C°-ANTIDERIVATIVES OF \(p \)-ADIC \(C^\infty \)-FUNCTIONS

by Wilhelm H. SCHIKHOF (*)

[Universiteit Nijmegen]

The purpose of this note is to prove the following theorem (for the definition of a \(C^\infty \)-function see below).

THEOREM. Let \(K \) be a complete non-archimedean valued field with characteristic zero. Let \(X \) be a nonempty subset of \(K \) without isolated points and let \(f : X \to K \) be a \(C^\infty \)-function. Then there is a \(C^\infty \)-function \(X \to K \) whose derivative is \(f \).

First we quote some definitions and statements from [1] which are needed for the proof. Let \(K \) and \(X \) be as above.

Definition ([1], p. 8 175). Let \(f : X \to K \). \(f \) is differentiable if its derivative \(a \mapsto f'(a) := \lim_{x \to a} (f(x) - f(a)) \) \((a \in X)\) exists. For \(n \in \mathbb{N} \), let \(\nabla^n X := \{(y_1, y_2, \ldots, y_n) \in X^n; \ y_i \neq y_j \text{ whenever } i \neq j \} \). The difference quotients \(\nabla_n f : \nabla^{n+1} X \to K \) \((n \in \{0, 1, 2, \ldots\})\) are given inductively by

\[\nabla_0 f := f \]

and

\[\nabla_n f(y_1, y_2, \ldots, y_{n+1}) := (y_1 - y_2)^{-1}(\nabla_{n-1} f(y_1, y_3, \ldots, y_{n-1}) - \nabla_{n-1} f(y_2, y_3, \ldots, y_{n+1})) \]

\((y_1, y_2, \ldots, y_{n+1}) \in \nabla^{n+1} X, \ n \in \mathbb{N} \).

\(f \) is a \(C^n \)-function \((f \in C^n(X \to K))\) if \(\nabla_n f \) can (uniquely) be extended to a continuous function \(\nabla_n f : X^{n+1} \to K \).

\(f \) is a \(C^\infty \)-function if \(f \in C^\infty(X \to K) := \bigcap_{n=0}^{\infty} C^n(X \to K) \).

PROPOSITION ([1], p. 78, 96, 37, 116 and 123). Let \(f : X \to K \). For each \(n \in \mathbb{N} \) the function \(\nabla_n f \) is symmetric, \(C^{n+1}(X \to K) \supset C^n(X \to K) \), if \(f \in C^0(X \to K) \) then \(f' \in C^{n+1}(X \to K) \) and \(\nabla_n f(a, a, \ldots, a) = f'(a)/n! \) for each \(a \in X \).

(*) Wilhelm H. SCHIKHOF, Mathematisch Instituut, Katholieke Universiteit, Toornooiveld, NIJMEGEN (Pays-Bas).
If \(\lim_{x \to y} a(x - y)^n (f(x) - f(y)) = 0 \) for each \(a \in \mathbb{R} \) then \(f \in \mathcal{C}^n(X \to \mathbb{R}) \) and \(f' = 0 \). \((\text{locally})\) analytic functions are \(\mathcal{C}^\infty \)-functions.

Definition ([1], p. 45 and 46). - Let \(0 < \rho < 1 \). For each \(n \in \mathbb{N} \), let \(R_n \) be a full set of representatives in \(X \) of the equivalence relation given by

\[
|x - y| < \rho^n \quad \text{for} \quad (x, y \in X)
\]

such that \(R_1 \subset R_2 \subset \ldots \). Choose \(x_0 \in R_1 \). For each \(x \in X \), \(n \in \mathbb{N} \), let \(x_n \) be determined by the conditions \(x_n \in R_n \), \(|x - x_n| < \rho^n \).

