The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57058

Please be advised that this information was generated on 2018-02-04 and may be subject to change.
p-ADIC LOCAL COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a complete local compactoid A in a locally convex space E over a non-archimedean valued field K it is proved that $A = D \oplus B$ where D is a subspace and B is a compactoid. As a corollary Katsaras’ Theorem is extended to complete local compactoids.

TERMINOLOGY. Throughout K is a non-archimedean valued field that is complete with respect to the non-trivial valuation $|\cdot|$. A subset A of a K-vector space E is absolutely convex if it is a module over the ring $B(0,1) := \{ \lambda \in K : |\lambda| \leq 1 \}$. For a subset X of E we denote by $[X]$ the K-vector space generated by X, by coX the smallest absolutely convex subset of E containing X. For an absolutely convex set $A \subseteq E$ we set $A^\circ := A$ if the valuation of K is discrete and $A^\circ := \cap \{ \lambda A : \lambda \in K, |\lambda| > 1 \}$ if the valuation of K is dense. A is edged if $A = A^\circ$.

The K-Banach space consisting of all sequences (ξ_1, ξ_2, \ldots) in K with $\lim_{n \to \infty} \xi_n = 0$ and with the norm $(\xi_1, \xi_2, \ldots) \mapsto \max_n |\xi_n|$ is denoted c_0.

Let E be a locally convex space over K. The closure of a set $X \subseteq E$ is denoted \overline{X}. Instead of \overline{coX} we write $\overline{\partial}X$. For each continuous seminorm p on E, let E_p be the space $E/Ker p$ with the norm induced by p, let E_p^\wedge be its completion. The maps

$$\pi_p : E \to E_p \to E_p^\wedge$$

induce a map

$$E \to \prod_p E_p^\wedge$$

which is, if E is Hausdorff, a linear homeomorphism onto a subspace of the product. An absolutely convex subset A of E is a compactoid if for each zero neighbourhood U in E there exists a finite set $F \subseteq E$ such that $A \subseteq U + coF$. A is a local compactoid in E if for each zero neighbourhood U in E there exists a finite dimensional space $D \subseteq E$ with $A \subseteq U + D$.

For terms that are unexplained here we refer to [4].

INTRODUCTION. We quote the following theorem, first proved by Katsaras.
THEOREM ([2],[1]). Let A be a compactoid in a locally convex space E over K. Let $\lambda \in K, \lambda = 1$ if the valuation of K is discrete, $|\lambda| > 1$ otherwise. Then, for each neighbourhood U of 0 in E there exists a finite set F in λA such that $A \subseteq U + coF$.

The theorem implies that compactoidity of A is a property of the topological $B(0,1)$-module A and does not depend on the embedding space E.

Surprisingly, Katsaras' Theorem does not extend to local compactoids in general (Example 3.6); we shall prove such a theorem only for complete local compactoids (Theorem 3.4).

Remarks

1. Let K be spherically (= maximally) complete. Then completeness & local compactoidity is equivalent to c-compactness ([5],Theorem 11). By using this fact and well-known properties of c-compact sets one may derive the results of this paper in a much easier way.

2. Because of the previous remark our proofs, although valid for any K, are only of importance if K is not spherically complete.

§1 LOCAL COMPACTOIDS

Throughout §1 E is a Hausdorff locally convex space over K. The proofs of the next two Propositions are left to the reader.

PROPOSITION 1.1. Let A be an absolutely convex subset of E.

(i) If A is a local compactoid in E and $B \subseteq A$ is absolutely convex then B is a local compactoid in E.

(ii) If A is a local compactoid in E then so is \overline{A}.

(iii) If F is a Hausdorff locally convex space over K, if $T : E \to F$ is a continuous linear map and if A is a local compactoid in E then TA is a local compactoid in F.

(iv) A is a compactoid (in E) if and only if A is a bounded local compactoid in E.

PROPOSITION 1.2. Let $(E_i)_{i \in I}$ be a family of Hausdorff locally convex spaces over K. If, for each i, A_i is a local compactoid in E_i then $\prod_i A_i$ is a local compactoid in $\prod_i E_i$.

