The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57055

Please be advised that this information was generated on 2017-07-15 and may be subject to change.
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY CONVEX COMPACTOIDS

by

W.H. SCHIKHOF

Report 8736
December 1987

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A CONNECTION BETWEEN p-ADIC BANACH SPACES AND LOCALLY
CONVEX COMPACTOIDS

by

W.H. Schikhof

ABSTRACT. For a vector space E over a non-archimedean valued field K a correspondence $p \leftrightarrow p^0$ is established between seminorms p on E and compactoids p^0 in E^*. Examination of it yields the solution of two open problems (see §4 and §8) and a reformulation of Serre's renorming problem (see §2). As a by-product results on metrizable compactoids are obtained (see §6).

§0 THE CORRESPONDENCE $p \leftrightarrow p^0$.

Throughout this note K is a non-archimedean valued field, complete with respect to the metric induced by the nontrivial valuation $| |$. Let E be a K-vector space, let E^* be its algebraic dual. A (non-archimedean) seminorm p on E is polar ([3], Definition 3.1), if

$$p = \sup \{ |f| : f \in E^*, |f| \leq p \}$$

Let P_E be the set of all polar seminorms on E.

For each $p \in P_E$ we set

$$p^0 = \{ f \in E^* : |f| \leq p \}$$

Then p^0 is an absolutely convex, edged ([3],§1b) subset of E^*. It is easy to see that p^0 is a closed compactoid ([3],§1e) with respect to the topology $\sigma(E^*,E)$, hence complete.
Let C_{E^*} be the set of all closed absolutely convex, edged compactoids in E^* with respect to $\sigma(E^*,E)$.

Proposition 0. The map $p \mapsto p^0$ is a bijection of P_E onto C_{E^*}. Its inverse assigns to every $A \in C_{E^*}$ the seminorm p given by

$$p(x) = \sup \{|f(x)| : f \in A\} \quad (x \in E)$$

Proof. We shall prove surjectivity of $p \mapsto p^0$ leaving the (easy) rest of the proof to the reader. So, let $A \in C_{E^*}$; we shall prove that $A = p^0$ where $p(x) = \sup \{|f(x)| : f \in A\}$.

Obviously, $A \subseteq p^0$. Now let $g \in E^* \setminus A$, we prove that $g \notin p^0$. The space E^* is of countable type hence strongly polar ([3], Theorem 4.4). So by [3], Theorem 4.7, there exists a $\theta \in (E^*, \sigma(E^*,E))'$ such that $|\theta| \leq 1$ on A, $|\theta(g)| > 1$. But, by [3], lemma 7.1, θ has the form $f \mapsto f(x)$ for some $x \in E$. Thus, $|f(x)| \leq 1$ for $f \in A$, $|g(x)| > 1$ i.e., $p(x) \leq 1$ and $|g(x)| > 1$ and it follows that $g \notin p^0$.

Remarks.

1. Let K be spherically (= maximally) complete. Then each nonarchimedean seminorm p on E for which $p(x) \in |x|$ $(x \in E)$ is polar ([3], Remark following 3.1).

2. Let τ be the locally convex topology on E induced by all nonarchimedean seminorms i.e., τ is the strongest among all locally convex topologies on E. It is not hard to see that (E,τ) is a complete polar ([3], Definition 3.5) space and that (E,τ) and $(E^*, \sigma(E^*,E))$ are each others strong dual spaces.
§1 NORMS p FOR WHICH p^0 IS c'-COMPACT

Recall that an absolutely convex subset A of a locally convex space F over K is c'-compact if for each neighbourhood U of 0 in F there exist $x_1, \ldots, x_n \in A$ (rather than $x_1, \ldots, x_n \in F$) such that $A \subseteq U + \text{co} \{x_1, \ldots, x_n\}$. (Here co indicates the absolutely convex hull)

THEOREM 1.1. For a polar seminorm p on a K-vector space E the following are equivalent.

