A COMPLEMENTARY VARIANT OF C-COMPACTNESS
IN p-ADIC FUNCTIONAL ANALYSIS

by

W.H. SCHIKHOF

Report 8647
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A COMPLEMENTARY VARIANT OF C-COMPACTNESS

IN p-ADIC FUNCTIONAL ANALYSIS

by

W.H. Schikhof

Report 8647
October 1986

DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY
Toernooiveld
6525 ED Nijmegen
The Netherlands
A complementary variant of c-compactness

in p-adic Functional Analysis

by

W.H. Schikhof

ABSTRACT. An absolutely convex subset A of a locally convex space E over a nonarchimedean valued field is c'-compact in E if each continuous seminorm on E, restricted to A, has a maximum. Various descriptions of c'-compactness are given revealing its close analogy to c-compactness (§ 4).

PRELIMINARIES. Throughout let K be a nonarchimedean nontrivially valued field with valuation $|\cdot|$. For fundamentals on Banach spaces and locally convex spaces over K we refer to [2], [5], [4]. For a subset X of a locally convex space E over K we denote its absolutely convex hull by $\text{co } X$, its linear span by $[X]$. The closure of X is \overline{X}. Instead of $\overline{\text{co } X}$ we write $\text{co } X$. A convex set is an (additive) coset of an absolutely convex set.
§ 1. ELEMENTARY PROPERTIES

In § 1 let E be a locally convex space over K and let $A \subset E$ be absolutely convex. The next proposition will justify the use of the term 'c'-compact' rather than 'c'-compact in E.

PROPOSITION 1.1.

A is c'-compact in $[A]$ if and only if A is c'-compact in E.

Proof.

Only the 'if' part needs a proof. Let A be c'-compact in E, let p be a continuous seminorm on $[A]$. There is a continuous seminorm q on E such that $p \leq q$ on $[A]$. The formula

$$\bar{p}(x) = \inf_{y \in [A]} \max(p(y), q(x-y))$$

defines a continuous seminorm \bar{p} on E whose restriction to $[A]$ is p. It follows that $\max \bar{p} = \max p$ exists so that A is c'-compact in $[A]$.

PROPOSITION 1.2.

A is c'-compact if and only if \overline{A} is c'-compact.

Proof.

By the isosceles triangle principle

$$\{p(a) \in (0,\infty) : a \in A\} = \{p(a) \in (0,\infty) : a \in \overline{A}\}$$

for each continuous seminorm p.

We see that c'-compact sets need not be closed or complete. The next proposition furnishes examples of c'-compact sets.
PROPOSITION 1.3.

If $X \subset E$ is precompact then $\co X$ is c'-compact.

Proof.

Let p be a continuous seminorm on E. If $z \in \co X$ then there exist $x_1, \ldots, x_n \in X$ and $\lambda_1, \ldots, \lambda_n \in K$ with $|\lambda_i| \leq 1$ for each $i \in \{1, \ldots, n\}$ such that $z = \sum_{i=1}^{n} \lambda_i x_i$. Then

$$p(z) \leq \max_i p(\lambda_i x_i) \leq \max_i p(x_i).$$

It follows that $\sup_{\co X} p = \sup_{X} p$. We complete the proof by showing that \tilde{p} has a maximum on X. We may assume that $s := \sup_{X} p > 0$. Set

$$U := \{x \in E : p(x) < \frac{s}{2}\}.$$

By precompactness there exist $x_1, \ldots, x_n \in X$ such that

$$X \subset \bigcup_{i=1}^{n} (x_i + U).$$

For each $i \in \{1, \ldots, n\}$ we have either $p(x_i) < \frac{s}{2}$ (then $p < \frac{s}{2}$ on $x_i + U$) or $p(x_i) \geq \frac{s}{2}$ (then p is constant on $x_i + U$). Hence,

$$\sup_{X} p = \max_{i \in X} p(x_i) = \max_{X} p.$$

PROPOSITION 1.4.

Let F be a locally convex space over K, let $T : E \rightarrow F$ be a continuous linear map. If $A \subset E$ is c'-compact then so is TA.

