A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY CONVEX
COMPACTOIDS

by

W.H. SCHIKHOF

Report 8736
December 1987

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY
CONVEX COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a correspondence $p \mapsto p^0$ is established between seminorms p on E and compactoids p^0 in E^*. Examination of it yields the solution of two open problems (see §4 and §8) and a reformulation of Serre’s renorming problem (see §2). As a by-product results on metrizable compactoids are obtained (see §6).

$\S0$ THE CORRESPONDENCE $p \mapsto p^0$.

Throughout this note K is a non-archimedean valued field, complete with respect to the metric induced by the nontrivial valuation $|\cdot|$. Let E be a K-vector space, let E^* be its algebraic dual. A (non-archimedean) seminorm p on E is polar ([3], Definition 3.1), if

$$p = \sup \{|f| : f \in E^*, |f| \leq p\}$$

Let P_E be the set of all polar seminorms on E.

For each $p \in P_E$ we set

$$p^0 = \{f \in E^* : |f| \leq p\}$$

Then p^0 is an absolutely convex, edged ([3],§1b) subset of E^*. It is easy to see that p^0 is a closed compactoid ([3],§1e) with respect to the topology $\sigma(E^*,E)$, hence complete.
Let C_* be the set of all closed absolutely convex, edged compactoids in E^* with respect to $\sigma(E^*, E)$.

PROPOSITION 0. The map $p \mapsto p^0$ is a bijection of P_E onto C_**. Its inverse assigns to every $A \in C_*$ the seminorm p given by

$$
p(x) = \sup \{|f(x)| : f \in A\} \quad (x \in E)
$$

Proof. We shall prove surjectivity of $p \mapsto p^0$ leaving the (easy) rest of the proof to the reader. So, let $A \in C_*$; we shall prove that $A = p^0$ where $p(x) = \sup \{|f(x)| : f \in A\}$.

Obviously, $A \subset p^0$. Now let $g \in E^* \setminus A$, we prove that $g \notin p^0$. The space E^* is of countable type hence strongly polar ([3], Theorem 4.4). So by [3], Theorem 4.7, there exists a $0 \in (E^*, \sigma(E^*, E)^*)'$ such that $|0| < 1$ on A, $|0(g)| > 1$. But, by [3], lemma 7.1, 0 has the form $f \mapsto f(x)$ for some $x \in E$. Thus, $|f(x)| \leq 1$ for $f \in A$, $|g(x)| > 1$ i.e., $p(x) \leq 1$ and $|g(x)| > 1$ and it follows that $g \notin p^0$.

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean seminorm p on E for which $p(x) \in |x|$ ($x \in E$) is polar ([3], Remark following 3.1).

2. Let τ be the locally convex topology on E induced by all nonarchimedean seminorms i.e., τ is the strongest among all locally convex topologies on E. It is not hard to see that (E, τ) is a complete polar ([3], Definition 3.5) space and that (E, τ) and $(E^*, \sigma(E^*, E))$ are each others strong dual spaces.
§1 NORMS p FOR WHICH p^0 IS c'-COMPACT

Recall that an absolutely convex subset A of a locally convex space F over K is c'-compact if for each neighbourhood U of 0 in F there exist $x_1, \ldots, x_n \in A$ (rather than $x_1, \ldots, x_n \in F$) such that $A \subseteq U + \text{co} \{x_1, \ldots, x_n\}$.

(Here co indicates the absolutely convex hull)

THEOREM 1.1. For a polar seminorm p on a K-vector space E the following are equivalent.

(a) $p(x) \in |K|$ for each $x \in E$. Each one-dimensional subspace of E has a p-orthocomplement.

(β) p^0 is c'-compact.

Proof. (a) \Rightarrow (β). By [7], Theorem 3.2, it suffices to prove that for each $\phi \in (E^*, \sigma(E^*, E))'$

$$\max \{ |\phi(f)| : f \in p^0 \}$$

exists. Since ϕ is an evaluation map we therefore have to show that

$$\max \{ |f(x)| : f \in p^0 \}$$

exists for each $x \in E$. This is obviously true if $p(x) = 0$. So assume $p(x) > 0$. Since $p(x) \in |K|$ we may assume that $p(x) = 1$. For such x we must prove

$$\max \{ |f(x)| : f \in p^0 \} = 1$$

By (α), Kx has a p-orthocomplement H. The function

$$f : \lambda x + h \mapsto \lambda \quad (\lambda \in K, h \in H)$$
is in E^*. We have $|f(x)| = 1$. For $\lambda \in K$, $h \in H$

$$|f(\lambda x + h)| = |\lambda| = p(\lambda x) \leq \max(p(\lambda x), p(h)) = p(\lambda x + h)$$

so that $f \in \mathcal{P}$.

