The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57048

Please be advised that this information was generated on 2018-01-29 and may be subject to change.
A COMPLEMENTARY VARIANT OF C-COMPACTNESS
IN p-ADIC FUNCTIONAL ANALYSIS

by

W.H. SCHIKHOF

Report 8647
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A COMPLEMENTARY VARIANT OF C-COMPACTNESS
IN p-ADIC FUNCTIONAL ANALYSIS

by

W.H. Schikhof

Report 8647
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
ABSTRACT. An absolutely convex subset A of a locally convex space E over a nonarchimedean valued field is c'-compact in E if each continuous seminorm on E, restricted to A, has a maximum. Various descriptions of c'-compactness are given revealing its close analogy to c-compactness (§ 4).

PRELIMINARIES. Throughout let K be a nonarchimedean nontrivially valued field with valuation $|\cdot|$. For fundamentals on Banach spaces and locally convex spaces over K we refer to [2], [5], [4]. For a subset X of a locally convex space E over K we denote its absolutely convex hull by $\text{co } X$, its linear span by $[X]$. The closure of X is \overline{X}. Instead of $\overline{\text{co } X}$ we write $\overline{\text{co } X}$. A convex set is an (additive) coset of an absolutely convex set.
§ 1. ELEMENTARY PROPERTIES

In § 1 let E be a locally convex space over K and let $A \subset E$ be absolutely convex. The next proposition will justify the use of the term 'c'-compact' rather than 'c'-compact in E.

PROPOSITION 1.1.

A is c'-compact in $[A]$ if and only if A is c'-compact in E.

Proof.

Only the 'if' part needs a proof. Let A be c'-compact in E, let p be a continuous seminorm on $[A]$. There is a continuous seminorm q on E such that $p \leq q$ on $[A]$. The formula

$$
\tilde{p}(x) = \inf_{y \in [A]} \max(p(y), q(x-y))
$$

defines a continuous seminorm \tilde{p} on E whose restriction to $[A]$ is p. It follows that $\max_A \tilde{p} = \max_A p$ exists so that A is c'-compact in $[A]$.

PROPOSITION 1.2.

A is c'-compact if and only if \overline{A} is c'-compact.

Proof.

By the isosceles triangle principle

$$
\{p(a) \in (0,\infty) : a \in A\} = \{p(a) \in (0,\infty) : a \in \overline{A}\}
$$

for each continuous seminorm p.

We see that c'-compact sets need not be closed or complete. The next proposition furnishes examples of c'-compact sets.
PROPOSITION 1.3.

If \(X \subset E \) is precompact then \(\text{co} \ X \) is \(c' \)-compact.

Proof.

Let \(p \) be a continuous seminorm on \(E \). If \(z \in \text{co} \ X \) then there exist \(x_1, \ldots, x_n \in X \) and \(\lambda_1, \ldots, \lambda_n \in K \) with \(|\lambda_i| \leq 1 \) for each \(i \in \{1, \ldots, n\} \) such that \(z = \sum_{i=1}^{n} \lambda_i x_i \). Then

\[
p(z) \leq \max_{1 \leq i \leq n} p(\lambda_i x_i) \leq \max_p(x_i).
\]

It follows that \(\sup_{\text{co} \ X} p = \sup_{X} p \). We complete the proof by showing that \(\hat{p} \) has a maximum on \(X \). We may assume that \(s := \sup_{X} p > 0 \). Set

\[
U := \{x \in E : p(x) < \frac{s}{2}s\}.
\]

By precompactness there exist \(x_1, \ldots, x_n \in X \) such that

\[
X \subset \bigcup_{i=1}^{n} (x_i + U).
\]

For each \(i \in \{1, \ldots, n\} \) we have either \(p(x_i) < \frac{s}{2}s \) (then \(p < \frac{s}{2}s \) on \(x_i + U \)) or \(p(x_i) \geq \frac{s}{2}s \) (then \(p \) is constant on \(x_i + U \)). Hence,

\[
\sup_{X} p = \max_{i} p(x_i) = \max_{X} p.
\]

PROPOSITION 1.4.

