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BACKGROUND: Male mice, heterozygous for two semi-identical reciprocal translocations T(1;13)70H and

T(1;13)1Wa are usually sterile. We have investigated this oligoasthenoteratozoospermic mouse model using ICSI.

METHODS: B6D2F1 oocytes were injected with epididymal or testicular sperm from fertile or sterile translocation

carriers and from chromosomally normal fertile controls. ICSI ef®ciency was determined by pronucleus formation

and ®rst cleavage rates. For arrested zygotes, cell cycle progression was evaluated by BrdU incorporation and incu-

bation with okadaic acid. RESULTS: Epididymal sperm from infertile translocation carriers showed a slightly

lower fertilization rate (70% vs. 92%, 95% and 95% for fertile translocation carriers and two groups of normal

fertile control males, respectively) and a severely reduced cleavage rate (33% vs. 87%, 96% and 89% for the same

control groups). However, the use of testicular sperm signi®cantly improved the cleavage rate (62% vs. 83% for

normal fertile controls). Development of arrested zygotes was delayed or blocked during S- and G2-phase.

CONCLUSIONS: Whereas control testicular and epididymal sperm performed equally well, the use of testicular

sperm from oligospermic T/T ¢ males signi®cantly increased ®rst cleavage rates when compared to the low rates with

epididymal sperm. Epididymal storage in oligospermics may negatively in¯uence zygote division.
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Introduction

Intracytoplasmic sperm injection (ICSI) has now been estab-

lished as the method of choice to overcome male infertility in

IVF clinics around the world. ICSI results in high fertilization

and pregnancy rates when sperm from men with severe

oligospermia is used (Van Steirteghem et al., 1993; Nagy et al.,

1995). Nevertheless, concerns regarding the risks of the

procedure for the offspring remain, as both mutation rates for

numerical and structural chromosome abnormalities are

increased compared to the general population (Bonduelle

et al., 2002).

Classically, the assessment of human sperm is carried out by

WHO criteria for concentration, motility and morphology

(WHO, 1999). When using sperm for ICSI, the concentration is

low and there are strong indications that motility and morph-

ology are not reliable criteria for the absence of DNA damage

(human: Lopes et al., 1998; Twigg et al., 1998; mouse: Ahmadi

and Ng, 1999). If DNA damage is present in the spermatozoon,

this may lead to de novo mutations and structural chromosome

abnormalities in the developing embryo. Cytogenetic proof of

this principle in human sperm at ®rst cleavage division in

heterologous fertilization systems has been obtained in a

number of studies (Martin et al., 1994; Lee et al., 1996;

Rybouchkin, 1997). For studying the genesis of chromosome

mutations from sperm of men with oligoasthenoteratozoos-

permia (OAT), mouse models are needed.

To this purpose, we have investigated whether mice with

chromosomal male sterility and an OAT phenotype produce

sperm suitable for ICSI. The majority of males heterozygous

for the two semi-identical reciprocal translocations

T(1;13)70H and T(1;13)1Wa, are sterile (T/T ¢, De Boer et al.,

1986; Peters et al., 1997). During ®rst meiotic prophase in

primary spermatocytes at the time of homologous chromosome

pairing, two heteromorphic bivalents (a large one between the
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131H, 131Wa and a small one between the 113H, 113Wa

translocation chromosomes) are produced by synaptonemal

complex formation. Subsequently, in the large 131 bivalent, an

adaptive structurally normal synaptonemal complex is always

formed, not revealing the interruption in homology. In the

majority of primary spermatocytes of around 80% of T/T ¢
males, this process fails for the small 113 heteromorphic

bivalent. In these infertile males, spermatocyte death com-

mences during the second half of pachytene with a peak at ®rst

meiotic division, as described for other sterile reciprocal

translocation heterozygotes (De Boer et al., 1986). Thereafter,

spermiogenesis results in additional cell death and a large

variation in sperm morphology and motility.