(\$) \Rightarrow (a). Let $x \in E$. The map $f \mapsto |f(x)|$ is a continuous seminorm on $(E^*, c(E^*, E))$. By c'-compactness its restriction to \mathcal{P} has a maximum so there exists a $g \in \mathcal{P}$ with $|g(x)| = p(x)$ (It follows that $p(x) \in |K|$). We prove that $\ker g$ is a p-orthocomplement of Kx. In fact, for $z \in \ker g$ we have

$$p(x+z) \leq |g(x+z)| = |g(x)| = p(x)$$

Then also

$$p(x+z) \geq p(z)$$

completing the proof of Theorem 1.1.

Note. It is not hard to see that (a) of above is equivalent too.

(\$) For each $x \in E$ there exists an $f \in E^*$ with $|f(x)| = p(x)$ and $|f| \leq p$.

For spherically complete K we obtain a simpler form of Theorem 1.1.

Corollary 1.2. Let K be spherically complete, let p be a seminorm on E for which $p(x) \in |K|$ for all $x \in E$.

Then the following are equivalent.

(a) $p(x) \in |K|$ for each $x \in E$.

(b) \mathcal{P} is c'-compact.

Proof. By [1], lemma 4.35, each onedimensional subspace has a p-orthocomplement.
§2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let $\| \cdot \|$ be a norm on E. Then there exists a norm $\| \cdot \|'$ on E, equivalent to $\| \cdot \|$, such that $\|x\|' \leq |\lambda| \|x\|$ for all $x \in E$.

(**) Let K be spherically complete and let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then there exist a $\lambda \in K$ with $|\lambda| > 1$ and a c'-compact B such that $A \subset B \subset \lambda A$.

The question as to whether (*) is true or not is known as Serre's renorming problem. See [2] for more details. We are able to reformulate this problem in terms of compactoids:

PROPOSITION 2.1. The above statements (*) and (**) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], Theorem 3, A, as a topological module over $B(0,1) := \{\lambda \in K : |\lambda| \leq 1\}$, is isomorphic to a bounded submodule of K^I for some set I. Let E be the algebraic direct sum $\bigoplus_{i \in I} K_i$ where $K_i = K$ for all $i \in I$.

Then $(E^*, c(E^*, E))$ is in a natural way isomorphic to K^I with the product topology. So we may assume that $A = p^0$ where p is a seminorm on E.

By (*) there exists a seminorm q, equivalent to p, such that $q(x) \leq |\lambda|x$ for all $x \in E$. By a suitable scalar multiplication we can arrange that, in addition, $p \leq q \leq |\lambda|p$ for some $\lambda \in K$, $|\lambda| > 1$. Then

$$p^0 \leq q^0 \leq \lambda p^0$$
and \(q^0 \) is \(c' \)-compact by Corollary 1.2. This proves (**). Now assume (**).

To prove (*) we may assume (see [2]), that \(K \) is spherically complete.

Let \(p \) be a norm on \(E \). By (**) there is a \(c' \)-compact \(B \) and a \(\lambda \in K, \ |\lambda| > 1 \)
with \(p^0 \subset B \subset \lambda p^0 \). Then \(B = q^0 \) for some seminorm \(q \) on \(E \). We have

\[
p \leq q \leq |\lambda| p
\]

and \(q(x) \in |K| \) for all \(x \in E \) by Corollary 1.2.

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS \(p \) FOR WHICH \(p^0 \) IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset \(A \) of a locally convex space
over \(K \) is a \(KM \)-compactoid if it is complete and if \(A = \overline{co} X \) where \(X \) is
compact. (Here \(co X \) is the closure of \(co X \)).