Let \(F \) be a locally convex space over \(K \), let \(T : E \rightarrow F \) be a continuous linear map. If \(A \subset E \) is \(c' \)-compact then so is \(TA \).

Proof.

If \(p \) is a continuous seminorm on \(F \) then \(p \circ T \) is a continuous seminorm on \(E \).
Remark.

If K is spherically complete, $\{\lambda \in K : |\lambda| < 1\}$ is c-compact but not c'-compact if the valuation is dense. If K is not spherically complete, $\{\lambda \in K : |\lambda| \leq 1\}$ is c'-compact (and complete) but not c-compact.
§ 2. C'-COMPACTNESS IN BANACH SPACES

Throughout § 2, E is a Banach space over K with norm $\| \cdot \|$, and except for Corollary 2.8 A is a c'-compact subset of E. Our first goal is to show that $[A]$ is of countable type (Proposition 2.3).

Lemma 2.1.

Let p be a continuous seminorm on E, not vanishing on A. Then every p-orthogonal set in

$$ A_p := \{ x \in A : p(x) = \max_{A} p \} $$

is finite.

Proof.

We may assume $\max_{A} p = 1$. Let $\{ e_i : i \in I \}$ be a maximal p-orthogonal set in A. Suppose $\exists N \in I$; we derive a contradiction. p is a norm on $D := [e_i : i \in I]$ and $\{ e_i : i \in I \}$ is a p-orthonormal (algebraic) base for D. Choose real numbers ρ_1, ρ_2, \ldots such that $0 < \rho_1 < \rho_2 < \ldots$ and $\lim_{n \to \infty} \rho_n = 1$, and consider the seminorm q on D defined by the formula

$$ q(\sum_{i} \lambda_i e_i) = \max_{i \in I} |\lambda_i| \rho_i \quad (\lambda_i \in K, \{ i : \lambda_i \neq 0 \} \text{ finite}). $$

As $q \leq p$ on D, q is continuous. Observe that $q(e_i) < 1$ for each $i \in I$.

Set $B := \text{co} \{ e_i : i \in I \}$. We have $\sup_{B} q = 1$, but $q(b) < 1$ for each $b \in B$. The formula

$$ \underline{q}(x) = \inf_{d \in D} \max(q(d), p(x-d)) $$

defines a continuous seminorm \underline{q} on E extending q for which $\underline{q} \leq p$. We
shall arrive at the desired contradiction by showing that \bar{q} does not have a maximum on A. As $B \subseteq A$ we have

$$1 = \sup_{B} q = \sup_{B} \bar{q} \leq \sup_{A} \bar{q} \leq \sup_{A} p = 1,$$

whence

$$\sup_{A} \bar{q} = 1.$$

Now we shall prove that $\bar{q}(a) < 1$ for each $a \in A$. If $a \in A \setminus \overline{p}$ then $\bar{q}(a) \leq p(a) < 1$ so assume $a \in A$. Then a is not p-orthogonal to D and there exists a finite set $F \subseteq I$ and a map $i \mapsto \lambda_{i} \in K$ ($i \in F$) such that

$$p(a - \sum_{i \in F} \lambda_{i} e_{i}) < p(a) = 1.$$

By the isosceles triangle principle, $p(\sum_{i \in F} \lambda_{i} e_{i}) = p(a) = 1$; p-orthonormality yields $\max_{i \in F} |\lambda_{i}| = 1$. Therefore,

$$q(\sum_{i \in F} \lambda_{i} e_{i}) \leq \max_{i \in F} |\lambda_{i}| q(e_{i}) < 1$$

leading to

$$\max(q(\sum_{i \in F} \lambda_{i} e_{i}), p(a - \sum_{i \in F} \lambda_{i} e_{i})) < 1.$$

Using the definition of \bar{q} we arrive at $\bar{q}(a) < 1$.

COROLLARY 2.2.

Let p be a continuous seminorm on E, not vanishing on A. There is a finite dimensional subspace D of E such that for the quotient seminorm q defined by

$$q(x) = \inf \{p(x-d) : d \in D\}$$

we have
\[\max q < \max p. \]

Proof.