(a) $p(x) \in |K|$ for each $x \in E$. Each one-dimensional subspace of E has a p-orthocomplement.

(β) p^0 is c'-compact.

Proof. (α) \Rightarrow (β). By [7], Theorem 3.2, it suffices to prove that for each $\phi \in (E^*, \sigma(E^*, E))$

$$\max \{ |\phi(f)| : f \in p^0 \}$$

exists. Since ϕ is an evaluation map we therefore have to show that

$$\max \{ |f(x)| : f \in p^0 \}$$

exists for each $x \in E$. This is obviously true if $p(x) = 0$. So assume $p(x) > 0$. Since $p(x) \in |K|$ we may assume that $p(x) = 1$. For such x we must prove

$$\max \{ |f(x)| : f \in p^0 \} = 1$$

By (α), Kx has a p-orthocomplement H. The function

$$f : \lambda x + h \mapsto \lambda \quad (\lambda \in K, \, h \in H)$$
is in E^*. We have $|f(x)| = 1$. For $\lambda \in K$, $h \in H$

$|f(\lambda x + h)| = |\lambda| = p(\lambda x) \leq \max(p(\lambda x), p(h)) = p(\lambda x + h)$

so that $f \in \mathcal{P}^0$.

(β) \Rightarrow (α). Let $x \in E$. The map $f \mapsto |f(x)|$ ($f \in E^*$)
is a continuous seminorm on $(E^*, \sigma(E^*, E))$. By c'-compactness its
restriction to \mathcal{P}^0 has a maximum so there exists a $g \in \mathcal{P}^0$ with $|g(x)| = p(x)$
(It follows that $p(x) \in |K|$). We prove that $\ker g$ is a p-orthocomplement
of Kx. In fact, for $z \in \ker g$ we have

$$p(x+z) \geq |g(x+z)| = |g(x)| = p(x)$$

Then also

$$p(x+z) \geq p(z)$$

completing the proof of Theorem 1.1.

Note. It is not hard to see that (α) of above is equivalent too.

(γ) For each $x \in E$ there exists an $f \in E^*$ with $|f(x)| = p(x)$ and $|f| \leq p$.

For spherically complete K we obtain a simpler form of Theorem 1.1.

COROLLARY 1.2. Let K be spherically complete, let p be a seminorm on
E for which $p(x) \in |K|$ for all $x \in E$.

Then the following are equivalent.

(a) $p(x) \in |K|$ for each $x \in E$.

(β) \mathcal{P}^0 is c'-compact.

Proof. By [1], lemma 4.35, each onedimensional subspace has a p-orthocomplement.
§2 APPLICATION: A NEW LIGHT ON SERRE'S RENORMING PROBLEM.

Consider the following two statements (*) and (**).

(*) Let E be a K-vector space and let $\| | \|$ be a norm on E. Then there exists a norm $\| | \|$ on E, equivalent to $\| | \|$, such that $\|x\| \leq |x|$ for all $x \in E$.

(**) Let K be spherically complete and let A be a complete absolutely convex compactoid in a Hausdorff locally convex space over K. Then there exist a $\lambda \in K$ with $|\lambda| > 1$ and a c'-compact B such that $A \subseteq B \subseteq \lambda A$.

The question as to whether (*) is true or not is known as Serré's renorming problem. See [2] for more details. We are able to reformulate this problem in terms of compactoids:

PROPOSITION 2.1. The above statements (*) and (**) are equivalent.

Proof. Assume (*). To prove (**) we may assume that A is edged. By [8], Theorem 3, A, as a topological module over $B(0,1) := \{x \in K : |x| \leq 1\}$, is isomorphic to a bounded submodule of K^I for some set I. Let E be the algebraic direct sum $\bigoplus_{i \in I} K_i$ where $K_i = K$ for all $i \in I$.

