TWO ELEMENTARY PROOFS OF KATSARAS' THEOREM ON P-ADIC COMPACTOIDS

by

S. Caenepeel, W.H. Schikhof

0. Introduction

The following 'convexification' of the notion of precompactness plays a central role in p-adic Functional Analysis. Let K be a nonarchimedean nontrivially valued field, and E a locally K-convex space. An absolutely convex subset A of E is called compactoid if for every (absolutely convex) neighbourhood U of 0 in E, there exists a finite subset $S = \{x_1, \ldots, x_n\}$ of E such that $A \subset \text{co}(S) + U$. Here $\text{co}(S)$ denotes the absolute convex hull of S. Equivalently, we can say: for every absolutely convex neighbourhood U of 0, $\pi_U(A)$ is contained in a finitely generated R-module; here R is the unit ball in K, and π_U is the canonical map $E + E/U$ in the category of R-modules. A natural question to ask is the following: can we choose S to be subset of A? Or, equivalently, is $\pi_U(A)$ finitely generated as an R-module? The answer is affirmative if the valuation of K is discrete, because R is a noetherian ring in that case. If the valuation is dense, then we have an easy counterexample: take $A = \{\lambda \in K : |\lambda| < 1\}$.

It is shown in [3] that, for E a Banach space, one may choose x_1, \ldots, x_n in λA, where $\lambda \in K$, $|\lambda| > 1$. For locally convex E it is shown in [1] that it is possible to choose x_1, \ldots, x_n in the K-vector space generated by A, and in [2], [4] that x_1, \ldots, x_n may be chosen in λA. Yet, all these proofs are somewhat involved. In this note, both authors present a straightforward and elementary proof. We considered it worth while to publish our two proofs since the statement is quite fundamental.
1. Proof by the Second Author

1.1. Lemma. Let A, B be absolutely convex subsets of a K-vector space E. Suppose $A \subseteq B + \text{co}(x)$ for some $x \in E$. Let $\lambda \in K$, $0 < |\lambda| < 1$ if the valuation of K is dense, $\lambda = 1$ otherwise. Then there exists an $a \in A$ such that $\lambda A \subseteq B + \text{co}(a)$.

Proof. The set $C \subseteq K$ defined by $C = \{\mu \in K : |\mu| < 1, \mu x \in A + B\}$ is absolutely convex. It is not hard to see that there exists a $c \in C$ for which $\lambda c C \subseteq \text{co}(c) \subseteq C$. As $c \in C$ there exists an $a \in A$ such that $cx \in a + B$. We claim that $\lambda A \subseteq B + \text{co}(a)$. Indeed, if $z \in A$ then $z = b + dx$ for some $b \in B$, $d \in C$ so we have $\lambda z = \lambda b + \lambda dx \in B + \text{co}(cx) \subseteq B + \text{co}(a) + B \subseteq B + \text{co}(a)$. □

1.2. Lemma. Let E, A, B, λ be as above. Suppose $A \subseteq B + \text{co}(x_1, \ldots, x_n)$ for some $x_1, \ldots, x_n \in E$. Then there exist $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq B + \text{co}(a_1, \ldots, a_n)$.

Proof. Choose $\lambda_1, \ldots, \lambda_n \in K$, $0 < |\lambda_i| < 1$ and $|\prod_{i=1}^n \lambda_i| > |\lambda|$ if the valuation of K is dense, $\lambda_i = 1$ for each i otherwise. By applying Lemma 1.1 with λ_i in place of λ and $B + \text{co}(x_2, \ldots, x_n)$ in place of B we find an $a_1 \in A$ such that $\lambda_1 A \subseteq B + \text{co}(a_1, x_2, \ldots, x_n)$.

A second application of Lemma 1.1 with $\lambda_1 A$, λ_2, $B + \text{co}(a_1, x_3, \ldots, x_n)$ in place of A, λ, B respectively yields an $a_2 \in \lambda_1 A \subseteq A$ for which $\lambda_1 \lambda_2 A \subseteq B + \text{co}(a_1, a_2, x_3, \ldots, x_n)$. Inductively we arrive at points $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq \lambda_1 \ldots \lambda_n A \subseteq B + \text{co}(a_1, \ldots, a_n)$. □