When synaptic adaptation occurs for the small 113 hetero-

morphic bivalent as well, and a structurally normal synapto-

nemal complex is formed in over half of the pachytene

spermatocytes, fertility is restored (De Boer et al., 1986; Peters

et al., 1997). This is in keeping with the notion that for these

spermatocytes, meiotic cell cycle checkpoints no longer result

into apoptosis (Odorisio et al., 1998; De Vries et al., 1999).

The obstructive effect of aberrant synaptic behaviour of

unspeci®ed chromosomes and chromosome segments during

®rst meiotic prophase on gametogenesis, especially spermato-

genesis, has been thoroughly documented in both man (Speed,

1989) and mouse (De Boer and De Jong, 1989).

We have used both epididymal and testicular spermatozoa

from these infertile males for injection into mouse oocytes and

compared fertilization rates by pronucleus formation and rates

of cleavage to the two-cell stage to those of fertile controls

carrying the same genetic background with or without the

translocations.

Materials and methods

Reagents and media

All inorganic and organic reagents were purchased from Sigma-

Aldrich Chemie Gmbh. (Steinheim, Germany), unless otherwise

stated.

For oocyte collection and -injection MEM-alpha was used (Cat no.

22571, GIBCO Life Tech, Gaithersburg, MD), supplemented per 500

ml with 2.5 g Hepes, 684 mg 50% sodium lactate solution, 55 mg

sodium pyruvate, 65 mg penicillin G (1596 U/mg) and 6% fetal calf

serum (BioWhittaker Europe, Verviers, Belgium), hereafter referred

to as MEM-alpha medium. After injection, oocytes were cultured in

G1 (Barnes et al., 1995) under silicone oil (Aldrich, 14,615-3). During

the course of the experiments however, the culture medium was

changed to human tubal ¯uid HTF (BioWhittaker Europe, Verviers,

Belgium), containing 10% GPO (pasteurized blood plasm-protein

solution, CLB, Amsterdam, The Netherlands) under mineral oil

(International Medical, Zutphen, The Netherlands). This did not

in¯uence fertilization or cleavage ef®ciencies (data not shown).

Mice

Four to eleven-month old T(1;13)70H/T(1;13)1Wa double hetero-

zygous males (T/T ¢) on a random bred Swiss genetic background

(HsdCpb:SE), served as sperm donors. They were generated in the

experimental animal centre, Wageningen University, by crossing

homozygous T(1;13)70H females with homozygous T(1;13)1Wa

males (De Boer et al., 1986). T/T ¢ males were tested for infertility

by mating them twice with high-littersize NMRI (HsdWin:NMRI)

virgin females (De Boer et al., 1986). Absence of decidual reactions at

day 13 of pregnancy indicated sterility. The spermiogram from the

caput epididymis of infertile T/T ¢ males resembles that of OAT

Ts(113)70H tertiary trisomic males (De Boer et al., 1976): sperm

counts are low, and both motility and morphology are poor. As

controls, fertile T/T ¢ males were used, next to Swiss random bred wild-

type males and NMRI random bred males.

B6D2 F1 females (Iffa-Credo, Someren, The Netherlands) were

used as oocyte donors and were kept in a 10 h dark/14 h light schedule,

with lights on at 11 am. Superovulation was induced by i.p. injection

of 7.5 IU pregnant mare's serum gonadotrophin (PMSG) (Intervet,

Boxmeer, The Netherlands) around 9 pm, followed by 7.5 IU hCG

(Intervet, Boxmeer, The Netherlands) 48 h later.

Morphology of the epididymis of T/T¢ males

From four T/T ¢ males of proven sterility, one testis with attached

caput, corpus, cauda epididymidis and vas deferens was ®xed for 24 h

in 3.7% formaldehyde in a phosphate buffer containing 46 mM

Na2HPO4 and 33 mM NaH2PO4, washed and stored in 100% ethanol

until histological investigation.