Then $(E^*, \sigma(E^*, E))$ is in a natural way isomorphic to K^I with the product topology. So we may assume that $A = p^0$ where p is a seminorm on E.

By (*) there exists a seminorm q, equivalent to p, such that $q(x) \leq |x|$ for all $x \in E$. By a suitable scalar multiplication we can arrange that, in addition, $p \leq q \leq \lambda p$ for some $\lambda \in K$, $|\lambda| > 1$. Then $p^0 \leq q^0 \leq \lambda p^0$.

and q^0 is c'-compact by Corollary 1.2. This proves (**). Now assume (**).
To prove (*) we may assume (see [2]), that K is spherically complete.
Let p be a norm on E. By (**) there is a c'-compact B and a $\lambda \in K$, $|\lambda| > 1$
with $p^0 \subseteq B \subseteq \lambda p^0$. Then $B = q^0$ for some seminorm q on E. We have
\[p \leq q \leq |\lambda| p \]
and $q(x) \in |K|$ for all $x \in E$ by Corollary 1.2.

Note. Serre's renorming problem is still unsettled as far as I know.

§3 NORMS p FOR WHICH p^0 IS A KREIN-MILMAN COMPACTOID.

Recall that an absolutely convex subset A of a locally convex space
over K is a KM-compactoid if it is complete and if $A = \overline{\text{co } X}$ where X is
compact. (Here $\overline{\text{co } X}$ is the closure of $\text{co } X$).

Before stating the theorem we first make some simple observations. Let
p be a norm on E. We say that a collection $(e_i)_{i \in I}$ in E is a
\textit{p-orthonormal base} of E if for each $x \in E$ there exist a unique
$(\lambda_i)_{i \in I} \subseteq K^I$ such that \{ $i \in I$, $|\lambda_i| \geq \varepsilon$ \} is finite for each $\varepsilon > 0$ and
\[x = \sum_{i \in I} \lambda_i e_i \]
\[p(x) = \max_{i \in I} |\lambda_i| \]
If (E, p) is complete this definition coincides with the usual one.

\textbf{LEMMA 3.1. Let (E, p) be a normed space, let (\hat{E}, \hat{p}) be its completion.
Then (E, p) has a p-orthonormal base if and only if (\hat{E}, \hat{p}) has a \hat{p}-orthonormal base.}
Proof. It is not hard to see that each p-orthonormal base of \((E, p)\) is also a \(\hat{p}\)-orthonormal base of \((E, \hat{p})\). Conversely, let \((e_i)_{i \in I}\) be a \(\hat{p}\)-orthonormal base of \((E, \hat{p})\). For each \(i \in I\), choose an \(f_i \in E\) with
\[
p(e_i - f_i) \leq \frac{1}{2}.
\]
By [1], Exercise 5.C, \((f_i)_{i \in I}\) is a \(\hat{p}\)-orthonormal base of \((E, \hat{p})\).

Clearly \((f_i)_{i \in I}\) is a p-orthonormal base of \((E, p)\).

Theorem 3.2. For a polar norm \(p\) on a K-vector space \(E\) the following are equivalent.

(a) \((E, p)\) has a p-orthonormal base

(b) \(p^0\) is a KM-compactoid.

Proof. (a) \(\Rightarrow\) (b). Let \((e_i)_{i \in I}\) be a p-orthonormal base of \((E, p)\). The formula

\[
\phi(f) = (f(e_i))_{i \in I}
\]

defines a map \(\phi : p^0 \to B(0,1)^I\). Straightforward verifications show that \(\phi\) is an isomorphism of topological \(B(0,1)\)-modules. From [8], Theorem 16 we obtain that \(B(0,1)^I\), hence \(p^0\), is a KM-compactoid.

(b) \(\Rightarrow\) (a). Suppose \(p^0 = \text{co} X\) where \(X\) is a compact subset of \(E^*\).