Proof.

If p is a continuous seminorm on F then $p \circ T$ is a continuous seminorm on E.
Remark.

If K is spherically complete, $\{\lambda \in K : |\lambda| < 1\}$ is c-compact but not c'-compact if the valuation is dense. If K is not spherically complete, $\{\lambda \in K : |\lambda| \leq 1\}$ is c'-compact (and complete) but not c-compact.
§ 2. C'-COMPACTNESS IN BANACH SPACES

Throughout § 2, E is a Banach space over K with norm \(\| \cdot \| \), and except for Corollary 2.8 A is a c'-compact subset of E. Our first goal is to show that \([A]\) is of countable type (Proposition 2.3).

Lemma 2.1.

Let \(p \) be a continuous seminorm on E, not vanishing on A. Then every \(p \)-orthogonal set in

\[A_p := \{ x \in A : p(x) = \max_{A} p \} \]

is finite.

Proof.

We may assume \(\max p \neq 1 \). Let \(\{ e_i : i \in I \} \) be a maximal \(p \)-orthogonal set in \(A_p \). Suppose \(\exists N_1 \in I \); we derive a contradiction. \(p \) is a norm on \(D := [e_i : i \in I] \) and \(\{ e_i : i \in I \} \) is a \(p \)-orthonormal (algebraic) base for \(D \). Choose real numbers \(\rho_1, \rho_2, \ldots \) such that \(0 < \rho_1 < \rho_2 < \ldots \) and \(\lim_{n \to \infty} \rho_n = 1 \), and consider the seminorm \(q \) on \(D \) defined by the formula

\[q(\sum_{i} \lambda_i e_i) = \max_{i \in N} \max |\lambda_i| \rho_i \quad (\lambda_i \in K, \{ i : \lambda_i \neq 0 \} \text{ finite}). \]

As \(q \leq p \) on \(D \), \(q \) is continuous. Observe that \(q(e_i) < 1 \) for each \(i \in I \).

Set \(B := \text{co} \{ e_i : i \in I \} \). We have \(\sup_B q = 1 \), but \(q(b) < 1 \) for each \(b \in B \). The formula

\[\overline{q}(x) = \inf_{d \in D} \max(q(d), p(x-d)) \]

defines a continuous seminorm \(\overline{q} \) on E extending \(q \) for which \(\overline{q} \leq p \). We
shall arrive at the desired contradiction by showing that \(\overline{q} \) does not have a maximum on \(A \). As \(B \subset A \) we have

\[
1 = \sup_B q = \sup_B \overline{q} \leq \sup_A \overline{q} \leq \sup_A p = 1,
\]

whence

\[
\sup_A \overline{q} = 1.
\]

Now we shall prove that \(\overline{q}(a) < 1 \) for each \(a \in A \). If \(a \in A \setminus p \) then \(\overline{q}(a) \leq p(a) < 1 \) so assume \(a \in A_p \). Then \(a \) is not \(p \)-orthogonal to \(D \) and there exists a finite set \(F \subset I \) and a map \(i \mapsto \lambda_i \in K \) \((i \in F)\) such that

\[
p(a - \sum_{i \in F} \lambda_i e_i) < p(a) = 1
\]

By the isosceles triangle principle, \(p(\sum_{i \in F} \lambda_i e_i) = p(a) = 1 \);

\(p \)-orthonormality yields \(\max_i |\lambda_i| = 1 \). Therefore,

\[
q(\sum_{i \in F} \lambda_i e_i) \leq \max_i |\lambda_i| \cdot q(e_i) < 1
\]

leading to

\[
\max (q(\sum_{i \in F} \lambda_i e_i), p(a - \sum_{i \in F} \lambda_i e_i)) < 1.
\]

Using the definition of \(\overline{q} \) we arrive at \(\overline{q}(a) < 1 \).

COROLLARY 2.2.

Let \(p \) be a continuous seminorm on \(E \), not vanishing on \(A \). There is a finite dimensional subspace \(D \) of \(E \) such that for the quotient seminorm \(q \) defined by

\[
q(x) = \inf \{ p(x-d) : d \in D \}
\]

we have
\[\max q < \max p. \]

Proof.