Let \(\{e_1, \ldots, e_n\} \) be a maximal \(p \)-orthogonal set in \(A \) (Lemma 2.1) and \(p \)-orthogonal set in \(A \) (Lemma 2.1) and set \(D := [e_1, \ldots, e_n] \). Suppose \(x \in A \) and \(q(x) = \max p. \) Then \(x \in A \). For each \(d \in D \) we have

\[p(x-d) \geq q(x) = \max p \geq p(x) \]

so that \(x \) is \(p \)-orthogonal to \([e_1, \ldots, e_n] \), a contradiction. Hence,

\[q(x) < \max p \text{ for each } x \in A. \]

PROPOSITION 2.3.

\([A] \text{ is of countable type}.\)

Proof.

For each subspace \(D \) of countable type the formula

\[p_D(x) = \inf \{ \|x-d\| : d \in D \} \]

defines a continuous seminorm \(p_D \) on \(E \). We set

\[x_D := \max_{A} p_D \]

\[R = \{ x_D : D \text{ is a subspace of countable type} \}, \]

Then \(R \subseteq [0, \infty) \). We have (i), (ii) below.

(i) **If** \(t_1, t_2, \ldots \text{ are in } R \) **then there exists a** \(t \in R \text{ with } t \leq \inf t_n. \)

Proof. Let \(t_n = x_{D_n} \) (\(n \in \mathbb{N} \)) where each \(D_n \) is a subspace of countable type. Then \(D := [D_n : n \in \mathbb{N}] \) is of countable type. Obviously, \(p_D \leq p_{D_n} \) for each \(n \in \mathbb{N} \), so \(t := x_D = \inf x_{D_n} = \inf t_n. \)

(ii) **If** \(t \in R, t > 0 \text{ then there exists an } s \in R \text{ with } s < t. \)
Proof. Let $t = r_D$ where D is a subspace of countable type. By Corollary 2.2 there is a finite dimensional space $F \subseteq E$ such that

$$\max_{A} q < \max_{A} p_D = r_D$$

where

$$q(x) = \inf \{ p_D(x-y) : y \in F \} \quad (x \in E)$$

It is easily seen that

$$q(x) = \inf \{ \|x-z\| : z \in F+D \} \quad (x \in E)$$

i.e. $q = p_{F+D}$. Now $F+D$ is of countable type and (ii) is proved with $s := r_{D+F}$. From (i), (ii) above we obtain $0 \in R$. So there exists a subspace D of countable type with $r_D = 0$ i.e. $p_D = 0$ on A implying $[A] \subseteq D$. It follows that $[A]$ is of countable type.

Our next step is to prove that A is a compactoid (Corollary 2.6).

Lemma 2.4.

Every $\| \| -$orthogonal sequence in A tends to 0.

Proof.

We may assume $E = \overline{[A]}$. Then E is of countable type (Proposition 2.3).

Suppose we had an orthogonal sequence e_1, e_2, \ldots in A with $s := \inf \|e_n\| > 0$. Set $D := \overline{[e_1, e_2, \ldots]}$. By [2], Theorem 3.16 (v) there exists a continuous linear projection $P : E \to D$. By Proposition 1.4 PA is c'-compact. We have $e_n \in PA$ for each $n \in \mathbb{N}$ and $\overline{[PA]} = D$.

We therefore may also assume that $E = D$ i.e. that $\overline{[A]} = \overline{[e_1, e_2, \ldots]}$.

