0. Introduction

The following 'convexification' of the notion of precompactness plays a central role in p-adic Functional Analysis. Let \(K \) be a nonarchimedean nontrivially valued field, and \(E \) a locally \(K \)-convex space. An absolutely convex subset \(A \) of \(E \) is called compactoid if for every (absolutely convex) neighbourhood \(U \) of 0 in \(E \), there exists a finite subset \(S = \{x_1, \ldots, x_n\} \) of \(E \) such that \(A \subseteq \text{co}(S) + U \). Here \(\text{co}(S) \) denotes the absolute convex hull of \(S \). Equivalently, we can say: for every absolutely convex neighbourhood \(U \) of 0, \(\pi_U(A) \) is contained in a finitely generated \(R \)-module; here \(R \) is the unit ball in \(K \), and \(\pi_U \) is the canonical map \(E \rightarrow E/U \) in the category of \(R \)-modules. A natural question to ask is the following: can we choose \(S \) to be subset of \(A \)? Or, equivalently, is \(\pi_U(A) \) finitely generated as an \(R \)-module? The answer is affirmative if the valuation of \(K \) is discrete, because \(R \) is a noetherian ring in that case. If the valuation is dense, then we have an easy counterexample: take \(A = \{ \lambda \in K : |\lambda| < 1 \} \).

It is shown in [3] that, for \(E \) a Banach space, one may choose \(x_1, \ldots, x_n \) in \(\lambda A \), where \(\lambda \in K \), \(|\lambda| > 1 \). For locally convex \(E \) it is shown in [1] that it is possible to choose \(x_1, \ldots, x_n \) in the \(K \)-vector space generated by \(A \), and in [2], [4] that \(x_1, \ldots, x_n \) may be chosen in \(\lambda A \). Yet, all these proofs are somewhat involved. In this note, both authors present a straightforward and elementary proof. We considered it worth while to publish our two proofs, since the statement is quite fundamental.
1. Proof by the Second Author

1.1. Lemma. Let A, B be absolutely convex subsets of a K-vector space E. Suppose $A \subseteq B + \text{co}(x)$ for some $x \in E$. Let $\lambda \in \mathbb{K}$, $0 < |\lambda| < 1$ if the valuation of K is dense, $\lambda = 1$ otherwise. Then there exists an $a \in A$ such that $\lambda A \subseteq B + \text{co}(a)$.

Proof. The set $C \subseteq K$ defined by $C = \{\mu \in K : |\mu| < 1, \mu x \in A + B\}$ is absolutely convex. It is not hard to see that there exists a $c \in C$ for which $\lambda c \subseteq \text{co}(c) \subseteq C$. As $c \in C$ there exists an $a \in A$ such that $cx \in a + B$. We claim that $\lambda A \subseteq B + \text{co}(a)$. Indeed, if $z \in A$ then $z = b + dx$ for some $b \in B$, $d \in C$ so we have $\lambda z = \lambda b + \lambda dx \in B + \text{co}(cx) \subseteq B + \text{co}(a)$.

1.2. Lemma. Let E, A, B, λ be as above. Suppose $A \subseteq B + \text{co}(x_1, \ldots, x_n)$ for some $x_1, \ldots, x_n \in E$. Then there exist $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq B + \text{co}(a_1, \ldots, a_n)$.

Proof. Choose $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, $0 < |\lambda_i| < 1$ and $|\prod_{i=1}^{n} \lambda_i| > |\lambda|$ if the valuation of K is dense, $\lambda_i = 1$ for each i otherwise. By applying Lemma 1.1 with λ_i in place of λ and $B + \text{co}(x_2, \ldots, x_n)$ in place of B we find an $a_i \in A$ such that $\lambda_i A \subseteq B + \text{co}(a_1, x_2, \ldots, x_n)$. A second application of Lemma 1.1 with $\lambda_i A$, λ_j, $B + \text{co}(a_1, x_3, \ldots, x_n)$ in place of A, λ, B respectively yields an $a_2 \in \lambda_i A \cap A$ for which $\lambda_1 \lambda_2 A \subseteq B + \text{co}(a_1, a_2, x_3, \ldots, x_n)$. Inductively we arrive at points $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq \lambda_1 \ldots \lambda_n A \subseteq B + \text{co}(a_1, \ldots, a_n)$.