Before stating the theorem we first make some simple observations. Let
\(p \) be a norm on \(E \). We say that a collection \((e_i) \) in \(E \) is a
\(p \)-orthonormal base of \(E \) if for each \(x \in E \) there exist a unique
\((\lambda_i)_{i \in I} \subset K^i \) such that \(\{ i \in I, \ |\lambda_i| > \varepsilon \} \) is finite for each \(\varepsilon > 0 \) and

\[
x = \sum_{i \in I} \lambda_i e_i
\]

\[
p(x) = \max_{i} |\lambda_i|
\]

If \((E,p) \) is complete this definition coincides with the usual one.

Lemma 3.1. Let \((E,p) \) be a normed space, let \(\hat{(E,p)} \) be its completion.

Then \((E,p) \) has a \(p \)-orthonormal base if and only if \(\hat{(E,p)} \) has a
\(\hat{p} \)-orthonormal base.
Proof. It is not hard to see that each p-orthonormal base of \((E,p)\) is also a \(\hat{p}\)-orthonormal base of \((\hat{E},\hat{p})\). Conversely, let \((e_i)\) be a \(\hat{p}\)-orthonormal base of \((\hat{E},\hat{p})\). For each \(i \in I\), choose an \(f_i \in E\) with
\[p(e_i - f_i) \leq \frac{1}{2}. \]
By [1], Exercise 5.C, \((f_i)_{i \in I}\) is a \(\hat{p}\)-orthonormal base of \((\hat{E},\hat{p})\).
Clearly \((f_i)_{i \in I}\) is a p-orthonormal base of \((E,p)\).

THEOREM 3.2. For a polar norm \(p\) on a \(K\)-vector space \(E\) the following are equivalent.

(a) \((E,p)\) has a \(p\)-orthonormal base

(b) \(p^0\) is a KM-compactoid.

Proof. (a) \(\Rightarrow\) (b). Let \((e_i)_{i \in I}\) be a \(p\)-orthonormal base of \((E,p)\). The formula
\[
\phi(f) = (f(e_i))_{i \in I}
\]
defines a map \(\phi : p^0 \rightarrow B(0,1)^I\). Straightforward verifications show that \(\phi\) is an isomorphism of topological \(B(0,1)\)-modules. From [8], Theorem 16 we obtain that \(B(0,1)^I\), hence \(p^0\), is a KM-compactoid.

(b) \(\Rightarrow\) (a). Suppose \(p^0 = \text{co} X\) where \(X\) is a compact subset of \(E^*\). Let \(C(X^*K)\) be the Banach space of all continuous functions \(X \rightarrow K\), with the supremum norm \(\|\cdot\|_\infty\). Then \(C(X^*K)\) has an orthonormal base. ([1], Theorem 5.22).

The formula
\[
\phi(x)(f) = f(x) \quad (f \in X)
\]
defines a \(K\)-linear map \(\phi : E \rightarrow C(X^*K)\). From
\[||\phi(x)||_\infty = \max \{ |f(x)| : f \in X \} = \sup_{f \in X} |f(x)| = \sup_{f \in E} |f(x)| = p(x) \]

we obtain that ϕ is an isometry $(E, p) \rightarrow (C(X^+K), ||\cdot||_\infty)$.

By Gruson's Theorem ([1], 5.9) $\phi(E)$ has an orthonormal base. Then so has $\phi(E)$ by Lemma 3.1 and has E.

\section{APPLICATION: A COMPLETE c'-COMPACT SET WHICH IS NOT A KM-COMPACTOID.}

We shall give a negative answer to the Problem following Theorem 1.7 of [6].

\textbf{PROPOSITION 4.1.} Let K be spherically complete, let $|K| = (0, \infty)$. Then there exist a locally convex space F over K and a complete c'-compact subset $A \subset F$ which is not a KM-compactoid.

\textbf{Proof.} Let $E := l^\infty$ and let $F := (l^\infty)^*$ (with the topology we agreed upon in §0). Let p be the standard norm on l^∞, and set $A := p^0$. Since, trivially, $p(x) \leq |K|$ for all $x \in l^\infty$, we have that p^0 is c'-compact (Corollary 1.2).

However, it is known ([1], Cor. 5.19) that l^∞ has no orthogonal base so that (Theorem 3.2) p^0 is not a KM-compactoid.

\section{NORMS p FOR WHICH p^0 IS METRIZABLE.}

\textbf{THEOREM 5.1.} For a polar seminorm p on a K-vector space E the following are equivalent.

