TWO ELEMENTARY PROOFS OF KATSARAS' THEOREM ON P-ADIC COMPACTOIDS

by

S. Caenepeel, W.H. Schikhof

0. Introduction

The following 'convexification' of the notion of precompactness plays a central role in p-adic Functional Analysis. Let K be a nonarchimedean nontrivially valued field, and E a locally K-convex space. An absolutely convex subset A of E is called compactoid if for every (absolutely convex) neighbourhood U of 0 in E, there exists a finite subset $S = \{ x_1, \ldots, x_n \}$ of E such that $A \subseteq \text{co}(S) + U$. Here $\text{co}(S)$ denotes the absolute convex hull of S. Equivalently, we can say: for every absolutely convex neighbourhood U of 0, $\pi_U(A)$ is contained in a finitely generated R-module; here R is the unit ball in K, and π_U is the canonical map $E + E/U$ in the category of R-modules. A natural question to ask is the following: can we choose S to be subset of A? Or, equivalently, is $\pi_U(A)$ finitely generated as an R-module? The answer is affirmative if the valuation of K is discrete, because R is a noetherian ring in that case. If the valuation is dense, then we have an easy counterexample: take $A = \{ \lambda \in K : |\lambda| < 1 \}$.

It is shown in [3] that, for E a Banach space, one may choose x_1, \ldots, x_n in λA, where $\lambda \in K$, $|\lambda| > 1$. For locally convex E it is shown in [1] that it is possible to choose x_1, \ldots, x_n in the K-vector space generated by A, and in [2], [4] that x_1, \ldots, x_n may be chosen in λA. Yet, all these proofs are somewhat involved. In this note, both authors present a straightforward and elementary proof. We considered it worth while to publish our two proofs, since the statement is quite fundamental.
I. Proof by the Second Author

1.1. Lemma. Let \(A, B \) be absolutely convex subsets of a \(K \)-vector space \(E \). Suppose \(A \subset B + \operatorname{co}(x) \) for some \(x \in E \). Let \(\lambda \in K, \, 0 < |\lambda| < 1 \) if the valuation of \(K \) is dense, \(\lambda = 1 \) otherwise. Then there exists an \(a \in A \) such that
\[\lambda A \subset B + \operatorname{co}(a). \]

Proof. The set \(C \subset K \) defined by \(C = \{ \mu \in K : |\mu| < 1, \, \mu x \in A + B \} \) is absolutely convex. It is not hard to see that there exists a \(c \in C \) for which
\[\lambda C \subset \operatorname{co}(c). \]
As \(c \in C \) there exists an \(a \in A \) such that \(cx \in a + B \). We claim that \(\lambda A \subset B + \operatorname{co}(a) \). Indeed, if \(z \in A \) then \(z = b + dx \) for some \(b \in B, d \in C \) so we have \(\lambda z = \lambda b + \lambda dx \in B + \operatorname{co}(cx) \subset B + \operatorname{co}(a) \subset B + \operatorname{co}(a) \). □

1.2. Lemma. Let \(E, A, B, \lambda \) be as above. Suppose \(A \subset B + \operatorname{co}(x_1, \ldots, x_n) \) for some \(x_1, \ldots, x_n \in E \). Then there exist \(a_1, \ldots, a_n \in A \) such that \(\lambda A \subset B + \operatorname{co}(a_1, \ldots, a_n) \).

Proof. Choose \(\lambda_1, \ldots, \lambda_n \in K, \, 0 < |\lambda_i| < 1 \) and \(|\prod_{i=1}^n \lambda_i| > |\lambda| \) if the valuation of \(K \) is dense, \(\lambda_i = 1 \) for each \(i \) otherwise. By applying Lemma 1.1 with \(\lambda_i \) in place of \(\lambda \) and \(B + \operatorname{co}(x_2, \ldots, x_n) \) in place of \(B \) we find an \(a_1 \in A \) such that
\[\lambda_1 A \subset B + \operatorname{co}(a_1, x_2, \ldots, x_n). \]
A second application of Lemma 1.1 with \(\lambda_1 A, \lambda_2, B + \operatorname{co}(a_1, x_3, \ldots, x_n) \) in place of \(A, \lambda, B \) respectively yields an \(a_2 \in \lambda_1 A \subset A \) for which
\[\lambda_1 \lambda_2 A \subset B + \operatorname{co}(a_1, a_2, x_3, \ldots, x_n). \]
Inductively we arrive at points \(a_1, \ldots, a_n \in A \) such that
\[\lambda A \subset \lambda_1 \ldots \lambda_n A \subset B + \operatorname{co}(a_1, \ldots, a_n). \] □