1.3. Theorem (Katsaras). Let A be an absolutely convex compactoid in a locally convex space over K. Let $\lambda \in K$, $|\lambda| > 1$ if the valuation of K is dense, $\lambda = 1$ otherwise. Then for each absolutely convex neighbourhood U of 0 in E there exist $x_1, \ldots, x_n \in \lambda A$ such that $A \subseteq U + \text{co}(x_1, \ldots, x_n)$.
Proof. \(\lambda^{-1}U \) is a zero neighbourhood. By definition there exist \(y_1, \ldots, y_n \in E \) such that \(A \subseteq \lambda^{-1}U + \text{co}(y_1, \ldots, y_n) \). By Lemma 1.2 we can find \(a_1, \ldots, a_n \in A \) such that \(\lambda^{-1}A \subseteq \lambda^{-1}U + \text{co}(a_1, \ldots, a_n) \), i.e. \(A \subseteq U + \text{co}(x_1, \ldots, x_n) \), where, for each \(i \), \(x_i = \lambda a_i \in \lambda A \). □

2. Proof by the First Author

In the introduction, we have seen that Theorem 1.3 is trivial if the valuation of \(K \) is discrete; so let us assume from now on that \(|K| \) is dense.

2.1. Lemma. Let \(A \) be an \(R \)-submodule of a finitely generated free \(R \)-module, and let \(\lambda \in \mathbb{R} \) be such that \(|\lambda| < 1 \). Then we can find \(a_1, \ldots, a_n \in A \) such that \(\lambda A \subseteq Ra_1 + \ldots + Ra_n \).

Proof. \(A \subseteq R^n \subseteq K^n \). We furnish \(K^n \) with the usual supremum norm; it is well-known (cf. [3]) that every one dimensional subspace of \(K^n \) has an orthocomplement. Let us proceed using induction on \(n \). The case \(n = 1 \) is trivial. Let \(m = \sup \{ \|x\| : x \in A \} \), and choose \(a_1 \in A \) such that \(\|a_1\| > \frac{1}{|\lambda'|}m \), where \(\lambda' \in K \) is such that \(|\lambda'|^2 < |\lambda| \). Let \(Q : K^n + Ka_1 \) be an orthoprojection, and take \(P = I - Q \). Then every \(x \in K^n \) may be written under the form \(x = \lambda(x)a_1 + Px \), where \(\|x\| = \max(|\lambda(x)|\|a_1\|, \|Px\|) \). If \(x \in A \), then
\[
|\lambda'(x)|\|a_1\| < \|x\| < m < |\lambda'|^{-1}\|a_1\|, \text{ so } |\lambda(x)| < |\lambda'|^{-1}.
\]

Using the induction hypothesis, we find \(f_2, \ldots, f_n \in PA \) such that \(\lambda'PA \subseteq Rf_2 + \ldots + Rf_n \). Lift \(f_i \) to an element \(a_i \in A \). Then, for \(i > 2 \), we have that \(a_i = f_i + \lambda a_i \), where \(|\lambda a_i| < |\lambda'|^{-1} \). We now have, for \(x \in A \):
\[
x = Qx + Px = \lambda(x)a_1 + \sum_{i=2}^{n} \mu_i f_i = (\lambda(x) - \sum_{i=2}^{n} \lambda_i \mu_i)a_1 + \sum_{i=2}^{n} \mu_i a_i,
\]
where \(|\lambda(x)|, |\lambda a_i|, |\mu_i| < |\lambda'|^{-1} \). This implies the result. □

Proof of Theorem 1.3. Write \(\mu = \lambda^{-1} \), then \(|\mu| < 1 \). \(U \) is an absolutely convex neighbourhood of 0, so \(\pi_{\mu U}(A) \) is a submodule of a finitely generated \(R \)-module \(N \). So we have an epimorphism \(\phi : R^n + N \in \text{the category of} \)
R-modules. By Lemma 2.1, we may find $a_1, \ldots, a_n \subseteq \phi^{-1}(\pi_{\mu U}(A))$ such that

$$\mu \phi^{-1}(\pi_{\mu U}(A)) \subseteq R a_1 + \ldots + R a_n.$$

Choose u_1, \ldots, u_n in A such that $\pi_{\mu U}(u_i) = \phi(a_i).$

Then

$$\mu \pi_{\mu U}(A) \subseteq R \phi(a_1) + \ldots + R \phi(a_n) = R \pi_{\mu U}(u_1) + \ldots + R \pi_{\mu U}(u_n),$$

hence $\mu A \subseteq R u_1 + \ldots + R u_n + \mu U,$ and, after multiplication by $\lambda,$

$$A \subseteq R \lambda u_1 + \ldots + R \lambda u_n + U,$$

and this proves the theorem. \square

References