PROPOSITION 1.3. Let A be a closed local compactoid in a K-Banach space E. Then $\overline{[A]}$ is of countable type and A is a local compactoid in $\overline{[A]}$.

Proof. [3], 6.9 and Theorem 6.7.
LEMMA 1.4. Let A be a local compactoid in E. Then there exists a Hausdorff locally convex space E_1 of countable type and a linear homeomorphism of $[A]$ into E_1 such that $i(A)$ is a local compactoid in E_1.

Proof. For each continuous seminorm p the set $\pi_p(A)$ is a local compactoid in E_p (Proposition 1.1), hence in a subspace D_p of countable type (Proposition 1.3). By [4], Proposition 4.12 (iii), $E_1 := \prod D_p$ is of countable type. The restriction of the embedding $E \hookrightarrow \prod E_p$ yields a linear homeomorphic embedding $i : [A] \hookrightarrow E_1$. Now $i(A)$ is a subset of $\prod \pi_p(A)$, which is a local compactoid in E_1 (Proposition 1.2). Then, $i(A)$ is a local compactoid in E_1.

COROLLARY 1.5. If A is a local compactoid in E then $[A]$ is of countable type.

Proof. $[A]$ is linearly homeomorphic to a subspace of E_1. Now apply [4], Proposition 4.12 (i).

PROPOSITION 1.6. Let E be a polar space and let A be a local compactoid in E. Then, on A, the weak topology $\sigma(E, E')$ and the initial topology coincide. A is complete if and only if A is weakly complete.

Proof. The proofs of [4], 5.7-5.11 can easily be modified in such a way that the conclusion of [4], Theorem 5.12 holds for local compactoids, rather than just compactoids.

PROPOSITION 1.7. Let A be a local compactoid in E. Then, as a topological $B(0, 1)$-module, A is isomorphic to a $B(0, 1)$-submodule of some power of K.

Proof. By Lemma 1.4 we may suppose that E is of countable type, hence polar. So, by Proposition 1.6, A is a topological $B(0, 1)$-submodule of $(E, \sigma(E, E'))$. The map

$$z \mapsto (f(z))_{f \in E'} \quad (z \in E)$$

is a linear homeomorphism of $(E, \sigma(E, E'))$ into $K^{E'}$. The statements follows.

§2 LOCAL COMPACTOIDS IN K^I.

Throughout §2, E is a vector space over K (no topology) and E^* its algebraic dual, with the topology $\sigma(E^*, E)$ of pointwise convergence. Then E^* is Hausdorff, locally convex, complete and of countable type.
type. Every absolutely convex subset of E^* is a local compactoid in E as each neighbourhood of 0 in E^* contains a subspace with finite codimension. It is not hard to see that each $\Theta \in (E^*)'$ has the form $f \mapsto f(x)$ ($f \in E^*$) for some $x \in E$, so that we may identify $(E^*)'$ and E.

To see the connection with the title of §2 observe that E is the (algebraic) direct sum $\bigoplus_{i \in I} K_i$, where $K_i = K$ for each i and that E^* is linearly homeomorphic to K^I.

A subset X of E is K-polar if for each $y \in E \setminus X$ there exists an $f \in E^*$ with $|f(X)| < 1$, $|f(y)| > 1$.

For $X \subset E, Y \subset E^*$ we set, as usual

$$X^0 := \{ f \in E^* : |f(X)| \leq 1 \}$$

$$Y^0 := \{ x \in E : |Y(x)| \leq 1 \}.$$

PROPOSITION 2.1. Let $X \subset E, Y \subset E^*$.

(i) X is K-polar if and only if $X = X^{00}$.

(ii) $Y = Y^{00}$ if and only if Y is closed, (absolutely convex) and edged.

Proof. Direct verification yields (i). For (ii) observe that $(E^*)' \cong E$ and that E^* is strongly polar. Now apply [4], Theorem 4.7.

Remark. It is easy to see that each linear subspace of E is K-polar. If K is spherically complete each edged subset of E is K-polar. However this conclusion is false in general.

LEMMA 2.2. Let $X \subset E$ be absolutely convex. The following are equivalent.

(a) X is absorbing.

(b) X^0 is a compactoid.

(c) X^0 does not contain linear subspaces of E^* other than $\{0\}$.

