The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57051

Please be advised that this information was generated on 2017-08-13 and may be subject to change.
TWO ELEMENTARY PROOFS OF KATSARAS' THEOREM ON P-ADIC COMPACTOIDS

by

S. Caenepeel, W.H. Schikhof

0. Introduction

The following 'convexification' of the notion of precompactness plays a central role in p-adic Functional Analysis. Let \(K \) be a nonarchimedean nontrivially valued field, and \(E \) a locally \(K \)-convex space. An absolutely convex subset \(A \) of \(E \) is called compactoid if for every (absolutely convex) neighbourhood \(U \) of \(0 \) in \(E \), there exists a finite subset \(S = \{x_1, \ldots, x_n\} \) of \(E \) such that \(A \subseteq \text{co}(S) + U \), where \(\text{co}(S) \) denotes the absolute convex hull of \(S \). Equivalently, we can say: for every absolutely convex neighbourhood \(U \) of \(0 \), \(\pi_U(A) \) is contained in a finitely generated \(R \)-module; here \(R \) is the unit ball in \(K \), and \(\pi_U \) is the canonical map \(E \to E/U \) in the category of \(R \)-modules. A natural question to ask is the following: can we choose \(S \) to be subset of \(A \)? Or, equivalently, is \(\pi_U(A) \) finitely generated as an \(R \)-module? The answer is affirmative if the valuation of \(K \) is discrete, because \(R \) is a noetherian ring in that case. If the valuation is dense, then we have an easy counterexample: take \(A = \{\lambda \in K : |\lambda| < 1\} \).

It is shown in [3] that, for \(E \) a Banach space, one may choose \(x_1, \ldots, x_n \) in \(\lambda A \), where \(\lambda \in K \), \(|\lambda| > 1 \). For locally convex \(E \) it is shown in [1] that it is possible to choose \(x_1, \ldots, x_n \) in the \(K \)-vector space generated by \(A \), and in [2], [4] that \(x_1, \ldots, x_n \) may be chosen in \(\lambda A \). Yet, all these proofs are somewhat involved. In this note, both authors present a straightforward and elementary proof. We considered it worth while to publish our two proofs, since the statement is quite fundamental.
1. Proof by the Second Author

1.1. Lemma. Let A, B be absolutely convex subsets of a K-vector space \(E \).
Suppose \(A \subset B + \text{co}(x) \) for some \(x \in E \). Let \(\lambda \in K \), \(0 < |\lambda| < 1 \) if the valuation of \(K \) is dense, \(\lambda = 1 \) otherwise. Then there exists an \(a \in A \) such that
\(\lambda A \subset B + \text{co}(a) \).

Proof. The set \(C \subset K \) defined by \(C = \{ \mu \in K : |\mu| < 1, \mu x \in A + B \} \) is absolutely convex. It is not hard to see that there exists a \(c \in C \) for which
\(\lambda c \subset \text{co}(c) \subset C \). As \(c \in C \) there exists an \(a \in A \) such that \(cx \in a + B \). We claim that
\(\lambda A \subset B + \text{co}(a) \). Indeed, if \(z \in A \) then \(z = b + dx \) for some \(b \in B, d \in C \) so we have
\(\lambda z = \lambda b + \lambda dx \in B + \text{co}(cx) \subset B + \text{co}(a + B) \subset B + \text{co}(a) \). \(\square \)

1.2. Lemma. Let \(E, A, B, \lambda \) be as above. Suppose \(A \subset B + \text{co}(x_1, \ldots, x_n) \) for some \(x_1, \ldots, x_n \in E \). Then there exist \(a_1, \ldots, a_n \in A \) such that
\(\lambda A \subset B + \text{co}(a_1, \ldots, a_n) \).

Proof. Choose \(\lambda_1, \ldots, \lambda_n \in K \), \(0 < |\lambda_i| < 1 \) and \(|\prod_{i=1}^n \lambda_i| > |\lambda| \) if the valuation of \(K \) is dense, \(\lambda_i = 1 \) for each \(i \) otherwise. By applying Lemma 1.1 with \(\lambda_i \) in place of \(\lambda \) and \(B + \text{co}(x_2, \ldots, x_n) \) in place of \(B \) we find an
\(a_1 \in A \) such that
\(\lambda_1 A \subset B + \text{co}(a_1, x_2, \ldots, x_n) \).