Let \(\{e_1, \ldots, e_n\} \) be a maximal \(p \)-orthogonal set in \(A_p \) (Lemma 2.1) and set \(D := [e_1, \ldots, e_n] \). Suppose \(x \in A \) and \(q(x) = \max_p A \). Then \(x \in A_p \). For each \(d \in D \) we have

\[p(x - d) \geq q(x) = \max_p A \]

so that \(x \) is \(p \)-orthogonal to \([e_1, \ldots, e_n] \), a contradiction. Hence,

\[q(x) < \max p \text{ for each } x \in A. \]

PROPOSITION 2.3.

\([A] \) is of countable type.

Proof.

For each subspace \(D \) of countable type the formula

\[p_D(x) = \inf \{ \|x - d\| : d \in D \} \]

defines a continuous seminorm \(p_D \) on \(E \). We set

\[x_D := \max_{A} p_D \]

\[R = \{ x_D : D \text{ is a subspace of countable type} \}, \]

Then \(R \subset [0, \infty) \). We have (i), (ii) below.

(i) **If** \(t_1, t_2, \ldots \) **are in** \(R \) **then there exists a** \(t \in R \) **with** \(t \leq \inf t_n \).

Proof. Let \(t_n = x_{D_n} \) \((n \in \mathbb{N}) \) where each \(D_n \) is a subspace of countable type. Then \(D := [D_n : n \in \mathbb{N}] \) is of countable type. Obviously, \(p_D \leq p_{D_n} \) for each \(n \in \mathbb{N} \), so \(t := x_D \leq \inf x_{D_n} = \inf t_n \).

(ii) **If** \(t \in R, t > 0 \) **then there exists an** \(s \in R \) **with** \(s < t \).
Proof. Let \(t = r_D \) where \(D \) is a subspace of countable type. By Corollary 2.2 there is a finite dimensional space \(F \subset E \) such that

\[
\max_A q < \max_A p_D = r_D
\]

where

\[
q(x) = \inf \{ p_D(x-y) : y \in F \} \quad (x \in E)
\]

It is easily seen that

\[
q(x) = \inf \{ \|x-z\| : z \in F+D \} \quad (x \in E)
\]

i.e. \(q = p_{F+D} \). Now \(F+D \) is of countable type and (ii) is proved with \(s := r_{D+F} \).

From (i), (ii) above we obtain \(0 \in R \). So there exists a subspace \(D \) of countable type with \(r_D = 0 \) i.e. \(p_D = 0 \) on \(A \) implying \([A] \subset D \). It follows that \([A] \) is of countable type.

Our next step is to prove that \(A \) is a compactoid (Corollary 2.6).

Lemma 2.4.

Every \(\| \|_{-} \) -orthogonal sequence in \(A \) tends to 0.

Proof.

We may assume \(E = [A] \). Then \(E \) is of countable type (Proposition 2.3). Suppose we had an orthogonal sequence \(e_1, e_2, \ldots \) in \(A \) with

\[
s := \inf \| e_n \| > 0.
\]

Set \(D := [e_1, e_2, \ldots] \). By [2], Theorem 3.16 (v) there exists a continuous linear projection \(P : E \to D \). By Proposition 1.4 \(PA \) is \(c' \)-compact. We have \(e_n \in PA \) for each \(n \in N \) and \([PA] = D \).

We therefore may also assume that \(E = D \) i.e. that \([A] = [e_1, e_2, \ldots] \).
For each \(n \in \mathbb{N} \) set

\[
D_n := [e_1, \ldots, e_n]
\]

\[
p_n(x) = \inf \{ \|x-d\| : d \in D_n \} \quad (x \in E)
\]

Each \(p_n \) is a continuous seminorm, \(p_1 \geq p_2 \geq \ldots \) and by assumption, \(\lim_{n \to \infty} p_n(x) = 0 \) for each \(x \in [e_1, e_2, \ldots] = E \). By orthogonality,

\[
p_n(e_n) = \|e_n\| \geq s \quad \text{for each } n \in \mathbb{N}.
\]