For each \(n \in \mathbb{N} \) set

\[
D_n := [e_1, \ldots, e_n]
\]

\[
p_n(x) = \inf \{ ||x-d|| : d \in D_n \} \quad (x \in E)
\]

Each \(p_n \) is a continuous seminorm, \(p_1 \geq p_2 \geq \ldots \) and by assumption,

\[
\lim_{n \to \infty} p_n(x) = 0 \quad \text{for each } x \in [e_1, e_2, \ldots] = E.
\]

By orthogonality,

\[
p_n(e_n) = ||e_n|| \geq s \quad \text{for each } n \in \mathbb{N}.
\]

Let

\[
s_n := \max_{\lambda} p_n \quad (n \in \mathbb{N})
\]

Then \(s_n \geq s \) for each \(n \). Choose real numbers \(\rho_1, \rho_2, \ldots \) such that

\[
0 < \rho_1 < \rho_2 < \ldots, \quad \lim_{n \to \infty} \rho_n = 1.
\]

The formula

\[
p(x) = \sup_{n \in \mathbb{N}} s_n^{-1} p_n(x) \rho_n \quad (x \in E)
\]

defines a seminorm on \(E \). For each \(x \in E \) we have

\[
s_n^{-1} p_n(x) \rho_n \leq s_n^{-1} p_1(x) = s_n^{-1} ||x|| \quad (n \in \mathbb{N})
\]

so \(p \) is continuous. For each \(n \in \mathbb{N} \) we have

\[
\max_{x \in A} s_n^{-1} p_n(x) \rho_n = \rho_n
\]

yielding \(\sup_{A} p = 1 \).

By \(c' \)-compactness there is an \(a \in A \) with \(p(a) = 1 \). As, for each \(n \),

\[
s_n^{-1} p_n(a) \rho_n \leq \rho_n \neq 1 \quad \text{there must be infinitely many } n \in \mathbb{N} \text{ for which}
\]

\[
s_n^{-1} p_n(a) \rho_n \geq \frac{1}{2}.
\]

Then also \(p_n(a) \rho_n \geq \frac{1}{2} s \) for infinitely many \(n \) which is in conflict to \(\lim_{n \to \infty} p_n(a) = 0 \).

PROPOSITION 2.5.

Let \(E \) be of countable type. For each \(s \in (0, 1) \) there exist a norm
||' on E such that s ||x'|| \leq ||x|| \leq ||x||' for all x \in E and for which (E, ||'||) has an orthogonal base.

Proof.
The statement is an easy consequence of [2], Theorem 3.16 (ii).

COROLLARY 2.6.
A is a compactoid.

Proof.
We may assume that E is of countable type. By Proposition 2.5 we may even assume that E has an orthogonal base. Now apply Lemma 2.4 and [2], Theorem 4.38, \((\xi) \Rightarrow (\alpha) \).

THEOREM 2.7.
For each \(s \in (0,1) \) there exists an \(s \)-orthogonal sequence \(e_1, e_2, \ldots \) in A for which \(\lim_{n \to \infty} e_n = 0 \) such that

$$\text{co} \{e_1, e_2, \ldots\} \subset A \subset \overline{\text{co} \{e_1, e_2, \ldots\}}.$$

If, in addition, \([A] \) has an orthogonal base then the sequence \(e_1, e_2, \ldots \) can be chosen to be orthogonal.

Proof.
We may assume that \([A] = E \). By Proposition 2.5 it suffices to prove only the second statement. We shall construct an orthogonal sequence \(e_1, e_2, \ldots \) in A such that for each \(a \in A \) and \(n \in \mathbb{N} \) there exists a \(b \in \text{co} \{e_1, \ldots, e_n\} \) with \(||a-b|| \leq ||e_{n+1}|| \). (This proves the Theorem since, by Lemma 2.4, \(\lim_{n \to \infty} ||e_n|| = 0 \).) There is an \(e_1 \in A \) with

$$||e_1|| = \max \{||x|| : x \in A\}. \text{By [2], Lemma 4.35}, E \text{ is the orthogonal}$$
direct sum of K_e^1 and some subspace D_1. For each $a \in A$, $a = \lambda_1 e_1 + d_1$