(a) (E, p) is of countable type ([3], Definition 4.3).

(\beta) p^0 is metrizable.
Proof. (a) ⇒ (b). There exist e_1, e_2, \ldots in E with $p(e_i) \leq 1$ for each i such that the K-linear span of e_1, e_2, \ldots is p-dense in E. The formula

$$\phi(f) = (f(e_1), f(e_2), \ldots)$$

defines a map $\phi : p^0 \to B(0,1)^{\mathbb{N}}$. Straightforward verifications show that ϕ is an isomorphism of topological $B(0,1)$-modules of p^0 onto a submodule of $B(0,1)^{\mathbb{N}}$.

Now $B(0,1)^{\mathbb{N}}$ is metrizable (the product topology is induced by the metric

$$(a,b) \mapsto \sup_{i \in \mathbb{N}} |a_i - b_i| 2^{-i}$$

hence so is p^0.

(b) ⇒ (a). Let $\lambda \in K$, $|\lambda| > 1$. Since p^0 is a metrizable compactoid there exist, by [3], Proposition 8.2, $f_1, f_2, \ldots \in \lambda p^0$ with $\lim_{n \to \infty} f_n = 0$ such that

$$p^0 \subseteq \overline{\{f_1, f_2, \ldots\}} \subseteq \lambda p^0$$

The map

$$\phi : x \mapsto (f_1(x), f_2(x), \ldots) \quad (x \in E)$$

is K-linear, $\phi(E) \subseteq c_0$. We have for $x \in E$

$$||\phi(x)|| = \sup_{n \in \mathbb{N}} |f_n(x)| = \sup \{ |g(x)| : g \in \overline{\{f_1, f_2, \ldots\}} \}$$

It follows that

$$p(x) \leq ||\phi(x)|| \leq |\lambda| p(x)$$

so that p is equivalent to $x \mapsto ||\phi(x)||$, a seminorm of countable type. Hence, p is of countable type.
§6 APPLICATION: DESCRIPTION OF METRIZABLE COMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally convex space F over K. The following are equivalent.

(a) A is a metrizable compactoid.

(β) As a topological B(0,1)-module, A is isomorphic to a submodule of B(0,1)^\mathbb{N}.

(γ) As a topological B(0,1)-module, A is isomorphic to a compactoid in C^0.

(δ) For each λ ∈ K, |λ| > 1 then exist e_1, e_2, ..., ∈ λ A with lim_{n→∞} e_n = 0 and A ⊂ co \{e_1, e_2,\}.

(ε) There exist e_1, e_2, ..., ∈ F with lim_{n→∞} e_n = 0 and A ⊂ co \{e_1, e_2,\}.

(ν) There exists an ultrametrizable compact X ⊂ F with A ⊂ co X.

Proof. (a) ⇒ (β). It is not hard to see, by using the absolute convexity of A, that A is also metrizable. As there is no harm in taking F complete we therefore may assume that A is complete. To prove (β) we also may assume that A is edged. By [8], Theorem 3, A ⊂ B(0,1)^I ⊂ K^I for some set I. Like in the proof of Proposition 2.1 we may conclude that A = p^0 where p is a polar seminorm on Φ \bigoplus_{i ∈ I} K_i (K_i = K for each i). Then p is of countable type by Theorem 5.1. From the proof of (a) ⇒ (β) of that Theorem we obtain an isomorphism A = p^0 \cong B(0,1)^\mathbb{N}.

(β) ⇒ (γ). Choose λ_1, λ_2, ..., ∈ K, |λ_1| > |λ_2| > ..., lim_{n→∞} λ_n = 0. The formula

φ((a_i)_{i ∈ \mathbb{N}}) = (λ_1a_1, λ_2a_2, ...) ∈ C^0

defines a B(0,1)-module isomorphism of B(0,1)^\mathbb{N} onto C := co \{λ_1e_1, λ_2e_2,\}

where e_1, e_2, ... are the standard unit vectors in C^0. φ is a homeomorphism.
$B(0,1)^\mathbb{N} \to \mathbb{C}$, and maps A onto a compactoid in c_0.

$(\gamma) \Rightarrow (\delta)$. See [3], Proposition 8.2.

$(\delta) \Rightarrow (\varepsilon)$ is trivial.