A second application of Lemma 1.1 with \(\lambda_1 A, \lambda_2, B + \text{co}(a_1, x_3, \ldots, x_n) \) in place of \(A, \lambda, B \) respectively yields an \(a_2 \in \lambda_1 A \subset A \) for which
\(\lambda_1 \lambda_2 A \subset B + \text{co}(a_1, a_2, x_3, \ldots, x_n) \). Inductively we arrive at points \(a_1, \ldots, a_n \in A \) such that
\(\lambda A \subset \lambda_1 \ldots \lambda_n A \subset B + \text{co}(a_1, \ldots, a_n) \). \(\square \)

1.3. Theorem (Katsaras). Let \(A \) be an absolutely convex compactoid in a locally convex space over \(K \). Let \(\lambda \in K, |\lambda| > 1 \) if the valuation of \(K \) is dense, \(\lambda = 1 \) otherwise. Then for each absolutely convex neighbourhood \(U \) of 0 in \(E \) there exist \(x_1, \ldots, x_n \in \lambda A \) such that
\(A \subset U + \text{co}(x_1, \ldots, x_n) \).
Proof. \(\lambda^{-1}U \) is a zero neighbourhood. By definition there exist \(y_1, \ldots, y_n \in E \) such that \(A \subseteq \lambda^{-1}U + \text{co}(y_1, \ldots, y_n) \). By Lemma 1.2 we can find \(a_1, \ldots, a_n \in A \) such that \(\lambda^{-1}A \subseteq \lambda^{-1}U + \text{co}(a_1, \ldots, a_n) \), i.e. \(A \subseteq U + \text{co}(x_1, \ldots, x_n) \), where, for each \(i \), \(x_i = \lambda a_i \in \lambda A \). □

2. Proof by the First Author

In the introduction, we have seen that Theorem 1.3 is trivial if the valuation of \(K \) is discrete; so let us assume from now on that \(|K| \) is dense.

2.1. Lemma. Let \(A \) be an \(R \)-submodule of a finitely generated free \(R \)-module, and let \(\lambda \in R \) be such that \(|\lambda| < 1 \). Then we can find \(a_1, \ldots, a_n \in A \) such that \(\lambda A \subseteq Ra_1 + \cdots + Ra_n \).

Proof. \(A \subseteq R^n \subseteq K^n \). We furnish \(K^n \) with the usual supremum norm; it is well-known (cf. [3]) that every one dimensional subspace of \(K^n \) has an orthocomplement. Let us proceed using induction on \(n \). The case \(n = 1 \) is trivial.

Let \(m = \sup \{ \| x \| : x \in A \} \), and choose \(a_1 \in A \) such that \(\| a_1 \| > \frac{1}{2} \lambda' m \), where \(\lambda' \in K \) is such that \(|\lambda'|^2 < |\lambda| \). Let \(Q : K^n + K a_1 \) be an orthoprojection, and take \(P = I - Q \). Then every \(x \in K^n \) may be written under the form \(x = \lambda(x)a_1 + Px \), where \(\| x \| = \max(\| \lambda(x) \| a_1 \|, \| Px \|) \). If \(x \in A \), then \(|\lambda(x)||a_1|| < m < |\lambda'|^{-1} \| a_1 \|, \) so \(|\lambda(x)| < |\lambda'|^{-1} \).

Using the induction hypothesis, we find \(f_2, \ldots, f_n \in FA \) such that \(\lambda'PA \subseteq Rf_2 + \cdots + Rf_n \). Lift \(f_i \) to an element \(a_i \in A \). Then, for \(i > 1 \), we have that \(a_i = f_i + \lambda a_i \), where \(|\lambda a_i| < |\lambda'|^{-1} \). We now have, for \(x \in A \):

\[
x = Qx + Px = \lambda(x)a_1 + \sum_{i=2}^{n} \mu f_i = (\lambda(x) - \sum_{i=1}^{n} \lambda i \mu_i) a_1 + \sum_{i=2}^{n} \mu_i a_i ,
\]

where \(|\lambda(x)|, |\lambda a_i|, |\mu_i| < |\lambda'|^{-1} \). This implies the result. □

Proof of Theorem 1.3. Write \(\mu = \lambda^{-1} \), then \(|\mu| < 1 \). \(U \) is an absolutely convex neighbourhood of \(0 \), so \(\pi_{\mu U}(A) \) is a submodule of a finitely generated \(R \)-module \(N \). So we have an epimorphism \(\phi : R^n + N \) in the category of
R-modules. By Lemma 2.1, we may find $a_1, \ldots, a_n \subseteq \phi^{-1}(\mu \mathcal{U}(A))$ such that

$$\mu \phi^{-1}(\mu \mathcal{U}(A)) \subseteq R a_1 + \ldots + R a_n.$$ Choose u_1, \ldots, u_n in A such that $\pi_{\mu \mathcal{U}}(u_i) = \phi(a_i)$.

Then $\mu \pi_{\mu \mathcal{U}}(A) \subseteq R \phi(a_1) + \ldots + R \phi(a_n) = R \pi_{\mu \mathcal{U}}(u_1) + \ldots + R \pi_{\mu \mathcal{U}}(u_n)$, hence

$$\mu A \subseteq R u_1 + \ldots + R u_n + \mu U,$$

and, after multiplication by λ,

$$A \subseteq R \lambda u_1 + \ldots + R \lambda u_n + U,$$ and this proves the theorem. \qed

References