Let

\[
s_n := \max_{A} \max_{n} p_n \quad (n \in \mathbb{N})
\]

Then \(s_n \geq s \) for each \(n \). Choose real numbers \(\rho_1, \rho_2, \ldots \) such that

\[
0 < \rho_1 < \rho_2 < \ldots, \lim_{n \to \infty} \rho_n = 1.
\]

The formula

\[
p(x) = \sup_{n \in \mathbb{N}} s_n^{-1} p_n(x) \rho_n \quad (x \in E)
\]

defines a seminorm on \(E \). For each \(x \in E \) we have

\[
s_n^{-1} p_n(x) \rho_n \leq s_n^{-1} p_1(x) = s_n^{-1}\|x\| \quad (n \in \mathbb{N})
\]

so \(p \) is continuous. For each \(n \in \mathbb{N} \) we have

\[
\max_{x \in A} s_n^{-1} p_n(x) \rho_n = \rho_n
\]

yielding \(\sup_{A} p = 1 \).

By \(c' \)-compactness there is an \(a \in A \) with \(p(a) = 1 \). As, for each \(n \),

\[
s_n^{-1} p_n(a) \rho_n \leq \rho_n \neq 1 \quad \text{there must be infinitely many } n \in \mathbb{N} \text{ for which}
\]

\[
s_n^{-1} p_n(a) \rho_n \geq \frac{1}{2}. \quad \text{Then also } p_n(a) \rho_n \geq \frac{1}{2} \text{ for infinitely many } n \text{ which}
\]

is in conflict to \(\lim_{n \to \infty} p_n(a) = 0 \).

PROPOSITION 2.5.

Let \(E \) be of countable type. For each \(s \in (0,1) \) there exist a norm
on E such that $s \|x\| < \|x\|$ for all $x \in E$ and for which $(E, \|\cdot\|')$ has an orthogonal base.

Proof.

The statement is an easy consequence of [2], Theorem 3.16 (ii).

COROLLARY 2.6.

A is a compactoid.

Proof.

We may assume that E is of countable type. By Proposition 2.5 we may even assume that E has an orthogonal base. Now apply Lemma 2.4 and [2], Theorem 4.38, $(n) \Rightarrow (a)$.

THEOREM 2.7.

For each $s \in (0,1)$ there exists an s-orthogonal sequence e_1, e_2, \ldots in A for which $\lim_{n \to \infty} e_n = 0$ such that

$$\text{co} \{e_1, e_2, \ldots\} \subseteq A \subseteq \overline{\text{co}} \{e_1, e_2, \ldots\}.$$

If, in addition, $[A]$ has an orthogonal base then the sequence e_1, e_2, \ldots can be chosen to be orthogonal.

Proof.

We may assume that $[A] = E$. By Proposition 2.5 it suffices to prove only the second statement. We shall construct an orthogonal sequence e_1, e_2, \ldots in A such that for each $a \in A$ and $n \in \mathbb{N}$ there exists a $b \in \text{co} \{e_1, \ldots, e_n\}$ with $\|a - b\| \leq \|e_{n+1}\|$. (This proves the Theorem since, by Lemma 2.4, $\lim_{n \to \infty} \|e_n\| = 0$.) There is an $e_1 \in A$ with $\|e_1\| = \max \{\|x\| : x \in A\}$. By [2], Lemma 4.35, E is the orthogonal
direct sum of K_{e_1} and some subspace D_1. For each $a \in A$, $a = \lambda_1 e_1 + d_1$ $(\lambda_1 \in K_1$, $d_1 \in D)$, we have

$$\|a\| = \max (\|\lambda_1 e_1\|, \|d_1\|) \geq \|\lambda_1 e_1\| = \|\lambda_1\| e_1$$

so that $|\lambda_1| \leq 1$ (if $e_1 = 0$, choose $\lambda_1 = 0$). It follows that $d_1 \in D_1 \cap A$. Therefore, A decomposes into an orthogonal sum of K_{e_1} and $D_1 \cap A$, so $D_1 \cap A$ is c'-compact by Proposition 1.4. There exists an $e_2 \in D_1 \cap A$ with $\|e_2\| = \max \{\|x\| : x \in D_1 \cap A\}$. Then