$(\lambda_1 \in K_1, d_1 \in D)$, we have

$$\|a\| = \max (\|\lambda_1 e_1\|, \|d_1\|) \geq \|\lambda_1 e_1\| = \|\lambda_1\| e_1$$

so that $|\lambda_1| \leq 1$ (if $e_1 = 0$, choose $\lambda_1 = 0$). It follows that $d_1 \in D_1 \cap A$. Therefore, A decomposes into an orthogonal sum of K_e^1 and $D_1 \cap A$, so $D_1 \cap A$ is c'-compact by Proposition 1.4. There exists an $e_2 \in D_1 \cap A$ with $\|e_2\| = \max \{\|x\| : x \in D_1 \cap A\}$. Then

$$\|a - \lambda_1 e_1\| \leq \|e_2\|.$$ In its turn, D_1 decomposes into an orthogonal sum of K_e^2 and a space D_2 such that $D_2 \cap A$ is c'-compact. Let $e_3 \in D_2 \cap A$ with $\|e_3\| = \max \{\|x\| : x \in D_2 \cap A\}$. Then $\|a - \lambda_1 e_1 - \lambda_2 e_2\| \leq \|e_3\|$ for some $\lambda_2 \in K$, $|\lambda_2| \leq 1$, etc.

Corollary 2.8. Let A be an absolutely convex subset of a K-Banach space. The following statements (a)–(δ) are equivalent.

(a) A is c'-compact.

(b) There exists a compact set X with $co X \subseteq A \subseteq co X$.

(γ) There exists a sequence e_1, e_2, \ldots in A with $\lim_{n \to \infty} e_n = 0$ such that $co \{e_1, e_2, \ldots\} \subseteq A \subseteq co \{e_1, e_2, \ldots\}$.

(δ) For each $s \in (0, 1)$ there exists an s-orthogonal sequence e_1, e_2, \ldots in A for which $co \{e_1, e_2, \ldots\} \subseteq A \subseteq co \{e_1, e_2, \ldots\}$.

If K is spherically complete, (a)–(δ) are equivalent to:

(c) There exists an orthogonal sequence e_1, e_2, \ldots in A such that $co \{e_1, e_2, \ldots\} \subseteq A \subseteq co \{e_1, e_2, \ldots\}$.

Proof.

(c) \Rightarrow (δ) \Rightarrow (γ) \Rightarrow (β) are obvious. (β) \Rightarrow (α) follows from Propositions 1, 2 and 1.3. The first part of Theorem 2.7 yields (α) \Rightarrow (δ). If K is spherically complete each Banach space of countable type has an
orthogonal base ([2], Lemma 5.5) and \((a) \Rightarrow (c)\) is a consequence of
the second part of Theorem 2.7.
§ 3. OTHER CHARACTERIZATIONS OF C'-COMPACTNESS

In this section there is no need to restrict ourselves to Banach spaces so in § 3, let E be a locally convex space over K.

DEFINITION 3.1.
An absolutely convex subset $A \subset E$ is a pure compactoid if for each neighbourhood U of 0 there exist a finite set $F \subset A$ such that $A \subset U + \text{co } F$.

(The difference with the definition of 'ordinary' compactoidity ([2], p. 134) lies in the fact that we require $F \subset A$ rather than $F \subset E$.)

DEFINITION 3.2.
A function $\phi : E \rightarrow \mathbb{R}$ is convex if $n \in \mathbb{N}$, $x_1, \ldots, x_n \in E$, $\lambda_1, \ldots, \lambda_n \in K$, $|\lambda_i| \leq 1$ for each i, $\sum \lambda_i = 1$ imply

$$\phi(\sum \lambda_i x_i) \leq \max_{i=1}^n |\lambda_i| \phi(x_i).$$

(Example: $x \mapsto p(x-a)$ for $a \in E$ and a seminorm p.)

THEOREM 3.3.
For an absolutely convex $A \subset E$ the following statements are equivalent.

(a) A is a pure compactoid.

(β) If U is a covering of A by (convex) open sets then there exist $n \in \mathbb{N}$ and $U_1, \ldots, U_n \in U$ such that $A \subset \text{co } (\bigcup_{i=1}^n U_i)$.

(γ) Let $U_1 \subset U_2 \subset \ldots$ be open convex sets covering A. Then $A \subset U_n$ for some n.

(δ) Each continuous convex function $\phi : E \rightarrow \mathbb{R}$, restricted to A, has a maximum.
(e) A is c^\prime-compact.