Preparation of epididymal and testicular sperm

Testes weights were recorded and sperm counts taken from the

caput epididymidi (Searle and Beechey, 1974). Each cauda

epididymidis was placed in silicone oil and the contents squeezed

into the oil with forceps. For all fertile males, contents were

transferred to HTF Hepes medium and left to disperse for 30 min at

37°C. The caudal contents from infertile T/T ¢ males were placed in

either Spermatocyte Isolation Medium (SIM) (Heyting and Dietrich,

1991) or Nucleus Isolation Medium (NIM) buffer (Kuretake et al.,

1996) without phenylmethylsulphonyl ¯uride (PMSF), supplemented

with 0.4% BSA at 37°C for 30 min. Samples were stored at room

temperature (RT) and viability was checked with a live±dead sperm

kit (Molecular Probes, Leiden, The Netherlands).

To obtain testicular sperm, tubuli seminiferi were isolated in NIM

buffer, cut into small pieces and squeezed. Clumps of spermatogenic

cells were dissolved in 100 ml NIM buffer, supplemented with 25 mg/

ml DNase I and 2.6 mg/ml Collagenase IV. Cells were centrifuged for

5 min at 170 g, washed twice with NIM buffer and then resuspended in

50 ml NIM buffer at RT.

Collection of MII oocytes and intracytoplasmic sperm injection

Oocytes were freed from the oviducts 13 h after hCG, and stored

without cumulus cells at 37°C for up to 4 h. Microinjection at 18°C

was performed as previously described (Kimura and Yanagimachi,

1995), selecting normal looking and motile spermatozoa. A fresh

sperm sample was transferred from medium to polyvinyl pyrrolidone

(PVP) (360 kDa) for each injection round of eight oocytes (~30 min).

Epididymal spermatozoa from infertile T/T ¢ quickly lost motility once

in 12% PVP (<10 min), so it cannot be excluded that initially immotile

spermatozoa were used as well. Therefore, in one set of experiments,

sperm from sterile T/T ¢ males was speci®cally selected for motility or

immotility directly after dispersion of the contents of two cauda

epididymidi in 200 ml HTF Hepes medium with 3% BSA (Fraser and

Quinn, 1981). Motile or immotile, normal looking sperm were

transferred by holding pipette to the 12% PVP and injected. Testicular

spermatozoa could only be selected by morphological appearance,

because of inherent lack of motion.

After injection, oocytes were kept on the cool stage for 5 min,

then gradually warmed to 37°C and placed in culture medium at

37°C, 5% CO2 in air. Fertilization was determined 7±9 h after

injection by the presence of a second polar body and two visible

pronuclei. After 19±20 h, zygotes were scored for ®rst cleavage. At
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this point, oocytes injected with spermatozoa from infertile T/T ¢ males

not showing signs of fertilization were given hypotonic treatment and

chromosome preparations were made (Tarkowski, 1966). After

staining with 4,6-diamidino-2-phenylindole (DAPI) (125 ng/ml),

chromosomes were examined under a Zeiss Axiophot2 ¯uorescence

microscope.

Treatment of zygotes from infertile T/T¢ males with bromo-
deoxyuridine or okadaic acid

In three independent injection sessions, all oocytes injected with

epididymal spermatozoa from infertile T/T ¢ males were cultured in

medium containing 5 mg/ml 5-bromo-2¢-deoxyuridine (BrdU) to

demonstrate DNA replication. After 20 h of culture, fertilized oocytes

that had failed to cleave to the two-cell stage and still possessed visible

pronuclei, were ®xed (Tarkowski, 1966). BrdU incorporation was

detected with the RPN202 kit (Amersham Life Science, Alrington

Heights, IL) in combination with a goat anti-mouse IgG conjugated

with FITC (Jackson Immuno Research laboratories, PA, USA), as

described previously (Baart et al., 2000) and DNA was counterstained

using DAPI.

Okadaic acid (OA), as a speci®c inhibitor of serine/threonine

phosphoprotein phosphatases (PP) 1 and 2A was used to induce

premature chromosome condensation (PCC), in a pattern dependent

on the cell cycle stage of the pronucleus. (zygote G1-, S- or G2-phase;

Dyban et al., 1993). In three injection sessions with sperm of sterile T/

T¢ males, oocytes with visible pronuclei 20 h after injection, were

incubated for 1 h in 10 mM OA, subsequently transferred to fresh

medium and cultured for another 1±2 h, after which chromosome

preparations were made and inspected with DAPI.