$$\|a - \lambda_1 e_1\| \leq \|e_2\|.$$

In its turn, D_1 decomposes into an orthogonal sum of K_{e_2} and a space D_2 such that $D_2 \cap A$ is c'-compact. Let $e_3 \in D_2 \cap A$ with $\|e_3\| = \max \{\|x\| : x \in D_2 \cap A\}$. Then $\|a - \lambda_1 e_1 - \lambda_2 e_2\| \leq \|e_3\|$ for some $\lambda_2 \in K$, $|\lambda_2| \leq 1$, etc.

COROLLARY 2.8. Let A be an absolutely convex subset of a K-Banach space. The following statements (a)-(δ) are equivalent.

(a) A is c'-compact.

(β) There exists a compact set X with $\text{co} X \subset A \subset \text{co} X$.

(γ) There exists a sequence e_1, e_2, \ldots in A with $\lim_{n \to \infty} e_n = 0$ such that $\text{co} \{e_1, e_2, \ldots\} \subset A \subset \text{co} \{e_1, e_2, \ldots\}$.

(δ) For each $s \in (0,1)$ there exists an s-orthogonal sequence e_1, e_2, \ldots in A for which $\text{co} \{e_1, e_2, \ldots\} \subset A \subset \text{co} \{e_1, e_2, \ldots\}$.

If K is spherically complete, (a)-(δ) are equivalent to:

(c) There exists an orthogonal sequence e_1, e_2, \ldots in A such that $\text{co} \{e_1, e_2, \ldots\} \subset A \subset \text{co} \{e_1, e_2, \ldots\}$.

Proof.

(c) \Rightarrow (δ) \Rightarrow (γ) \Rightarrow (β) are obvious. (β) \Rightarrow (α) follows from Propositions 1,2 and 1.3. The first part of Theorem 2.7 yields (α) \Rightarrow (δ). If K is spherically complete each Banach space of countable type has an
orthogonal base ([2], Lemma 5.5) and \((a) \Rightarrow (c)\) is a consequence of the second part of Theorem 2.7.
§ 3. OTHER CHARACTERIZATIONS OF C'-COMPACTNESS

In this section there is no need to restrict ourselves to Banach spaces so in § 3, let E be a locally convex space over K.

DEFINITION 3.1.

An absolutely convex subset $A \subseteq E$ is a pure compactoid if for each neighbourhood U of 0 there exist a finite set $F \subseteq A$ such that $A \subseteq U + \text{co} F$.

(The difference with the definition of 'ordinary' compactoidity ([2], p. 134) lies in the fact that we require $F \subseteq A$ rather than $F \subseteq E$.)

DEFINITION 3.2.

A function $\phi : E \to \mathbb{R}$ is convex if $n \in \mathbb{N}$, $x_1, \ldots, x_n \in E$, $\lambda_1, \ldots, \lambda_n \in K$, $|\lambda_i| \leq 1$ for each i, $\sum \lambda_i = 1$ imply

$$
\phi\left(\sum \lambda_i x_i\right) \leq \max_{i=1}^n |\lambda_i| \phi(x_i).
$$

(Example: $x \mapsto p(x-a)$ for $a \in E$ and a seminorm p.)

THEOREM 3.3.

For an absolutely convex $A \subseteq E$ the following statements are equivalent.

(a) A is a pure compactoid.

(b) If U is a covering of A by (convex) open sets then there exist $n \in \mathbb{N}$ and $U_1, \ldots, U_n \in U$ such that $A \subseteq \text{co} \left(\bigcup_{i=1}^n U_i \right)$.

(c) Let $U_1 \subseteq U_2 \subseteq \ldots$ be open convex sets covering A. Then $A \subseteq U_n$ for some n.

(d) Each continuous convex function $\phi : E \to \mathbb{R}$, restricted to A, has a maximum.
(e) A is c'-compact.

Proof.