Proof.

(a) \Rightarrow (b). There is a $U_0 \in U$ with $0 \in U_0$. There exist $x_1, \ldots, x_m \in A$ such that $A \subseteq U_0 + \text{co}\{x_1, \ldots, x_m\}$. Let $U_1, \ldots, U_m \subseteq U$ be with $x_i \in U_i$ for each $i \in \{1, \ldots, m\}$. Then $A \subseteq U_0 + \text{co}(U_1 \cup \ldots \cup U_m) \subseteq \text{co}(U_1 \cup \ldots \cup U_m)$. To prove

\Rightarrow (b) we may assume that $0 \in U_1$ so that all U_i are absolutely convex. By (b) there exists a finite set $F \subseteq \mathbb{N}$ such that $A \subseteq \text{co}(U_{i_1} \cap \ldots \cap U_{i_k})$. But then $A \subseteq \text{co}(U_n) = U_n$ where $n = \max F$.

(γ) \Rightarrow (b). Let $s = \sup \phi$ (possibly $s = \infty$). Suppose s is not a value of $\phi|_A$. Choose $s_1 < s_2 < \ldots$, $\lim_{n \to \infty} s_n = s$ and set

$U_n := \{x \in E : \phi(x) < s_n\}$

(n $\in \mathbb{N}$)

Each U_n is open. As ϕ is convex, U_n is convex. Further we have $U_1 \subseteq U_2 \subseteq \ldots$ and, by assumption, the U_n cover A. By (γ), $A \subseteq U_n$ for some n implying $\phi < s_n$ on A, a contradiction.

(δ) \Rightarrow (e) is trivial.

Finally we prove (e) \Rightarrow (a). First, assume that E is a Banach space.

From Corollary 2.8 we obtain a compact set $X \subseteq E$ with $\text{co} X \subseteq A \subseteq \overline{\text{co} X}$.

Let U be an absolutely convex neighbourhood of 0 in E. By compactness there exist $x_1, \ldots, x_n \in X$ such that $X \subseteq \bigcup_{i=1}^{n} (x_i + U)$. Then

$X \subseteq U + \text{co}\{x_1, \ldots, x_n\}$. As the latter set is an open additive subgroup of E it is also closed and we have

$A \subseteq \overline{\text{co} X} = U + \text{co}\{x_1, \ldots, x_n\}$.

Now let E be a locally convex space, and let U be an absolutely convex neighbourhood of 0 in E. There is a continuous seminorm p such that
{x ∈ E : p(x) ≤ 1} ⊂ U. Let π_p : E → E_p be the canonical quotient map, where E_p is the completion of the space E_p := E/Ker p with the norm induced by p. By Proposition 1.4 the set π_p(A) is c'-compact and we just have proved that it is a pure compactoid in E_p^\sim, hence in E_p.

Since π_p(U) is open in E_p there exists a finite set F ⊂ π_p(A) such that π_p(A) ⊂ π_p(U) + co F. Choose a finite set F' ⊂ A such that π_p(F') = F. We then have π_p(A) ⊂ π_p(U + co F') and, as Ker π_p ⊂ U,

A ⊂ U + co F' + Ker π_p ⊂ U + co F'.

Remark.

The following statements are easy to prove.

(i) If the valuation of K is discrete the properties (α) - (ε) of Theorem 3.3 are equivalent to 'A is a compactoid'.

(ii) If K is locally compact the properties (α) - (ε) of Theorem 3.3 are equivalent to 'A is precompact'.
§ 4. C'-COMPACTNESS VERSUS C-COMPACTNESS

First we extend Theorem 3.3 to convex sets. For a subset X of a K-linear space, let c(X) be its convex hull.

THEOREM 4.1.

Let C be a convex subset of a locally convex space E over K. The following are equivalent.

(a) For each neighbourhood of 0 in E there exists a finite set F ⊂ C with C ⊂ U+c(F).

(b) If U is a covering of C by (convex) open sets then there exist \(n \in \mathbb{N} \) and \(U_1, \ldots, U_n \in U \) such that \(C \subset c(\bigcup_{i=1}^{n} U_i) \).