Statistics

The Mann±Whitney U test has been used to compare fertilization rates

and ®rst cleavage rates between males of the different experimental

groups

Results

Morphology of the epididymis in T/T¢ sterile males

Epididymides with efferent ducts, initial segment, caput,

corpus and cauda were of normal size and development, the

secretions in the cauda, as judged from periodic acid-Schiff

(PAS) staining, being normal as well. All segments had

principal and basal cells, the initial segment had apical cells

and the caput and cauda regions had clear cells. One male only

presented with vacuoles in the caput region, a characteristic

seen in mice of some genetic backgrounds.

Zygote development after injection of epididymal sperm

Oocytes were injected with epididymal sperm from four

different types of donors and zygote development was

monitored (Table I). Injection of sperm heads from NMRI

males led to high fertilization rates: 95% showed two pronuclei

and a second polar body 7 h after injection. Of fertilized

oocytes, 96% showed normal cleavage to two-cell embryos

after 20 h of culture. These results are comparable to those of

others (Kimura and Yanagimachi, 1995) after injection of

Table I. Fertility indices of four different sperm donors and resulting fertilization and cleavage rates of mouse oocytes after injection of epididymal
spermatozoa

Sperm
source

Testis
weight
(mg)

Sperm
counta

Number of
oocytes
injected

Number (%)
of surviving
oocytes

Number (%)
of fertilized
oocytes

Number (%)
of cleaved
embryos

NMRI
1 b b 33 28 (85) 26 (93) 26 (100)
2 b b 39 30 (77) 28 (93) 27 (96)
3 b b 36 29 (81) 29 (100) 27 (93)
Total 108 87 (81) 83 (95) 80 (96)

Swiss
1 136 400 20 16 (80) 15 (94) 12 (80)
2 113 584 19 19 (100) 17 (89) 15 (88)
3 109 454 28 24 (86) 24 (100) 23 (96)
Total 67 59 (88) 56 (95) 50 (89)

T/T¢ fertile
1 79 156 30 25 (83) 22 (88) 22 (100)
2 104 165 21 20 (95) 20 (100) 19 (95)
3 121 312 38 34 (89) 32 (94) 20 (63)
4 105 378 34 31 (91) 27 (87) 27 (100)
Total 123 110 (89) 101 (92) 88 (87)

T/T¢ infertile
1 60 3 19 17 (89) 10 (59) 3 (30)
2 50 4 36 23 (64) 20 (87) 6 (30)
3 57 11 35 25 (71) 14 (56) 2 (14)
4 b 15 24 20 (83) 17 (85) 5 (29)
5 61 17 28 22 (79) 17 (77) 7 (41)
6 60 22 29 24 (83) 19 (79) 4 (21)
7 50 26 13 11 (85) 8 (73) 2 (25)
8 57 37 31 21 (68) 9 (43) 1 (11)
9 59 56 36 25 (69) 14 (56) 2 (14)
10 90 110 36 33 (92) 27 (82) 19 (70)
Total 287 221 (77) 155 (70)* 51 (33)

*P < 0.01, compared to T/T¢ fertile.
aActual haemocytometer counts are given.
bNot determined.

E.B. Baart et al.

1142

 at K
atholieke U

niversiteit on July 11, 2012
http://hum

rep.oxfordjournals.org/
D

ow
nloaded from

 

http://humrep.oxfordjournals.org/


B6D2 F1 oocytes with B6D2 F1 sperm (98% and 99%,

respectively).

After injection of sperm heads from chromosomally normal

Swiss males, the average fertilization rate of surviving oocytes

was 95% and 89% of fertilized oocytes cleaved to the two-cell

stage. For the fertile T/T ¢ group these ®gures were 92% and

87%, respectively. Results obtained from the infertile T/T ¢
group were more variable. An average fertilization rate of only

70% was observed (Mann±Whitney U test with fertile T/T ¢, P <

0.01). Furthermore, on average only 33% of fertilized oocytes

developed to the two-cell stage after 20 h of culture, while most

remained at the pronuclear stage. Some pronuclear oocytes still

cleaved after 24 h, indicating no block at the pronuclear stage,

but a severe delay in their development.