(a) ⇒ (β). There is a $U_0 \in U$ with $0 \in U_0$. There exist $x_1, \ldots, x_m \in A$ such that $A \subseteq U_0 + \text{co} \{x_1, \ldots, x_m\}$. Let $U_1, \ldots, U_m \in U$ be with $x_i \in U_i$ for each $i \in \{1, \ldots, m\}$. Then $A \subseteq U_0 + \text{co} \bigcup_{i=1}^{m} U_i \subseteq \text{co} \bigcup_{i=0}^{m} U_i$. To prove

$$0 \nsucceq 1 - 0 \nsucceq \cdots \nsucceq 0$$

we may assume that $0 \in U_1$ so that all U_i are absolutely convex. By (β) there exists a finite set $F \subseteq N$ such that

$$A \subseteq \text{co} \bigcup_{i \in F} U_i.$$

(γ) ⇒ (β). Let $s = \sup \{\phi(x) : x \in A\}$ (possibly $s = \infty$). Suppose s is not a value of $\phi|A$. Choose $s_1 < s_2 < \cdots$, $\lim_{n \to \infty} s_n = s$ and set

$$U_n := \{x \in E : \phi(x) < s_n\} \quad (n \in N)$$

Each U_n is open. As ϕ is convex, U_n is convex. Further we have

$$U_1 \subseteq U_2 \subseteq \cdots$$

and, by assumption, the U_n cover A. By (γ), $A \subseteq U_n$ for some n implying $\phi < s_n$ on A, a contradiction.

(δ) ⇒ (ε) is trivial.

Finally we prove (ε) ⇒ (α). First, assume that E is a Banach space.

From Corollary 2.8 we obtain a compact set $X \subseteq E$ with $\text{co} X \subseteq A \subseteq \overline{\text{co} X}$. Let U be an absolutely convex neighbourhood of 0 in E. By compactness there exist $x_1, \ldots, x_n \in X$ such that $X \subseteq U \left(\bigcup_{i=1}^{n} x_i + U\right)$. Then

$$\text{co} X \subseteq U + \text{co} \{x_1, \ldots, x_n\}.$$

As the latter set is an open additive subgroup of E it is also closed and we have

$$A \subseteq \overline{\text{co} X} \subseteq U + \text{co} \{x_1, \ldots, x_n\}.$$

Now let E be a locally convex space, and let U be an absolutely convex neighbourhood of 0 in E. There is a continuous seminorm p such that
\[\{ x \in E : p(x) \leq 1 \} \subset U. \text{ Let } \pi_p : E \to E_p^\sim \text{ be the canonical quotient map,} \]

where \(E_p^\sim \) is the completion of the space \(E_p := E/\text{Ker}p \) with the norm induced by \(p \). By Proposition 1.4 the set \(\pi_p(A) \) is c'-'compact and we just have proved that it is a pure compactoid in \(E_p^\sim \), hence in \(E_p \).

Since \(\pi_p(U) \) is open in \(E_p \) there exists a finite set \(F \subset \pi_p(A) \) such that \(\pi_p(A) \subset \pi_p(U+\text{co } F) \). Choose a finite set \(F' \subset A \) such that \(\pi_p(F') = F \). We then have \(\pi_p(A) \subset \pi_p(U+\text{co } F') \) and, as \(\text{Ker } \pi_p \subset U \),

\[A \subset U+\text{co } F'+\text{Ker } \pi_p \subset U+\text{co } F'. \]

Remark.

The following statements are easy to prove.

(i) If the valuation of \(K \) is discrete the properties (a) - (e) of Theorem 3.3 are equivalent to '\(A \) is a compactoid'.

(ii) If \(K \) is locally compact the properties (a) - (e) of Theorem 3.3 are equivalent to '\(A \) is precompact'.

§ 4. C'-COMPACTNESS VERSUS C-COMPACTNESS

First we extend Theorem 3.3 to convex sets. For a subset X of a K-linear space, let $c(X)$ be its convex hull.

THEOREM 4.1.

Let C be a convex subset of a locally convex space E over K. The following are equivalent.

(a) For each neighbourhood of 0 in E there exists a finite set $F \subseteq C$ with $C \subseteq \bigcup c(F)$.