PROPOSITION ([1] Th. 11.2). - Let \(n \in \mathbb{N} \), \(f \in \mathcal{C}^{n-1}(X \to \mathbb{R}) \). Set

\[
P_n f(x) := \sum_{m=0}^{\infty} \frac{f^{(j)}(x)^{m}}{(j + 1)!} (x_{m+1} - x_m)^{j+1} \quad (x \in X).
\]

Then \(P_n f \) is a \(\mathcal{C}^n \)-antiderivative of \(f \).

Proof of the theorem. - We shall use the terminology of above.

Let \(j \in \{0, 1, 2, \ldots\} \). \(f^{(j)} \) is continuous hence locally bounded and there exists a partition of \(X \) into "closed" balls \(B_{ji} \) (relative to \(X \)) of radius \(\rho < 1 \) where \(i \) runs through some indexing set \(I_j \) such that \(f^{(j)} \) is bounded on each \(B_{ji} \). For each \(i \in I_j \), we can choose \(m_{ji} \in \mathbb{N} \) such that (recall that \(0 < \rho < 1 \))

\[
(*) \quad \rho^{m_{ji}} \leq d(B_{ji}) < 1, \quad |f^{(j)}(x)| \rho^{m_{ji}} < |(j + 1)!| \rho^j \quad (x \in B_{ji}).
\]

Define \(F_j : X \to \mathbb{R} \) as follows. If \(x \in X \), then \(x \in B_{ji} \) for precisely one \(i \in I_j \). Set

\[
F_j(x) := \sum_{m=0}^{\infty} f^{(j)}(x_m) (x_{m+1} - x_m)^{j+1}.
\]

We shall prove that \(F := \sum_{j=0}^{\infty} F_j \) is a \(\mathcal{C}^\infty \)-antiderivative of \(f \) by means of the following steps.

(i) Each \(F_j \) is well defined.

(ii) For each \(j \in \{0, 1, 2, \ldots\} \) and for all \(i \in I_j \),

\[
|F_j(x)| \leq \rho^{m_{ji}} \quad (x \in B_{ji})
\]

so that \(F \) is well defined.

(iii) \(\sum_{j=0}^{\infty} F_j \) is a \(\mathcal{C}^{-n} \)-antiderivative of \(f \) for each \(n \in \mathbb{N} \).

(iv) For each \(n \), \(\sum_{j=n+1}^{\infty} F_j \) is a \(\mathcal{C}^n \)-function with zero derivative.

Proof of (i). - \(f^{(j)} \) is bounded on \(B_{ji} \), and \(\lim_{m \to \infty} (x_{m+1} - x_m) = 0 \).

Proof of (ii). - Let \(x \in B_{ji} \) and \(m > m_{ji} \). Then by (*) ,

\[
|x_{m+1} - x_m| \leq |x - x_m| \leq \rho^m \leq \rho^{m_{ji}} \leq d(B_{ji}).
\]
from which it follows that \(x_m \in B_{ji} \) and \(|x_{m+1} - x_m| \leq \rho_{ji}^m \). Applying the second formula of (*) with \(x \) replaced by \(x_m \), we get

\[
\frac{f(j)(x_m)}{\rho_{ji}^{j+1}} |x_{m+1} - x_m|^j \leq \rho_{ji}^m |x_{m+1} - x_m|^j = \rho_{ji}^{m+j},
\]

and (ii) is proved.

Proof of (iii). - The function \(F_j \) and \(x \to \sum_{m=0}^{\infty} f(j)(x_m)(x_{m+1} - x_m)^{j+1} / (j+1) \) differ (on each \(B_{ji} \), hence globally) by a locally constant function. Summation from \(j = 0 \) to \(j = n \) shows that \(\sum_{j=0}^{n} F_j - F_{n+1} \) is locally constant. By the second proposition

\[
\sum_{j=0}^{n} F_j \in C^n(X \to K) \quad \text{and} \quad (\sum_{j=0}^{n} F_j)' = f.
\]

Proof of (iv). - Set \(H := \sum_{j=n+1}^{\infty} F_j \). We shall prove that \(|H(x) - H(y)| \leq |x - y|^{n+1} \) for all \(x, y \in X \), which, by the first proposition implies (iv). To obtain the inequality if it suffices to prove

\[
(\ast\ast) \quad |F_j(x) - F_j(y)| \leq |x - y|^{n+1} \quad (x, y \in X) \quad \text{for each} \quad j \geq n + 1.
\]

We consider several cases.