1.3. Theorem (Katsaras). Let A be an absolutely convex compactoid in a locally convex space over K. Let $\lambda \in \mathbb{K}$, $|\lambda| > 1$ if the valuation of K is dense, $\lambda = 1$ otherwise. Then for each absolutely convex neighbourhood U of 0 in E there exist $x_1, \ldots, x_n \in \lambda A$ such that $A \subseteq U + \text{co}(x_1, \ldots, x_n)$.

Proof. $\lambda^{-1}U$ is a zero neighbourhood. By definition there exist $y_1, \ldots, y_n \in E$ such that $A \subseteq \lambda^{-1}U + \text{co}(y_1, \ldots, y_n)$. By Lemma 1.2 we can find $a_1, \ldots, a_n \in A$ such that $\lambda^{-1}A \subseteq \lambda^{-1}U + \text{co}(a_1, \ldots, a_n)$, i.e. $A \subseteq U + \text{co}(x_1, \ldots, x_n)$, where, for each i, $x_i = \lambda a_i \in \lambda A$. □

2. Proof by the First Author

In the introduction, we have seen that Theorem 1.3 is trivial if the valuation of K is discrete; so let us assume from now on that $|K|$ is dense.

2.1. Lemma. Let A be an R-submodule of a finitely generated free R-module, and let $\lambda \in R$ be such that $|\lambda| < 1$. Then we can find $a_1, \ldots, a_n \in A$ such that $\lambda A \subseteq Ra_1 + \ldots + Ra_n$.

Proof. $A \subseteq R^n \subseteq K^n$. We furnish K^n with the usual supremum norm; it is well-known (cf. [3]) that every one dimensional subspace of K^n has an orthocomplement. Let us proceed using induction on n. The case $n = 1$ is trivial.

Let $m = \sup \{ \| x \| : x \in A \}$, and choose $a_1 \in A$ such that $\| a_1 \| > \frac{1}{2} |\lambda'| m$, where $\lambda' \in K$ is such that $|\lambda'|^2 < |\lambda|$. Let $Q : K^n + Ka_1 \to$ be an orthoprojection, and take $P = I - Q$. Then every $x \in K^n$ may be written under the form $x = \lambda(x)a_1 + Px$, where $\| x \| = \max(\| \lambda(x)\| a_1, \| Px \|)$. If $x \in A$, then $|\lambda(x)||a_1|| < m < |\lambda'|^{-1}||a_1||$, so $|\lambda(x)| < |\lambda'|^{-1}$.

Using the induction hypothesis, we find $f_2, \ldots, f_n \in FA$ such that $\lambda'PA \subseteq Rf_2 + \ldots + Rf_n$. Lift f_1 to an element $x_1 \in A$. Then, for $i > 2$, we have that $a_i = f_i + \lambda_ia_1$, where $|\lambda_i| < |\lambda'|^{-1}$. We now have, for $x \in A$:

$x = Qx + Px = \lambda(x)a_1 + \sum_{i=2}^{n} \mu_i f_i = (\lambda(x) - \sum_{i=2}^{n} \mu_i a_1) a_1 + \sum_{i=2}^{n} \mu_i a_1$, where $|\lambda(x)|, |\lambda_1|, |\mu_i| < |\lambda'|^{-1}$. This implies the result. □

Proof of Theorem 1.3. Write $\mu = \lambda^{-1}$, then $|\mu| < 1$. U is an absolutely convex neighbourhood of 0, so $\pi_\mu(U)$ is a submodule of a finitely generated R-module N. So we have an epimorphism $\phi : R^n + N$ in the category of
R-modules. By Lemma 2.1, we may find \(a_1, \ldots, a_n \subseteq \phi^{-1}(\mathbb{1}_u(A)) \) such that
\[
\mu \phi^{-1}(\mathbb{1}_u(A)) \subseteq \mathbb{1}_r + \cdots + \mathbb{1}_r.
\]
Choose \(u_1, \ldots, u_n \) in \(A \) such that \(\mathbb{1}_u(u_i) = \phi(a_i) \).
Then \(\mu \phi^{-1}(\mathbb{1}_u(A)) \subseteq \mathbb{1}_r(a_1) + \cdots + \mathbb{1}_r(a_n) = \mathbb{1}_r(u_1) + \cdots + \mathbb{1}_r(u_n) \), hence
\[
\mu A \subseteq \mathbb{1}_r(u_1) + \cdots + \mathbb{1}_r(u_n) + \mu U,
\]
and, after multiplication by \(\lambda \),
\[
A \subseteq \mathbb{1}_r(U_1) + \cdots + \mathbb{1}_r(U_n) + U,
\]
and this proves the theorem. \(\square \)

References