Proof. A typical zero neighbourhood in E^* has the form F^0 where F is a finite subset of E. By (a) we have $\lambda F \supset F$ for some $\lambda \in K$. Then $X^0 \subset \lambda F^0$. It follows that X^0 is bounded hence a compactoid (for example from Proposition 1.1.(iv)). This proves (a) \Rightarrow (b). The implication (b) \Rightarrow (c) is easy. To prove (c) \Rightarrow (a), let $f \in E^*$, $f([X]) = \{0\}$. Then $Kf \in X^0$ so that $f = 0$. Then, $[X] = E$ i.e. X is absorbing.

The next Proposition is the heart of this paper.
PROPOSITION 2.3. Let A be a closed absolutely convex subset of E^*. Let D be the largest K-subspace of E^* that is contained in A. Then D is closed. There exists a closed absolutely convex compactoid $B \subset A$ such that $D \cap B = \{0\}$, $D + B = A$, and the canonical map $D \times B \rightarrow A$ is a homeomorphism.

Proof.
(i) First assume that A is edged. Then $A = A^{00}$. Trivially, D is closed. D^0 has an (algebraic) complement F in E. Set $B := (F + A^0)^0$

Then B is closed, edged. Since $F + A^0 \supseteq A^0$ we have $B \subset A^{00} = A$. Since also $F + A^0 \supseteq F$ we have $D \cap B \subset D \cap F^0 = D^{00} \cap F^0 = (D^0 + F)^0 = E^0 = \{0\}$. From this it follows, in turn, that B does not contain subspaces except \{0\}. By Lemma 2.2, B is a compactoid. Finally we prove that $A \simeq D \times B$.

From $E = F \oplus D^0$ we obtain two standard projections $\pi_1 : E \rightarrow F, \pi_2 : E \rightarrow D^0$. For each $f \in E^*$ we have $f = f \circ \pi_1 + f \circ \pi_2$. If $f \in A$ then $f \circ \pi_1 \in D^{00}$, so that $f \circ \pi_1 \in A$. Also $f \circ \pi_2 \in F^0$. Then $f \circ \pi_2 \in A \cap F^0 = A^{00} \cap F^0 = (A^0 + F)^0 = B$. Then

$$f \mapsto (f \circ \pi_1, f \circ \pi_2) \quad (f \in A)$$

maps A onto $D \times B$. It follows easily that it is, indeed, a homeomorphism.

(ii) To prove the general case we apply (i) to A^*. So $A^* = D \oplus C$ where D is a closed subspace and C is a closed compactoid, both contained in A^*. Then $D \subset A$ and $A = D \oplus B$ where $B := A \cap C$, a closed compactoid.

§3 CONCLUSIONS

THEOREM 3.1 (Compare [3], Corollary 6.5). Let A be a complete local compactoid in a Hausdorff locally convex space E over K. Then, as a topological $B(0,1)$-module A is a direct sum $D \oplus B$ where D is the largest subspace contained in A and B is some complete compactoid in A.

Proof. Immediate from Proposition 1.7 and 2.3.

COROLLARY 3.2. (Compare [3], Lemma 6.3). Let A be a complete local compactoid in a Hausdorff locally convex space over K.

(i) A does not contain subspaces other than \(\{0\} \) then A is a compactoid.

(ii) If A is unbounded then A contains a linear space \(\not\subseteq \{0\} \).

To prove Theorem 3.4 we need the following lemma.

Lemma 3.3. Let D be a linear subspace of a Hausdorff locally convex space E. Let U be an absolutely convex zero neighbourhood in E and let \(D \subseteq U + Kx \) for some \(x \in E \). Then \(D \subseteq U + Ka \) for some \(a \in D \).

