence w'-closed by Corollary 3.4, and (β) is proved.

(ii) Suppose (α) is not true. Choose $\theta \in \overline{j_E(E) \setminus j_E(E)}$. Then θ is not w'-continuous so $H := \text{Ker } \theta$ is not w'-closed. But θ is bw'-continuous by Proposition 3.3. so $H \cap B_{E'}$ is w'-closed.

The results of this section yield the existence of polar non-Krein-Šmulian spaces (see §2).

Corollary 3.6. If m is a cardinality $\geq \# K$ then $c_0(m)$ is not a Krein-Šmulian space.

Proof. In [2], Exercise 4.N a Banach space E is constructed such that $j_E(E)$ is a proper dense subset of E''. From this construction it is easily seen that $\# E = \# c_0 \leq \# K^N = \# K$. Now let I be a set with cardinality $\geq \# K$ and let $\{e_i : i \in I\}$ be the natural orthonormal base of $c_0(I)$. There is a surjection $\{e_i : i \in I\} \to B_E$, it extends to a quotient map $c_0(I) \to E$. Now E is not a Krein-Šmulian space by Theorem 3.1, neither is $c_0(I)$ by Theorem 2.6. (It is not hard to see by looking at the proof of Theorem 2.6 that one can even find a subspace $D \subset c_0(I)$ that is not w'-closed while $D \cap B_{c_0(I)}$ is.)

Corollary 3.7. If m is a nonmeasurable cardinality $\geq \# K^K$ then $\ell^\infty(m)$ is not a Krein-Šmulian space.

Proof. In the spirit of the previous proof one constructs a quotient map $\pi : c_0(n) \to \ell^\infty(n)$ where $n = \# K$. By reflexivity ([2], Theorem 4.21) the adjoint $\pi' : c_0(n) \to \ell^\infty(m)$ is an isometry and $\pi'(c_0(n))$ has the WEP in $\ell^\infty(m)$. From [4], Lemma 2.2 we obtain that $\pi'(c_0(n))$ is also weakly closed in $\ell^\infty(m)$. By the previous corollary $c_0(n)$ is not a Krein-Šmulian space, neither is $\ell^\infty(m)$ by Theorem 2.7.

Problem. Determine the smallest cardinality m for which $c_0(m)$ ($\ell^\infty(m)$ if $\# K$ is nonmeasurable) is not a Krein-Šmulian space.
As a further application we now prove a nonarchimedean version of a classical reflexivity criterion (Theorem 3.8). First we 'dualize' the notion of a polar seminorm as follows. A seminorm p on the dual E' of a locally K-convex space E is a dual seminorm if there exists an $X \subset E$ such that $p(f) = \sup \{|f(x)| : x \in X\}$ for all $f \in E'$. An easy exercise shows that p is dual if and only if $\{f \in E' : p(f) \leq 1\}$ is $\sigma(E', E)$-closed. Dual seminorms are automatically polar.

Theorem 3.8. Let E be a pseudoreflexive K-Banach space. Then E is reflexive if and only if each polar norm on E' inducing the topology is dual.

Proof. Let E be reflexive and let ν be a polar norm on E' inducing the topology. Then $\{f \in E' : \nu(f) \leq 1\}$ is weakly closed so, by reflexivity, w'-closed. Hence ν is dual by the above remark. Conversely, suppose each polar norm on E' inducing the topology is dual. To prove reflexivity of E it suffices (by pseudoreflexivity) to show that any $\theta \in E''$ is w'-continuous. For each $n \in \mathbb{N}$ the norm $f \mapsto n|\theta(f)| \vee \|f\|$ (where $\|\| \|$ is the 'natural' norm on E') is easily seen to be polar and it is obviously equivalent to $\|\|$. By assumption its closed unit ball

$$B_n := \{f \in E' : |\theta(f)| \leq \frac{1}{n}, \|f\| \leq 1\}$$

is w'-closed. Hence so is $\bigcap_n B_n$ which is Ker $\theta \cap B_{E'}$. By Theorem 3.1 Ker θ is w'-closed implying that θ is w'-continuous.

Remark. One also may consider a 'predual form' of the Krein-Šmulian property (compare Definition 1.1, see also Corollary 1.6 (ii)) as follows. A normed space E is PKŠ-space if for each absolutely convex edged $A \subset E$:

$$A \cap B \text{ is } w\text{-closed in } B \text{ for each bounded } B \subset E \implies A \text{ is } w\text{-closed.}$$

(Obviously this notion is of no use in classical Banach space theory.) The reader will not have difficulties in proving results about PKŠ spaces similar to the one of KŠ-spaces of this paper. More precisely, we have

(i) A strongly polar normed space is PKŠ.

(ii) Let E be a normed PKŠ space, let D be a closed subspace. Then E/D is PKŠ. If D, in addition, is weakly closed and has the WEP then D has PKŠ.

(iii) Let E be a normed space. If $H \subset E$ is a subspace with finite codimension and $H \cap B_E$ is weakly closed then H is weakly closed.
REFERENCES

Katholieke Universiteit
Mathematisch Instituut
Toernooiveld
6525 ED Nijmegen, The Netherlands