(c) Let \(U_1 \subset U_2 \subset \ldots \) be open convex sets covering C. Then \(C \subset U_n \) for some n.

(d) Each continuous convex function \(\phi : E \to \mathbb{R} \), restricted to C, has a maximum.

(e) For each continuous seminorm p and each \(a \in C \), \(\max \{ p(x-a) : x \in C \} \) exists.

Proof.

Straightforward.

A convex set \(C \subset E \) is \(c'\)-compact if it satisfies (a) - (e) of Theorem 4.1.

The following theorem explains the term 'complementary' in the title of this paper. (Compare Theorem 4.1.)

THEOREM 4.2.

Let C be a convex subset of a Banach space E over K. The following are
equivalent.

(β)' If C is a collection of closed convex sets in E such that $\cap C$

--- does not meet C then there exist $n \in \mathbb{N}$ and $C_1, \ldots, C_n \in C$ such

--- that $C \cap \cap_{i=1}^n C_n = \emptyset$.

(γ)' Let $C_1 \supset C_2 \supset \ldots$ be closed convex sets in E such that

--- $C \cap \cap_{n=1}^\infty C_n = \emptyset$. Then $C \cap C_n = \emptyset$ for some n.

(δ)' Each continuous convex function $\phi : E \to \mathbb{R}$, restricted to C, has

--- a minimum.

(ε)' C is c-compact.

Proof.

(ε)' \Rightarrow (β)' is just the definition of c-compactness ([4]), (β)' \Rightarrow (γ)'

--- is obvious. The proof of (γ)' \Rightarrow (δ)' runs similar to the one of

--- (γ) \Rightarrow (δ) of Theorem 3.3. To prove (δ)' \Rightarrow (ε)' it suffices, by [1]

--- Theorem 6.15 (ζ)' \Rightarrow (α), to show that C is spherically complete

--- relative to any norm $\| \|$ defining the topology of E. Thus, let

--- $B_1 \supset B_2 \supset \ldots$ be balls in C where

--- $B_n = \{ x \in C : \| x - c_n \| \leq r_n \}$ (n $\in \mathbb{N}$)

--- for some c_1, c_2, \ldots in C and $r_1 \geq r_2 \geq \ldots$. Let $(E^-, \|\|)$ be the

--- spherical completion ([2], Theorem 4.43) of $(E, \|\|)$ and consider

--- for each $n \in \mathbb{N}$

--- $B_n^- := \{ x \in E^- : \| x - c_n \| \leq r_n \}$

--- These B_n^- form a nested sequence of balls in E^- so there exists a

--- $z \in \cap B_n^-$. The function $\phi : x \mapsto \| z - x \| (x \in E)$ is convex and attains

--- a minimum on C, say in $c \in C$. As $\phi(c_n) \leq r_n$ (n $\in \mathbb{N}$) we have

--- $\phi(c) \leq \inf_{n} r_n$. For each $n \in \mathbb{N}$
\[\|c_{-n}\| \leq \max(\|c-z\|, \|z_{-n}\|) \leq \max(i_{c}(z), i_{c}(c)) \leq \varepsilon_{n}. \]

We see that \(c \in B_{n} \) for each \(n \) and it follows that \(A \) is spherically complete for \(\| \| \).

Remarks.

(1) Theorem 4.2 is only of interest if \(K \) is spherically complete ([4], (2.1)). I do not know whether the properties \((\beta)' - (\varepsilon)'\) are equivalent for a convex set \(C \) in a locally convex space \(E \). Of course one has some obvious implications.

(2) The notion of \(c \)-compactness may be viewed as a 'convexification' of the intersection property for closed sets in a compact space, whereas \(c' \)-compactness can be seen as a 'convexification' of the 'open covering' definition of compactness. (Theorem 4.1 (\(\beta \)), Theorem 4.2 (\(\beta' \)).)

(3) In a future paper [3] we shall discuss the relation between weak and strong \(c' \)-compactness.

REFERENCES