The in¯uence of sperm motility in sterile males

Viability staining in sterile males (n = 3) showed 22±40% of

live spermatozoa from the cauda epididymis directly after

isolation, and this decreased to 18±31% after 5 h of incubation

at RT. Table II gives the results of separating motile from non-

motile spermatozoa prior to PVP incubation. In these small

series, no effect of selection for motility or immotility was

apparent when males were oligospermic.

Zygote development after injection of testicular sperm

Oocytes were injected with testicular spermatozoa from fertile

Swiss and infertile T/T ¢ males (Table III). Mostly, spermatozoa

with normal head morphology, but still exhibiting a cytoplas-

mic droplet, were used. Injection of testicular sperm from

Swiss control mice resulted in slightly lower fertilization and

cleavage rates than after injection with epididymal sperm.

Testicular sperm from infertile T/T ¢ males produced variable

results among different males with an average fertilization rate

of 72% (Table III). This is comparable to epididymal sperm

(Table I, T/T ¢ infertile). However, the cleavage rate obtained

with testicular sperm from males with very low epididymal

sperm counts increased to 62% (Table III). Although this is

lower than cleavage rates for epididymal control sperm

(Mann±Whitney U test: T/T ¢ infertile compared to Swiss and

fertile T/T ¢ males combined, P < 0.025), it is signi®cantly

higher than cleavage rates obtained with epididymal sperm

from infertile T/T ¢ males (Mann±Whitney U test: testicular

sperm of T/T ¢ infertile compared to epididymal sperm of T/T ¢
infertile, P < 0.01).

Cytogenetic analysis of unfertilized oocytes

After injection with epididymal sperm from infertile T/T ¢
males, 45 oocytes classi®ed as unfertilized. In 9 of 45 oocytes,

20 metaphase II chromosomes with remnants of the ®rst polar

body only were found, indicating injection failure. In 18

oocytes, an intact or slightly decondensed sperm head was

visible next to 20 metaphase II chromosomes. In a further 18

oocytes, premature chromosome condensation (PCC) of the

sperm chromosomes was observed (Figure 1). In these oocytes,

the sperm nucleus had transformed into discrete chromosomes.

In 7 of these 18 oocytes, the prematurely condensed chromo-

somes were heavily fragmented and rearranged chromosomes

could be seen (Figure 2).

Table II. The effect of sperm motility on number of cleaved zygotes in infertile T/T¢ males

T/T¢ infertile Males
(n)

Testis Weight
(mg)

Sperm
counta

Number of injected
and surviving oocytes

Number (%) of
cleaved embryos

Motile sperm of severe oligospermics 2 58/69 4/19 19 6 (32)
Immotile sperm of severe oligospermics 2 58/68 4/24 20 6 (30)
Immotile sperm of mild oligospermics 2 80/80 99/120 33 20 (61)

aActual haemocytometer counts are given.

Table III. Fertility indices of two different sperm donors and resulting fertilization and cleavage rates of mouse oocytes after injection of testicular
spermatozoa

Sperm
source

Testis weight
(mg)

Sperm
counta

Number of
oocytes injected

Number (%) of
surviving oocytes

Number (%) of
fertilized oocytes

Number (%)
of cleaved embryos

Swiss
1 105 >300 42 38 (90) 30 (79) 22 (73)
2 110 >300 22 20 (91) 19 (95) 19 (100)
3 120 >300 14 10 (71) 9 (90) 7 (77)
Total 78 68 (87) 58 (85) 48 (83)

T/T¢ infertile
1 45 0 12 10 (83) 9 (90) 8 (89)
2 60 8 25 23 (92) 18 (78) 6 (33)
3 55 11 33 29 (88) 18 (62) 14 (78)
4 60 36 10 10 (100) 7 (70) 4 (57)
Total 80 72 (90) 52 (72) 32 (62)*,**