Let \(C(X^*K)\) be the Banach space of all continuous functions \(X^*K\), with the supremum norm \(|||\|_\infty\). Then \(C(X^*K)\) has an orthonormal base. ([1], Theorem 5.22).

The formula

\[
\phi(x)(f) = f(x) \quad (f \in X)
\]

defines a K-linear map \(\phi : E \to C(X^*K)\). From
\[\| \phi(x) \|_\infty = \max_{f \in X} |f(x)| = \sup_{f \in C[0,\infty]} |f(x)| = \sup_{f \in \mathcal{P}} |f(x)| = p(x) \]

we obtain that \(\phi \) is an isometry \((E,p) \to (C(X^2 K), \| \cdot \|_\infty)\).

By Gruson's Theorem ([1], 5.9) \(\phi(E) \) has an orthonormal base. Then so has \(\phi(E) \) by Lemma 3.1 and has \(E \).

§4 APPLICATION: A COMPLETE \(c^* \)-COMPACT SET WHICH IS NOT A KM-COMPACTOID.

We shall give a negative answer to the Problem following Theorem 1.7 of [6].

PROPOSITION 4.1. Let \(K \) be spherically complete, let \(|K| = [0,\infty) \).

Then there exist a locally convex space \(F \) over \(K \) and a complete \(c^* \)-compact subset \(A \subset F \) which is not a KM-compactoid.

Proof. Let \(E := 1^\infty \) and let \(F := (1^\infty)^* \) (with the topology we agreed upon in §0). Let \(p \) be the standard norm on \(1^\infty \), and let \(A := p^0 \). Since, trivially, \(p(x) \in |K| \) for all \(x \in 1^\infty \), we have that \(p^0 \) is \(c^* \)-compact (Corollary 1.2).

However, it is known ([1], Cor. 5.19) that \(1^\infty \) has no orthogonal base so that (Theorem 3.2) \(p^0 \) is not a KM-compactoid.

§5 NORMS \(p \) FOR WHICH \(p^0 \) IS METRIZABLE.

THEOREM 5.1. For a polar seminorm \(p \) on a \(K \)-vector space \(E \) the following are equivalent.

(a) \((E,p)\) is of countable type ([3], Definition 4.3).

(\(\beta \)) \(p^0 \) is metrizable.
Proof. (a) ⇒ (b). There exist \(e_1, e_2, \ldots \) in \(E \) with \(p(e_i) \leq 1 \) for each \(i \) such that the \(K \)-linear span of \(e_1, e_2, \ldots \) is \(p \)-dense in \(E \). The formula

\[
\phi(f) = (f(e_1), f(e_2), \ldots)
\]

defines a map \(\phi : p^0 \to B(0,1)^\mathbb{N} \). Straightforward verifications show that \(\phi \) is an isomorphism of topological \(B(0,1) \)-modules of \(p^0 \) onto a submodule of \(B(0,1)^\mathbb{N} \).

Now \(B(0,1)^\mathbb{N} \) is metrizable (the product topology is induced by the metric

\[
(a,b) \mapsto \sup_{i \in \mathbb{N}} |a_i - b_i| 2^{-i}
\]

hence so is \(p^0 \).

(b) ⇒ (a). Let \(\lambda \in K, |\lambda| > 1 \). Since \(p^0 \) is a metrizable compactoid there exist, by [3], Proposition 8.2, \(f_1, f_2, \ldots \in \lambda p^0 \) with \(\lim_{n \to \infty} f_n = 0 \) such that

\[
p^0 \subseteq \overline{\text{co}} \{f_1, f_2, \ldots\} \subseteq \lambda p^0
\]

The map

\[
\phi : x \mapsto (f_1(x), f_2(x), \ldots) \quad (x \in E)
\]

is \(K \)-linear, \(\phi(E) \subseteq c_0 \). We have for \(x \in E \)

\[
||\phi(x)|| = \sup_{n \in \mathbb{N}} |f_n(x)| = \sup_{n \in \mathbb{N}} \{ |g(x)| : g \in \overline{\text{co}} \{f_1, f_2, \ldots\} \}
\]

It follows that

\[
p(x) \leq ||\phi(x)|| \leq |\lambda| p(x)
\]

so that \(p \) is equivalent to \(x \mapsto ||\phi(x)|| \), a seminorm of countable type. Hence, \(p \) is of countable type.
§6 APPLICATION: DESCRIPTION OF METRIZABLE COMPACTOIDS.