1.3. Theorem (Katsaras). Let \(A \) be an absolutely convex compactoid in a locally convex space over \(K \). Let \(\lambda \in K, \, |\lambda| > 1 \) if the valuation of \(K \) is dense, \(\lambda = 1 \) otherwise. Then for each absolutely convex neighbourhood \(U \) of \(0 \) in \(E \) there exist \(x_1, \ldots, x_n \in \lambda A \) such that
\[A \subset U + \operatorname{co}(x_1, \ldots, x_n). \]
Proof. $\lambda^{-1}U$ is a zero neighbourhood. By definition there exist $y_1, \ldots, y_n \in E$ such that $A \subseteq \lambda^{-1}U + \text{co}(y_1, \ldots, y_n)$. By Lemma 1.2 we can find $a_1, \ldots, a_n \in A$ such that $\lambda^{-1}A \subseteq \lambda^{-1}U + \text{co}(a_1, \ldots, a_n)$, i.e. $A \subseteq U + \text{co}(x_1, \ldots, x_n)$, where, for each i, $x_i = \lambda a_i \in \lambda A$. □

2. Proof by the First Author

In the introduction, we have seen that Theorem 1.3 is trivial if the valuation of K is discrete; so let us assume from now on that $|K|$ is dense.

2.1. Lemma. Let A be an R-submodule of a finitely generated free R-module, and let $\lambda \in R$ be such that $|\lambda| < 1$. Then we can find $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq Ra_1 + \cdots + Ra_n$.

Proof. $A \subseteq R^n \subseteq K^n$. We furnish K^n with the usual supremum norm; it is well-known (cf. [3]) that every one dimensional subspace of K^n has an orthocomplement. Let us proceed using induction on n. The case $n = 1$ is trivial.

Let $m = \sup \{ \|x\| : x \in A \}$, and choose $a_1 \in A$ such that $\|a_1\| > \frac{1}{\lambda'}m$, where $\lambda' \in K$ is such that $|\lambda'|^2 < |\lambda|$. Let $Q : K^n + Ka_1 \to$ be an orthoprojection, and take $P = I - Q$. Then every $x \in K^n$ may be written under the form $x = \lambda(x)a_1 + Px$, where $\|x\| = \max (|\lambda(x)||a_1||, \|Px\|)$. If $x \in A$, then $|\lambda(x)||a_1|| < \|x\| < m < |\lambda'|^{-1}\|a_1||$, so $|\lambda(x)| < |\lambda'|^{-1}$.

Using the induction hypothesis, we find $f_2, \ldots, f_n \in FA$ such that $\lambda'PA \subseteq Rf_2 + \cdots + Rf_n$. Lift f_i to an element $a_i \in A$. Then, for $i > 2$, we have that $a_i = f_i + \lambda_ia_i$, where $|\lambda_i| < |\lambda'|^{-1}$. We now have, for $x \in A$:

$x = Qx + Px = \lambda(x)a_1 + \sum_{i=2}^{n} \mu_i f_i = (\lambda(x) - \sum_{i=2}^{n} \lambda_1^i \mu_i)a_1 + \sum_{i=2}^{n} \mu_i a_1$, where $|\lambda(x)|, |\lambda_i|, |\mu_i| < |\lambda'|^{-1}$. This implies the result. □

Proof of Theorem 1.3. Write $\mu = \lambda^{-1}$, then $|\mu| < 1$. U is an absolutely convex neighbourhood of 0, so $\pi_{\mu U}(A)$ is a submodule of a finitely generated R-module N. So we have an epimorphism $\phi : R^n + N$ in the category of
R-modules. By Lemma 2.1, we may find \(a_1, \ldots, a_n \subseteq \phi^{-1}(\mu_\mathcal{U}(A)) \) such that

\[\mu^{-1}(\pi_\mathcal{U}(A)) \subseteq R_{a_1} + \ldots + R_{a_n}. \]

Choose \(u_1, \ldots, u_n \) in \(A \) such that \(\pi_\mathcal{U}(u_i) = \phi(a_i) \).

Then \(\mu_\mathcal{U}(A) \subseteq R\phi(a_1) + \ldots + R\phi(a_n) = R\pi_\mathcal{U}(u_1) + \ldots + R\pi_\mathcal{U}(u_n) \), hence \(\mu A \subseteq Ru_1 + \ldots + Ru_n + \mu U \), and, after multiplication by \(\lambda \),

\[A \subseteq R\lambda u_1 + \ldots + R\lambda u_n + U, \]

and this proves the theorem. \(\square \)

References

