NON-ARCHIMEDEAN MONOTONE FUNCTIONS

by Wilhem H. SCHIKHOF (*)
[Kath. Univ., Nijmegen]

Introduction.

In the sequel, K is a non-archimedean, non-trivially valued field, that is complete under the metric induced by the valuation. The residue class field of K is denoted by k. X will always be a closed, non empty subset of K without isolated points (except in 2.2, if you want).

Since K admits no ordering in the usual sense it is not possible to define monotone functions $X \to K$ just by taking over the classical definitions. Thus, our procedure will be to try and find statements for functions $\mathbb{R} \to \mathbb{R}$ equivalent to monotony, and formulated in terms that are translatable to K. This way we will obtain several definitions of "$f : X \to K$ is monotone", that are, although not equivalent, closely related.

The connections between these various definitions and the properties of the non-archimedean monotone functions can be put together to form a little theory which is interesting in its own right, but of which the relations to the other parts of p-adic analysis are yet not very tight.

1. Monotone functions.

For a function $f : \mathbb{R} \to \mathbb{R}$ the following conditions are equivalent:

(a) f is monotone (in the non-strict sense),

(b) If $C \subset \mathbb{R}$ is convex then $f^{-1}(C)$ is convex,

(c) If x is between y, z then $f(x)$ is between $f(y)$ and $f(z)$.

Also, the following conditions are equivalent:

(a) f is strictly monotone,

(b) f is injective. If $C \subset \mathbb{R}$ is convex then $f(C)$ is relatively convex in $f(\mathbb{R})$,

(c) If $f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z.

Let $x, y \in K$. Then the smallest ball that contains x, y is denoted by $[x, y]$. $z \in K$ is between x and y if $z \in [x, y]$. (If $z \notin [x, y]$, we

(*) Texte reçu le 12 mars 1979.
call \(x, y \) at the same side of \(z \). A subset \(C \subseteq K \) is called convex if \(x, y \in C, z \in [x, y] \) implies \(z \in C \). Each convex subset of \(K \) can be written in at least one of the following forms

\[
\{ x : |x - a| < r \}, \{ x : |x - a| \leq r \}
\]

for some \(a \in K, r \in (0, \infty) \).

Let \(Z \subseteq Y \subseteq K \). Then \(Z \) is called convex in \(Y \) if \(Z = C \cap Y \), where \(C \) is convex.

With all these definitions we have the following theorem.

Theorem 1.1. Let \(f : X \rightarrow K \). Then the following conditions are equivalent:

1. If \(x, y, z \in X \), \(x \) is between \(y \) and \(z \) then \(f(x) \) is between \(f(y) \) and \(f(z) \),
2. If \(C \subseteq K \) is convex, then \(f^{-1}(C) \) is convex in \(X \).

We denote the collection of those \(f : X \rightarrow K \) satisfying (1) or (2) by \(M_b(x) \), i.e., \(f \in M_b(X) \) if, and only if, for each \(x, y, z \in X \),

\[
|x - y| \leq |y - z| \implies |f(x) - f(y)| \leq |f(y) - f(z)| .
\]

Isometries are in \(M_b \) (viz. exp), but also non trivial locally constant functions (e.g., choose a center in each ball of radius \(r > 0 \), and let \(f \) be the map assigning to \(x \in X \) the center of the ball of radius \(r \) to which \(x \) belongs. Then \(f \in M_b(X) \)).

Theorem 1.2. Let \(f : X \rightarrow K \). Then the following conditions are equivalent

1. If \(x, y, z \in X \), \(f(x) \) is between \(f(y) \) and \(f(z) \) then \(x \) is between \(y \) and \(z \),
2. If \(C \subseteq X \) is convex in \(X \) then \(f(C) \) is convex in \(f(X) \). \(f \) is injective.

We denote the collection of those \(f : X \rightarrow K \) satisfying (1') or (2') by \(M_s(X) \), i.e., \(f \in M_s(X) \) if, and only if, for each \(x, y, z \in X \),

\[
|x - y| < |y - z| \implies |f(x) - f(y)| < |f(y) - f(z)| .
\]

The classical situations suggests the question as to wether \(M_s(X) \subseteq M_b(X) \) and also wether \(f \in M_b(X) \), \(f \) injective implies \(f \in M_s(X) \). In general, both statements are false, but we do have the following:

Theorem 1.3. \(f \in M_s(X) \implies f^{-1} \in M_b(f(X)) \). \(f \in M_b(X) \), \(f \) injective implies \(f^{-1} \in M_s(f(X)) \). If \(k \) is finite and \(X \) is convex, then an injective \(M_b \)-function is in \(M_s(X) \).
So we are led to define \(M_{ba}(X) := M_b(X) \cap M_s(X) \) as being the more or less natural translation of "the space of the strictly monotone functions".

The following theorem concerns continuity of monotone functions. For a function \(f: X \to K \), we define its oscillation function, \(\omega_x \), in the usual way:

\[
\omega_x(a) := \lim_{n \to \infty} \sup \{|f(x) - f(y)| : |x - a| \leq \frac{1}{n}, |y - a| \leq \frac{1}{n}\}
\]

\[
= \lim_{n \to \infty} \sup \{|f(x) - f(a)| : |x - a| \leq \frac{1}{n}\} \quad (a \in X).
\]

\(f \) is continuous at \(a \) if, and only if, \(\omega_x(a) = 0 \).

Theorem 1.4. Let \(f \) be either in \(M_b(X) \) or in \(M_s(X) \). Then

(i) \(\omega_x(a) = \inf_{y \neq a} |f(z) - f(a)| \quad (a \in X) \)

(ii) \(f \) is bounded on compact subsets of \(X \),

(iii) For each \(a \in X \) we have the following alternative. Either \(f \) is continuous at \(a \), or for each sequence \(x_1, x_2, \ldots \) \((x_n \neq a) \) converging to \(a \), the sequence \(f(x_1), f(x_2), \ldots \) is bounded and has no convergent subsequence.