THEOREM 6.1. Let A be an absolutely convex subset of a Hausdorff locally convex space F over K. The following are equivalent.

(a) A is a metrizable compactoid.

(b) As a topological $B(0,1)$-module, A is isomorphic to a submodule of $B(0,1)^\mathbb{N}$.

(γ) As a topological $B(0,1)$-module, A is isomorphic to a compactoid in C^0.

(δ) For each $\lambda \in K$, $|\lambda| > 1$ then exist $e_1, e_2, \ldots \in \lambda A$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \overline{\operatorname{co}}\{e_1, e_2, \ldots\}$.

(ε) There exist $e_1, e_2, \ldots \in F$ with $\lim_{n \to \infty} e_n = 0$ and $A \subseteq \overline{\operatorname{co}}\{e_1, e_2, \ldots\}$.

(η) There exists an ultrametrizable compact $X \subseteq F$ with $A \subseteq \overline{\operatorname{co}} X$.

Proof. (a) \Rightarrow (b). It is not hard to see, by using the absolute convexity of A, that \overline{A} is also metrizable. As there is no harm in taking F complete we therefore may assume that A is complete. To prove (b) we also may assume that A is edged. By [8], Theorem 3, $A \subseteq B(0,1)^I \subseteq K^I$ for some set I. Like in the proof of Proposition 2.1 we may conclude that $A = p^0$ where p is a polar seminorm on $\bigoplus_{i \in I} (K_i = K$ for each $i)$. Then p is of countable type by Theorem 5.1. From the proof of (a) \Rightarrow (b) of that theorem we obtain an isomorphism $A = p^0 \cong B(0,1)^\mathbb{N}$.

(b) \Rightarrow (γ). Choose $\lambda_1, \lambda_2, \ldots \in K$, $|\lambda_1| > |\lambda_2| > \ldots$, $\lim_{n \to \infty} \lambda_n = 0$. The formula

$$\phi((a_i)_{i \in \mathbb{N}}) = (\lambda_1 a_1, \lambda_2 a_2, \ldots) \in C^0$$

defines a $B(0,1)$-module isomorphism of $B(0,1)^\mathbb{N}$ onto $C := \overline{\operatorname{co}}\{\lambda_1 e_1, \lambda_2 e_2, \ldots\}$ where e_1, e_2, \ldots are the standard unit vectors in C^0. ϕ is a homeomorphism.
B(0,1)^N \to C$, and maps A onto a compactoid in c_0.

(γ) ⇒ (δ). See [3], Proposition 8.2.

(δ) ⇒ (ε) is trivial.

(ε) ⇒ (η). \{0, e_1, e_2, \ldots\} is compact and ultrametrizable.

(η) ⇒ (α). We may assume that F is complete. It suffices to prove the

metrizability of $B := \overline{co} X$.

B is a complete, edged compactoid. As before we may assume that $B = p^0$

for some polar seminorm p en some K-vector space E while $B \subset E^*$. The

map $\phi : E \to C(X \to K)$ defined by

$$\phi(x) (f) = f(x) \quad (f \in X)$$

is an isometry $(E, p) \to (C(X \to K), ||||_o)$.

Now X is ultrametrizable so by [1], Exercise 3.5, $C(X \to K)$ is of

countable type. Hence so is p. By Theorem 5.1, $B = p^0$ is metrizable.

§7 NORMS p FOR WHICH $(p^0)^i$ IS OF FINITE TYPE.