*P<0.025, compared to Swiss + T/T¢ fertile of Table I.
**P<0.01, compared to T/T¢ fertile of Table I.
aActual haemocytometer counts are given.
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BrdU incorporation and OA condensation patterns in
pronuclear zygotes

A total of 24 one-cell embryos with visible pronuclei after 20 h

of culture were analysed for BrdU incorporation. BrdU was

consistently detected in both pronuclei and the second polar

body (Figure 3). Pronuclei must therefore have passed through

G1-phase of the cell cycle and be in either S- and/or G2-

phase.The pronuclear membranes in one zygote had broken

down spontaneously in the time between selection of the

pronuclear zygotes and ®xation, and ®rst metaphase chromo-

somes could be inspected (Figure 4). Several chromosome

exchanges and (a)centric fragments were observed. In 13 of 27

zygotes treated with OA, both pronuclei were condensed into a

G2-phase type chromosome condensation (Figure 5), resem-

bling metaphase chromosomes at the ®rst mitotic division.

These nuclei both had completed S-phase, but did not make a

timely transition into M-phase and subsequent cleavage.

Karyotype analysis was not possible due to the spreading

characteristics, especially of the male pronucleus. In nine other

oocytes, the two pronuclei were asynchronous, with one

pronucleus showing G2-type PCC and the other S-type PCC,

characterized by a decompacted chromatin mass with a

`pulverized' appearance. In three more oocytes, two pronuclei

had S-type PCC.

Discussion

In this study, we investigated the effect of poor quality mouse

spermatozoa on the fertilization process and zygote develop-

Figure 2. Premature chromosome condensation (PCC) in a
secondary oocyte injected with an epididymal spermatozoon from a
sterile T/T¢ male. Constitutive heterochromatin is discernible as
brighter DAPI ¯uorescense. Many acentric fragments (arrowheads)
and examples of rearranged chromosomes (arrows) are visible.

Figure 1. Meiotic metaphase II chromosomes with two chromatids
and single chromatid sperm chromosomes in an inactivated
secondary oocyte after ICSI with an epididymal spermatozoon from
a sterile T/T¢ male. A small chromatin fragment of likely male
descent is visible (arrow).

Figure 3. (A) Pronuclear zygote, around 20 h after ICSI with an
epididymal spermatozoon from a sterile T/T¢ male. BrdU
incorparation indicative for S and/or G2-phase is illustrated by
(bright) ¯uorescence. (B) The same zygote as in (A), showing the
DAPI DNA background.

Figure 4. Spontaneous ®rst cleavage metaphase of a delayed
pronuclear zygote. Normal chromosomes most likely are of female
origin (arrowheads), a set characterized by chromosome fragments
and rearrangements often involving centric heterochromatin
(arrows) of male origin.
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ment after ICSI. To do so, we used mice heterozygous for two

different but semi-identical reciprocal translocations.

Individual animals with this karyotype can produce up to

normal sperm levels or can have an OAT phenotype, resulting

in infertility (De Boer et al., 1986; Peters et al., 1997). The two

main outcomes, using sperm from the cauda epididymis of

infertile males, are: a) a small but signi®cant decrease in oocyte

activation rate; and b) a substantial decrease in the percentage

of activated oocytes that develop to the two-cell stage in time.

We show that the latter effect is due to arrest or delay at the S-

or G2-phase of pronuclear development. Furthermore, we have

obtained evidence that sperm chromosome damage accom-

panies this reduction in zygote development.

Origin of the DNA damage in epididymal sperm from
sterile T/T¢ males

During ®rst meiotic prophase in these males, an indication for

the persistence of recombinational double-strand DNA breaks

is found in those pachytene spermatocytes, that do not form a

structurally normal small translocation chromosome 113

synaptonemal complex (Mahadevaiah et al., 2001). In these

primary spermatocytes, death starts during the pachytene stage,

as in comparable male sterile mouse models (De Boer et al.,

1986). Spermatocytes that fail to meet the prerequisites for

meiotic recombination are removed from the germ line.