(a) \(x \in B_{ji}, \; y \in B_{ji'}, \) where \(i \neq i' \). Then by (*),

\[
|x - y| \geq d(B_{ji}) \geq \rho_{ji}^m \quad \text{so that} \quad |x - y|^{n+1} \geq \rho_{ji}^{m(n+1)}.
\]

By (ii),

\[
|F_j(x)| \leq \rho_{ji}^{j|ji|+j}.
\]

As \(jm_{ji} + j \geq (n + 1) m_{ji} \), we have \(|F_j(x)| \leq |x - y|^{n+1} \). By symmetry, \(|F_j(y)| \leq |x - y|^{n+1} \), and \((\ast\ast) \) follows.

(b) There is \(i \) such that \(x, y \in B_{ji} \). We may assume \(x \neq y \), there exists an \(s \in \mathbb{N} \cup \{0\} \) such that (recall that \(d(B_{ji}) < 1 \))

\[
\rho^{s+1} \leq |x - y| < \rho^s.
\]

Then \(|x - y|^{n+1} \geq \rho^{(s+1)(n+1)} \). Consider two subcases.

(b.1) \(s < m_{ji} \). Then by (ii),

\[
|F_j(x)| \leq \rho_{ji}^{j|m_{ji}|+j}
\]

and since \(jm_{ji} + j \geq (n + 1)(s + 1) + j \geq (s + 1)(n + 1) \), we have \(|F_j(x)| \leq |x - y|^{n+1} \). By symmetry \(|F_j(y)| \leq |x - y|^{n+1} \) and \((\ast\ast) \) follows.

(b.2) \(s \geq m_{ji} \). Then since \(x_0 = y_0, \cdots, x_s = y_s \), we have, for \(m = m_{ji}, \cdots, s-1, \)
\[
\frac{f^{(j)}(x^*)}{(j+1)!} (x^*_{m+1} - x^*_m)^{j+1} = \frac{f^{(j)}(y^*)}{(j+1)!} (y^*_{m+1} - y^*_m)^{j+1}
\]

so that

\[
F_j(x) - F_j(y) = \sum_{m \geq s} \frac{f^{(j)}(x^*_m)}{(j+1)!} (x^*_{m+1} - x^*_m)^{j+1} - \sum_{m \geq s} \frac{f^{(j)}(y^*_m)}{(j+1)!} (y^*_{m+1} - y^*_m)^{j+1}.
\]

If \(m \geq s \), we have by (\(*)\) (observe that \(x^*_m \in B_{j+1} \))

\[
\left| \frac{f^{(j)}(x^*_m)}{(j+1)!} (x^*_{m+1} - x^*_m)^{j+1} \right| \leq \rho^{j-m_j + m(j+1)}
\]

and we find \(|F_j(x) - F_j(y)| \leq \rho^{j-m_j + m(j+1)} \). Using the fact that \(j \geq n + 1 \) and our assumption \(s \geq m_j \), we obtain

\[
j - m_j + s(j + 1) = (s + 1) j + s - m_j \geq (s + 1)(n + 1).
\]

By consequence

\[
|F_j(x) - F_j(y)| \leq \rho^{(s+1)(n+1)} \leq |x - y|^{n+1}
\]

which finishes the proof.

Remark. - The above construction does not give us a linear antiderivation map \(C^\infty(X \to K) \to C^\infty(X \to K) \), and it is somewhat doubtful whether there exists a linear antiderivation map \(P : C^\infty(X \to K) \to C^\infty(X \to K) \) that is continuous with respect to a natural locally convex topology ([1], p. 119) on \(C^\infty(X \to K) \).

REFERENCE