Recall that an absolutely convex set A in a locally convex space F over

K is of finite type if for each zero neighbourhood U in F there exists

a finite-dimensional bounded set $S \subset A$ such that $A \subset U + S$.

Let us say that a seminorm p on a K-vector space E is of finite type

if $\ker p = \{x \in E : p(x) = 0\}$ has finite codimension.

LEMMA 7.1. Let A be an absolutely convex subset of a locally convex

space F whose topology is generated by a collection of seminorms of

finite type. Then the following are equivalent.

(a) A is a compactoid of finite type.

(b) For each closed linear subspace H of finite codimension there is a

finite dimensional bounded set $S \subset A$ with $A \subset H + S$.
Proof. (a) \Rightarrow (\beta). (Note. This implication holds for any locally convex space F.) We may assume $[A] = F$.

H has the form $D^1 := \{x \in F : f(x) = 0 \text{ for all } f \in D\}$ where D is a finite dimensional subspace of F'. Let f_1, \ldots, f_n be a base of D. There exist $x_1, \ldots, x_n \in F$ with $f_i(x_j) = \delta_{i,j}$ $(i, j \in \{1, \ldots, n\})$. Since $[A] = F$ there exists a $\lambda \in \mathbb{K}$, $\lambda \neq 0$ such that $\lambda x_i \in A$ for each $i \in \{1, \ldots, n\}$.

Set

$$U := \bigcap_{i=1}^n \{x \in F : \left|f_i(x)\right| \leq |\lambda|\}$$

Then U is a zero neighbourhood in F. A is a compactoid of finite type, so there exists a finite dimensional set $S_1 \subset A$ with $A \subset U + S_1$. Let $x \in U$. Write $x = y + z$ where

$$y := x - \sum_{i=1}^n f_i(x) x_i$$

$$z := \sum_{i=1}^n f_i(x) x_i$$

Now, since $x \in U$, $|f_i(x)| \leq |\lambda|$ for each i so that $z = \sum_{i=1}^n f_i(x) x_i \in A$.

Further, for each $j \in \{1, \ldots, n\}$

$$f_j(y) = f_j(x) - \sum_{i=1}^n f_i(x)f_j(x_i) = f_j(x) - f_j(x) = 0$$

and it follows that $y \in D^1 = H$. So $x = y + z \in H + [x_1, \ldots, x_n] \cap A$. We see that

$$A \subset U + S_1 \subset H + S_2 + S_1$$

where $S_2 := [x_1, \ldots, x_n] \cap A$. Then (\beta) is proved with $S := S_1 + S_2$.

$(\beta) \Rightarrow (a)$. Let U be a zero neighbourhood in F. Since continuous seminorms are of finite type, U contains a closed subspace H of finite codimension. By (\beta) there exists a finite dimensional set $S \subset A$ with S bounded and
A ⊂ H + S. Then A ⊂ U + S.

From now on we assume that the valuation on K is dense. Recall that for an absolutely convex set B we have \(B^\bot := \bigcup_{|\lambda| < 1} \lambda B. \)

THEOREM 7.2. Let \(p \) be a polar norm on a K-vector space \(E \). Then the following are equivalent.

(a) For each finite dimensional subspace \(D \) of \(E \) there exists a seminorm \(q \) on \(E \), \(q \) of finite type, \(q \leq p \) and \(q = p \) on \(D \).

(b) \((p^0)^1 \) is of finite type.