Therefore, it is less likely that unrepaired meiotic DNA

damage persists post meiosis in the epididymal spermatozoa of

these males. Thus, the chromosome damage observed at the

zygote stage more likely is of a post meiotic nature, when

during sperm differentiation, DNA repair becomes inactive

(Sega and Sotomayor, 1982).

In the mouse and rat, an increase in the presence of

endogenous nicks in the DNA of spermatids undergoing

elongation was demonstrated by in situ nick translation

(McPherson and Longo, 1992, 1993; Sakkas et al., 1995).

These authors propose that the creation and ligation of DNA

nicks in testicular spermatids play an important role in

chromatin remodelling prior to protamination. It is not

known whether in a situation of OAT the ligation step is

defective, thus leading to impaired chromatin stability and the

presence of DNA damage.

Sperm transport through the epididymis has been timed in

the mouse using radioisotopic labelling at premeiotic S-phase.

Thus, in a normal male, transport takes 2±3 days each for

respectively caput±corpus, corpus±cauda and cauda±vas de-

ferens (Sega and Sotomayor, 1982). These experiments have to

our knowledge never been repeated in mice with oligospermia.

In humans, a reduced production of spermatozoa is highly

correlated with longer transit times through the epididymis

(Johnson and Varner, 1988). If we assume the same to hold true

for mice, spermatozoa from our infertile translocation carriers

would start to age in the epididymis. The improvement in ®rst

cleavage rate when using testicular sperm from sterile males

(Table III) also implicates epididymal storage to play a role in

the reduction of two-cell embryo yield with `infertile' sperm.

One other mouse ICSI study used sperm from mice de®cient

in the protein phosphatase 1cg gene that only expresses itself as

male sterility. When malformed testicular sperm from Pp1cg
±/± males was used for ICSI in B6D2 F1 oocytes, a detrimental

effect on development in vitro between the 8-cell and

blastocyst stage emerged. However, in contrast to the T/T ¢
model, no effect was found up to the two-cell stage (Davies and

Varmuza, 2003). Possibly, the testicular origin of sperm in

Pp1cg ±/± males favours two-cell development. Furthermore,

also in contrast to our T/T ¢ model, Varmuza et al. (1999) report

that in their male mutants, meiotic prophase was unaffected (by

histology).

Reduced oocyte activation by epididymal sperm from sterile
males

Injections with epididymal sperm of sterile T/T ¢ males resulted

into: a) elevated levels non-decondensed sperm nuclei; and b)

premature chromosome condensation (PCC) in the presence of

female second meiotic chromosomes: failure of oocyte

activation by the sperm. PCC is known from the IVF clinic

(Schmiady et al., 1996), and has often been attributed to

precocious fertilization of an `unripe oocyte' (Zenzes et al.,

1990). This interpretation is strengthened by IVF results in the

mouse (Kubiac, 1989). However, sperm decondensation prob-

lems were noted in the majority of activation failures after

human ICSI (Lopes et al., 1998) and a link is evident with

deviant sperm chromatin compaction, as determined with

CMA3 ¯uorescence and positive in situ nick translation

(Sakkas et al., 1998). Thus, activation of the oocyte by the

sperm is likely hampered when chromatin compaction is

incomplete. However, research into the heterogeneity of

chromatin compaction in sterile T/T ¢ males is needed to

determine if this contributes to the observed reduction of

oocyte activation. In the related OAT tertiary trisomic

Ts(113)70H mouse model, no evidence for underprotamination

has been found as indicated by normal total thiol levels in the

sperm head (De Boer et al., 1990).

DNA damage checkpoints and repair

In Figures 2 and 4, male chromosome rearrangements are

visible, which is evidence of double-strand DNA repair.