$(\varepsilon) \Rightarrow (\eta), \{0, e_1, e_2, \ldots\}$ is compact and ultrametrizable.

$(\eta) \Rightarrow (\alpha).$ We may assume that F is complete. It suffices to prove the metrizability of $B := \text{co} X$.

B is a complete, edged compactoid. As before we may assume that $B = p^0$ for some polar seminorm p on some K-vector space E while $B \subset E^*$. The map $\phi : E \to C(X \to K)$ defined by

$$\phi(x) (f) = f(x) \quad (f \in X)$$

is an isometry $(E, p) \to (C(X \to K), ||| |||_w)$.

Now X is ultrametrizable so by [1], Exercise 3.5, $C(X \to K)$ is of countable type. Hence so is p. By Theorem 5.1, $B = p^0$ is metrizable.

§7 NORMS p FOR WHICH $(p^0)^1$ IS OF FINITE TYPE.

Recall that an absolutely convex set A in a locally convex space F over K is of finite type if for each zero neighbourhood U in F there exists a finite-dimensional bounded set $S \subset A$ such that $A \subset U + S$.

Let us say that a seminorm p on a K-vector space E is of finite type if $\text{Ker} p = \{x \in E : p(x) = 0\}$ has finite codimension.

Lemma 7.1. Let A be an absolutely convex subset of a locally convex space F whose topology is generated by a collection of seminorms of finite type. Then the following are equivalent.

(a) A is a compactoid of finite type.

(β) For each closed linear subspace H of finite codimension there is a finite dimensional bounded set $S \subset A$ with $A \subset H + S$.

Proof. (a) ⇒ (β). (Note. This implication holds for any locally convex space F.) We may assume \([A] = F\).

H has the form \(D^1 := \{x \in F : f(x) = 0 \text{ for all } f \in D\}\) where D is a finite dimensional subspace of \(F'\). Let \(f_1, \ldots, f_n\) be a base of D. There exist \(x_1, \ldots, x_n \in F\) with \(f_i(x_j) = \delta_{ij} (i, j \in \{1, \ldots, n\})\). Since \([A] = F\) there exists a \(\lambda \in K\), \(\lambda \neq 0\) such that \(\lambda x_i \in A\) for each \(i \in \{1, \ldots, n\}\).

Set

\[
U := \bigcap_{i=1}^{n} \{x \in F : |f_i(x)| \leq |\lambda|\}
\]

Then \(U\) is a zero neighbourhood in \(F\). A is a compactoid of finite type, so there exists a finite dimensional set \(S_1 \subseteq A\) with \(A \subseteq U + S_1\). Let \(x \in U\). Write \(x = y + z\) where

\[
y := x - \sum_{i=1}^{n} f_i(x) x_i
\]

\[
z := \sum_{i=1}^{n} f_i(x) x_i
\]

Now, since \(x \in U\), \(|f_i(x)| \leq |\lambda|\) for each \(i\) so that \(z = \sum_{i=1}^{n} f_i(x) x_i \in A\).

Further, for each \(j \in \{1, \ldots, n\}\)

\[
f_j(y) = f_j(x) - \sum_{i=1}^{n} f_i(x) f_j(x_i) = f_j(x) - f_j(x) = 0
\]

and it follows that \(y \in D^1 = H\). So \(x = y + z \in H + [x_1, \ldots, x_n] \cap A\). We see that

\[
A \subseteq U + S_1 \subseteq H + S_2 + S_1
\]

where \(S_2 := [x_1, \ldots, x_n] \cap A\). Then (β) is proved with \(S := S_1 + S_2\).

(β) ⇒ (α). Let \(U\) be a zero neighbourhood in \(F\). Since continuous seminorms are of finite type, \(U\) contains a closed subspace \(H\) of finite codimension. By (β) there exists a finite dimensional set \(S \subseteq A\) with \(S\) bounded and
A \subset H + S. Then A \subset U + S.

From now on we assume that the valuation on K is dense.

Recall that for an absolutely convex set B we have $B^\perp := \bigcup_{|\lambda| < 1} \lambda B$.

THEOREM 7.2. Let p be a polar norm on a K-vector space E. Then the following are equivalent.

(a) For each finite dimensional subspace D of E there exists a seminorm q on E, q of finite type, q \leq p and q = p on D.

(b) $(p^0)^\perp$ is of finite type.