Proof. (a) \(\Rightarrow \) (b). As each continuous seminorm on \(E^* \) is of finite type it suffices to prove, by Lemma 7.1, that for a closed subspace \(H \) of \(E^* \) of finite codimension there exists a finite dimensional set \(S \in (p^0)^1 \) such that \((p^0)^1 \subset H + S. \)

Now, by (a), there is a seminorm \(q \) of finite type, \(q \leq p \) on \(E \) and \(q = p \) on \(D := H^\bot \). Let

\[S_1 := \{ f \in E^*: |f| \leq q \}. \]

We see that \(S_1 \) is finite dimensional and since \(q \leq p \) we have \(S_1 \subset p^0. \)

We now shall prove that \((p^0)^1 \subset H + S \) where \(S := (S_1)^\bot. \)

In fact, let \(f \in (p^0)^1. \) Then there is a \(\lambda \in K, 0 < |\lambda| < 1 \) with \(|f| \leq |\lambda| p. \)

Choose \(\lambda' \in K \) with \(|\lambda| < |\lambda'| < 1. \)

We have \(|f| \leq |\lambda| q \) on \(D \) (since \(p = q \) on \(D \)) so we can extend \(f \) to a \(g \in E^* \) with \(|g| \leq |\lambda'| q \) on \(E. \) (This is because \(q \) is of finite type so that \((E,q) \) is strongly polar.) Now write

\[f = f - g + g. \]

Since \(f = g \) on \(D \) we have \(f - g \in D^\bot = H. \)
Also, \(|(\lambda')^{-1}g| \leq q\) so that \((\lambda')^{-1}g \in S_1\) i.e. \(g \in (S_1)^i = S\).

(\beta) \Rightarrow (a). By lemma 7.1 there exists a finite dimensional set \(S \subset (p_0)^i\) so that \((p_0)^i = D^i \cap (p_0)^i + S.\)

Set \(q(x) := \sup_{h \in S} |h(x)|, \quad (x \in E).\)

Then \(q(x) = 0\) for all \(x\) in the space \(S^i\) which has finite codimension.

So \(q\) is of finite type.

Further, for \(x \in E\) we have

\[q(x) = \sup_{h \in S} |h(x)| = \sup_{h \in (p_0)^i} |h(x)| = p(x),\]

so \(q \leq p\). Finally, if \(x \in D\) then

\[p(x) = \sup_{f \in p} |f(x)| = \sup_{f \in (p_0)^i} |f(x)| = \sup_{h \in D^i \cap (p_0)^i} |h(x) + t(x)|\]

\[= \sup_{t \in S} |t(x)| = q(x).\] Hence, \(p = q\) on \(D\).

§8 APPLICATION: A COMPLETE COMPACTOID IN \(c_0\) THAT IS NOT OF FINITE TYPE.

If \(K\) is spherically complete each complete absolutely convex compactoid is of finite type (See [4], 2.3).

If \(K\) is not spherically complete the unit ball of \(c_0\) is a complete compactoid for the weak topology but not of finite type (See [5], 1.6).

This is a non-metrizable compactoid. A compactoid in \((c_0, ||||)\), not of finite type, is given in [5], 1.4. However this compactoid is not closed. The following example provides an answer to the Problem following 1.5 in [5].
PROPOSITION 8.1. Let K be not spherically complete. Then there exists an absolutely convex complete compactoid in c_0 that is not of finite type.

Proof. Let $(K^v, | |)$ be the spherical completion of $(K, | |)$ in the sense of [1], Theorem 4.49. Let E be a K-subspace of K^v of countably infinite dimension and let p be the valuation $| |$ restricted to E. Then $x, y \in E$, $x \perp y$ in the sense of p implies $x = 0$ or $y = 0$. Obviously, the norm p is of countable type (hence polar) so, by Theorem 5.1, p^0 is metrizable and is by Theorem 6.1, isomorphic to a compactoid in c_0.

Suppose p^0 were of finite type. Then so would $(p^0)^1$ ([5], Proposition 2.4). By Theorem 7.2 we would have a seminorm q on E, $q \leq p$, q of finite type, $q(x) = p(x)$ for some $x \in E$, $x \neq 0$. But then $x \perp \text{Ker} q$ in the sense of p (If $q(y) = 0$ then $p(x-y) \geq q(x-y) = q(x) = p(x)$) which is impossible.

So, p^0 is not of finite type.
REFERENCES