Ligation of double-strand DNA breaks leading to chromosome

Figure 5. OA-induced G2 chromosome condensation in a
pronuclear zygote from an epididymal spermatozoon of sterile T/T¢
descent. The most likely male chromosome complement is indicated
by an arrow.
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abnormalities at PCC (Figure 2) must have occurred before

condensation of the chromatin, likely shortly after sperm

penetration. With arti®cially inactivated mouse sperm to

induce PCC after ICSI, an identical result was obtained

(Perry et al., 2000).

Zygotes which did not progress timely to the ®rst cleavage

after injection of T/T¢ sperm consistently showed BrdU

incorporation, indicating DNA synthesis to have started.

Therefore, development could either be delayed during S-

phase or at the subsequent G2-phase. OA stimulation of

arrested pronuclear zygotes after ICSI showed the majority to

have two pronuclei at G2-phase, followed by one pronucleus at

S-phase and the other at G2. It was demonstrated earlier by

heterologous ICSI using necrotic human sperm and mouse

oocytes (Rybouchkin et al., 1997), that the human paternal

pronucleus was delayed in development. So the male

pronucleus most likely is the one at S-phase in this study.

The presence of a checkpoint in the mouse during the ®rst

mitotic cell cycle, after the pronuclei have reached competence

to replicate DNA, has been described previously (Fulka et al.,

1999). Also, a p53-dependent S-phase damage checkpoint was

found recently in mouse oocytes, using irradiated sperm and

genetic manipulation of p53 status (Shimura et al., 2002). Our

results, combined with data on the processing by mouse

zygotes of irradiation-induced DNA breaks in spermatozoa

(Matsuda and Tobari, 1989), indicate that the zygotic cell cycle

is not characterized by a G1±S checkpoint for DNA damage, so

typical of somatic cells (Hartwell and Kastan, 1994).

Nevertheless, commencement of DNA synthesis in zygotes is

dependent on full male pronucleus development in mammals

(Comizolli et al., 2003; and references therein).

Mouse ICSI as a model system

The results obtained with OAT epididymal sperm in this study

show a delay and/or interrupted development for the majority

of fertilized embryos at the zygote stage, a phenomenon not

observed with ejaculated OAT sperm in the human (Nagy et al.,

1995; Tarlatzis en Bili, 2000). A direct comparison between the

propagating capacity of epididymal and testicular sperm within

an oligospermic individual is not available. In the human,

comparisons have been made between epididymal sperm in

obstructive azoospermia (OA) vs. testicular sperm in non-

obstructive azoospermia (NOA, Wennerholm et al., 2000;

Friedler et al., 2002) and between testicular sperm in OA vs.

testicular sperm in NOA (de Croo et al., 2000; Vernaeve et al.,

2003). Summarizing these data, testicular sperm from NOA

patients were on average somewhat less effective in fertiliza-

tion and possibly cleavage rate, an effect smaller but similar to

the one observed in Table III for sterile T/T ¢.
Using the alkaline Comet assay to assess DNA fragmenta-

tion, a difference in DNA integrity between testicular and

epididymal sperm in human obstructive azoospermia was also

noted (Steele et al., 1999; O'Connell et al., 2002). In

agreement with our results, more damage was observed in

epididymal spermatozoa. Thus, it appears that the use of poor

quality semen with possible DNA damage negatively affects

embryo development, but the response of the human embryo to

the presence of DNA damage may be different in comparison

to the mouse.

In conclusion, oligospermia in the T/T ¢ mouse model affects

fertilization and ®rst cleavage rates. This is most pronounced

for epididymal sperm, but the same tendency is observed for

testicular sperm. In normospermic controls, a difference

between testicular and epididymal sperm was not apparent.

Epididymal sperm from fertile T/T ¢ males did not differ from

chromosomally normal fertile controls. Although epididymal

sperm from sterile T/T ¢ males is not completely representative

for ejaculated human gametes used for ICSI, this study offers

interesting observations on chromosome instability when PCC

is observed and when ®rst cleavage is delayed. Also, it

demonstrates a role for zygotic S-phase in detecting chromo-

somal instability or other aspects of chromatin structure. The T/

T ¢ mouse model is a good candidate for a follow-up study of

the fate of two-cell mouse embryos after TESE.
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