Proof. (a) \Rightarrow (b). As each continuous seminorm on E^* is of finite type it suffices to prove, by Lemma 7.1, that for a closed subspace H of E^* of finite codimension there exists a finite dimensional set $S \subset (p^0)^\perp$ such that $(p^0)^\perp \subset H + S$.

Now, by (a), there is a seminorm q of finite type, q \leq p on E and q = p on D := H$. Let

$$S_1 := \{f \in E^* : |f| \leq q\}.$$

We see that S_1 is finite dimensional and since q \leq p we have $S_1 \subset p^0$.

We now shall prove that $(p^0)^\perp \subset H + S$ where $S := (S_1)^\perp$.

In fact, let $f \in (p^0)^\perp$. Then there is a $\lambda \in K$, $0 < |\lambda| < 1$ with $|f| \leq |\lambda| p$.

Choose $\lambda' \in K$ with $|\lambda| < |\lambda'| < 1$.

We have $|f| \leq |\lambda| q$ on D (since p = q on D) so we can extend f to a $g \in E^*$ with $|g| \leq |\lambda'| q$ on E. (This is because q is of finite type so that (E, q) is strongly polar.) Now write

$$f = f - g + g$$

Since $f = g$ on D we have $f - g \in D^\perp = H$.

Also, \(|(\lambda')^{-1} g| \leq q\) so that \((\lambda')^{-1} g \in S_1\), i.e. \(g \in (S_1)^\perp = S\).

(B) \(\Rightarrow\) (a). By Lemma 7.1 there exists a finite dimensional set \(S \subset (p_0)^\perp\) so that \((p_0)^\perp = D^\perp \cap (p_0)^\perp + S\).

Set \(q(x) := \sup_{h \in S} |h(x)|\) \((x \in E)\).

Then \(q(x) = 0\) for all \(x\) in the space \(S^\perp\) which has finite codimension. So \(q\) is of finite type.

Further, for \(x \in E\) we have

\[q(x) = \sup_{h \in S} |h(x)| \leq \sup_{h \in (p_0)^\perp} |h(x)| = \sup_{h \in (p_0)^\perp} |h(x)| = p(x), \]

so \(q \leq p\). Finally, if \(x \in D\) then

\[p(x) = \sup_{f \in p} |f(x)| = \sup_{f \in (p_0)^\perp} |f(x)| = \sup_{h \in D^\perp \cap (p_0)^\perp} |h(x) + t(x)| = \sup_{t \in S} |t(x)| = q(x). \]

Hence, \(p = q\) on \(D\).

§8 APPLICATION: A COMPLETE COMPACTOID IN \(c_0\) THAT IS NOT OF FINITE TYPE.

If \(K\) is spherically complete each complete absolutely convex compactoid is of finite type (See [4], 2.3).

If \(K\) is not spherically complete the unit ball of \(c_0\) is a complete compactoid for the weak topology but not of finite type (See [5], 1.6).

This is a non-metrizable compactoid. A compactoid in \((c_0, ||| |||),\) not of finite type, is given in [5], 1.4. However this compactoid is not closed. The following example provides an answer to the Problem following 1.5 in [5].
PROPOSITION 8.1. Let K be not spherically complete. Then there exists an absolutely convex complete compactoid in c_0 that is not of finite type.

Proof. Let $(K^v, | |)$ be the spherical completion of $(K, | |)$ in the sense of [1], Theorem 4.49. Let E be a K-subspace of K^v of countably infinite dimension and let p be the valuation $| |$ restricted to E. Then $x, y \in E$, $x \perp y$ in the sense of p implies $x = 0$ or $y = 0$. Obviously, the norm p is of countable type (hence polar) so, by Theorem 5.1, p^0 is metrizable and is by Theorem 6.1, isomorphic to a compactoid in c_0.

Suppose p^0 were of finite type. Then so would $(p^0)^1$ ([5], Proposition 2.4). By Theorem 7.2 we would have a seminorm q on E, $q \leq p$, q of finite type, $q(x) = p(x)$ for some $x \in E$, $x \neq 0$. But then $x \not\in \text{Ker } q$ in the sense of p (If $q(y) = 0$ then $p(x-y) \geq q(x-y) = q(x) = p(x)$) which is impossible.

So, p^0 is not of finite type.
REFERENCES