Proof. If \(Kx \subseteq U \) we may take \(a := 0 \), so assume \(Kx \not\subseteq U \) i.e. \(p(x) \neq 0 \) where \(p \) is the seminorm associated to \(U \). For each \(\lambda \in K, \lambda \neq 0 \) we have

\[
D = \lambda D \subseteq \lambda U + Kx
\]

so that for \(d \in D \) and \(n \in \mathbb{N} \) we have a decomposition

\[
d = u_n + \lambda_n x
\]

where \(p(u_n) \leq 1/n \) and \(\lambda_n \in K \). Since also \(p(x) \neq 0 \) it follows easily that \(\lambda := \lim_{n \to \infty} \lambda_n \) exists. Hence, \(u := \lim_{n \to \infty} u_n \) exists and \(p(u) = 0 \). Thus, \(d = u + \lambda x \) i.e.

\[
D \subseteq \text{Kerp} + Kx
\]

If \(D \subseteq \text{Kerp} \) we may take again \(a := 0 \). If not then \(x = a + v \) where \(a \in D, v \in \text{Kerp} \). Then \(Kv \in \text{Kerp} \) so that \(D \subseteq \text{Kerp} + Kv + Ka \subseteq \text{Kerp} + Ka \subseteq U + Ka \).

Theorem 3.4 (Katsaras' Theorem for local compactoids). Let A be a complete local compactoid in a Hausdorff locally convex space E over K. Let \(\lambda \in K, \lambda = 1 \) if the valuation of K is discrete, \(|\lambda| > 1 \) otherwise. Then for each zero neighbourhood U in E there exists a finite dimensional space \(F \subseteq A \) and finitely many points \(x_1, \ldots, x_n \in \lambda A \) such that \(A \subseteq U + F + \text{co}\{x_1, \ldots, x_n\} \).

Proof. We may assume that U is absolutely convex. Let \(A = D + B \) as in Theorem 3.1. By Katsaras' Theorem

\[
B \subseteq U + \text{co}\{x_1, \ldots, x_n\}
\]
for some \(z_1, \ldots, z_n \in \lambda B \subseteq \lambda A \). By local compactoidity of \(D \) there exist \(y_1, \ldots, y_m \in E \) such that

\[
D \subseteq U + Ky_1 + \ldots + Ky_m
\]

By repeated application of Lemma 3.3 we can arrange that \(y_1, \ldots, y_m \in D \). The Theorem follows with \(F := [y_1, \ldots, y_m] \).

COROLLARY 3.5. Let \(A \) be a complete local compactoid in a Hausdorff locally convex space \(E \) over \(K \). Then \(A \) is a local compactoid in \([A] \).

The easy proof is left to the reader.

To see that everything goes wrong if we drop the completion condition consider the following. (Compare [3], Example 6.4.)

EXAMPLE 3.6. There exists a (non-closed) local compactoid \(A \) in \(c_0 \) with the following properties.

(i) \(A \) is unbounded.

(ii) \(A \) does not contain linear subspaces other than \(\{0\} \).

(iii) \(A \) is not a local compactoid in \([A] \).

Proof. Let \(p \in K, 0 < |p| < 1 \). Define

\[
\begin{align*}
z_1 &= (p^{-1}, p, 0, 0, \ldots) \\
z_2 &= (p^{-2}, 0, p^2, 0, \ldots) \\
z_3 &= (p^{-3}, 0, 0, p^3, 0, \ldots)
\end{align*}
\]

etc. and set \(A := \text{co}\{z_1, z_2, \ldots\} \). Then (i),(ii) are clear.

Since

\[
\bar{A} \subseteq Ke_1 + \overline{\text{co}}\{pe_2, p^2e_3, \ldots\}
\]

(where \(e_1, e_2, \ldots \) is the standard base of \(c_0 \), \(A \) is a local compactoid in \(c_0 \). To obtain (iii) we prove that there exists no finite dimensional set \(F \subseteq [A] \) with \(A \subseteq U + F \) where \(U = \{z \in c_0 : ||z|| \leq 1\} \). Suppose such \(F \) does exist. Then we may assume \(F \subseteq A + U \), \(F \) absolutely convex. Suppose \(Ka \subseteq F \) for some \(a \neq 0 \). Since \(U \) is bounded it is easy to see that then \(Ka \subseteq \bar{A} \). But the only subspace \(\neq \{0\} \) of \(\bar{A} \) is \(Ke_1 \), so \(a \in Ke_1 \), which is impossible since \(Ke_1 \cap [A] = \{0\} \). Hence, \(F \) contains no subspaces other than \(\{0\} \) so \(F \) is bounded. But then \(A \subseteq U + F \) would be bounded, a contradiction.
REFERENCES