(b) If U is a covering of C by (convex) open sets then there exist $n \in \mathbb{N}$ and $U_1, \ldots, U_n \in U$ such that $C \subseteq c(\bigcup_{i=1}^n U_i)$.

(c) Let $U_1 \subseteq U_2 \subseteq \cdots$ be open convex sets covering C. Then $C \subseteq U_n$ for some n.

(d) Each continuous convex function $\phi : E \to \mathbb{R}$, restricted to C, has a maximum.

(e) For each continuous seminorm p and each $a \in C$, $\max\{p(x-a) : x \in C\}$ exists.

Proof.

Straightforward.

A convex set $C \subseteq E$ is C'-compact if it satisfies (a) - (e) of Theorem 4.1.

The following theorem explains the term 'complementary' in the title of this paper. (Compare Theorem 4.1.)

THEOREM 4.2.

Let C be a convex subset of a Banach space E over K. The following are
equivalent.

(*)' If C is a collection of closed convex sets in E such that $\cap C$ does not meet C then there exist $n \in \mathbb{N}$ and $C_1, \ldots, C_n \in C$ such that $C \cap \cap_{i=1}^n C_i = \emptyset$.

\(\gamma\)' Let $C_1 \supset C_2 \supset \ldots$ be closed convex sets in E such that $C \cap \cap_{n=1}^\infty C_n = \emptyset$. Then $C \cap C_n = \emptyset$ for some n.

\(\delta\)' Each continuous convex function $\phi : E \to \mathbb{R}$, restricted to C, has a minimum.

\(e\)' C is c-compact.

Proof.

\(e\)' \Rightarrow \(\beta\)' is just the definition of c-compactness ([4]), \(\beta\)' \Rightarrow \(\gamma\)' is obvious. The proof of \(\gamma\)' \Rightarrow \(\delta\)' runs similar to the one of \(\gamma\) \Rightarrow \(\delta\) of Theorem 3.3. To prove \(\delta\)' \Rightarrow \(e\)' it suffices, by [1] Theorem 6.15 \(\zeta\) \Rightarrow \(a\), to show that C is spherically complete relative to any norm $\| \| \|$ defining the topology of E. Thus, let $B_1 \supset B_2 \supset \ldots$ be balls in C where

$$B_n = \{ x \in C : \| x - c_n \| \leq r_n \}$$

for some c_1, c_2, \ldots in C and $r_1 \geq r_2 \geq \ldots$. Let $(E^-, \| \|)$ be the spherical completion ([2], Theorem 4.43) of $(E, \| \|)$ and consider for each $n \in \mathbb{N}$

$$B_n^- := \{ x \in E^- : \| x - c_n \| \leq r_n \}$$

These B_n^- form a nested sequence of balls in E^- so there exists a $z \in \cap_n B_n^-$. The function $\phi : x \mapsto \| z - x \|$ (x \in E) is convex and attains a minimum on C, say in $c \in C$. As $\phi(c_n) \leq r_n$ (n \in \mathbb{N}) we have

$\phi(c) \leq \inf_n r_n$. For each $n \in \mathbb{N}$
\[\| c - c_n \| \leq \max(\| c - z \|, \| z - c_n \|) \leq \max(\phi(c), \phi(c_n)) \leq r_n. \]

We see that \(c \in B_n \) for each \(n \) and it follows that \(A \) is spherically complete for \(\| \cdot \| \).

Remarks.

1. Theorem 4.2 is only of interest if \(K \) is spherically complete ([4], (2.1)). I do not know whether the properties (\(\beta \)' - (\(\varepsilon \)') are equivalent for a convex set \(C \) in a locally convex space \(E \). (Of course one has some obvious implications.)

2. The notion of \(c \)-compactness may be viewed as a 'convexification' of the intersection property for closed sets in a compact space, whereas \(c' \)-compactness can be seen as a 'convexification' of the 'open covering' definition of compactness. (Theorem 4.1 (\(\beta \)), Theorem 4.2 (\(\beta \)').

3. In a future paper [3] we shall discuss the relation between weak and strong \(c' \)-compactness.

REFERENCES