Let \(g \in M_b(X) \). If \(Y \subset X \) is spherically complete, then so is \(g(Y) \).

Let \(h \in M_s(X) \). If \(Z \subset h(X) \) is spherically complete, then so is \(h^{-1}(Z) \).

Proof (sketch). If \(f \in M_b(X) \cup M_s(X) \), then:

\[
|x - y| < |y - z| \implies |f(x) - f(y)| \leq |f(y) - f(z)|.
\]

So \(f \) is locally bounded, and (ii) follows. Of (i), only the \(\leq \) part is interesting. Choose \(z \neq a \). If \(|x - a| < |z - a| \), then

\[
|f(x) - f(a)| \leq |f(z) - f(a)| \quad \text{whence} \quad \omega_x(a) \leq |f(z) - f(a)|.
\]

Let \(\lim x_n = a \) \((x_n \neq a \text{ for all } n) \) and \(\lim f(x_n) = \alpha \). Let \(\lim y_n = a \). It suffices to show that \(\lim f(y_n) = \alpha \). Indeed, let \(\varepsilon > 0 \), and choose \(k \) such that

\[
|f(x_k) - \alpha| < \varepsilon.
\]

Then \(|y_n - a| < |x_k - a| \) for large \(n \), so

\[
|y_n - x_m| < |x_k - x_m|
\]

for large \(m \) depending on \(m \). Hence

\[
|f(y_n) - f(x_n)| \leq |f(x_k) - f(x_m)|, \quad \text{so} \quad (m \to \infty) \quad |f(y_n) - \alpha| \leq |f(x_k) - \alpha| < \varepsilon,
\]

and we have (iii). The rest of the proof is straightforward.

Corollary 1.5. Let \(f: X \to K \) be in \(M_b(X) \cup M_s(X) \).

(i) If \(K \) is a local field, then \(f \) is continuous.

(ii) If \(|K| \) is discrete, then \(f \in M_s(X) \implies f \) is a homeomorphism \(X \sim f(X) \), and \(f \in M_b(X) \implies f \) is a closed map.

(iii) The graph of \(f \) is closed in \(K^2 \).

(iv) If \(f(X) \) has no isolated points, then \(f \) is continuous.
An M_b-function may be everywhere discontinuous on K (even when $|K|$ is discrete).

THEOREM 1.6. Let B be the unit ball of K,

(i) If K is a local field and $f \in M_b(B) \cup M_s(B)$, then f has bounded difference quotients (i.e., there is $C > 0$ such that $|f(x) - f(y)| \leq C|x - y|$ for all $x \in B$). If, in addition, $f(B)$ is convex, then f is a similarity (i.e., a scalar multiple of an isometry).

(ii) If K has discrete valuation and $f \in M_b(B)$ is bounded, then f has bounded difference quotients. If $f \in M_{bs}(B)$ and if $f(B)$ is convex, then f is a similarity.

2. **Monotone functions having a type.**

In this section, we want to translate the usual classification of (strictly) monotone functions $R \to R$ into two types: the increasing and the decreasing functions. The equivalence relation in R^\ast: $x \sim y$ if x and y are at the same side of 0, yields $(-\infty, 0)$ and $(0, \infty)$ as equivalence classes. The relation \sim is compatible with the canonical group homomorphism $R^\ast \to \mathbb{R}^\ast / \mathbb{R}^+$, the latter group being $\{1, -1\}$. $\pi(x)$ (usually called $\text{sgn}(x)$) assigns $+1$ to every positive element and -1 to every negative element. A function $f: R \to R$ is strictly monotone if there exists $\sigma: \mathbb{R}^\ast / \mathbb{R}^+ \to \mathbb{R}^\ast / \mathbb{R}^+$ such that for all $x \neq y$

$$\pi(f(x) - f(y)) = \sigma(\pi(x - y)).$$

If σ is the identity then f is called increasing; if $\sigma(1) = -1$, $\sigma(-1) = 1$, f is called decreasing. Other maps $\sigma: \{-1, 1\} \to \{-1, 1\}$ cannot occur (i.e., there is no f such that, for all $x \neq y$,

$$\pi(f(x) - f(y)) = \sigma(\pi(x - y)).$$

This rather weird description of real monotone functions can be used in the non-archimedean case.

For $x, y \in K^\ast$, define $x \sim y$ if x, y are at the same side of 0. This means: $0 \not\in [x, y]$, or $|x - y| > |y|$, or $|xy^{-1} - 1| < 1$. Thus $x \sim y$ if, and only if, $xy^{-1} \in K^+$ where

$$K^+ := \{x \in K; \ |1 - x| < 1\}.$$

We call the elements of K^+ the positive element of K.

The relation \sim is compatible with the canonical homomorphism of (multiplicative) groups

$$\pi: K^\ast \to K^\ast / K^+ =: \Sigma.$$

We call Σ the group of signs and $\pi(x)$ the sign of an element $x \in K^\ast$ (x is
positive if, and only if, \(n(x) = 1 \).

If \(K \) is a local field, we can make a group embedding \(\rho : \Sigma \rightarrow K^* \) such that
\[n \circ \rho \] is the identity on \(\Sigma \). For example, if \(K = \mathbb{Q} \), \(\delta \) is a primitive \((p - 1)\)th root of unity, then
\[n(\sum_{k \geq 1} a_k p^k) = a_k p^k \quad (k \in \mathbb{Z}, \ a_k \neq 0) \]
(Here \(a_n \in \{0, 1, \delta, \ldots, \delta^{p-2}\} \) for each \(n \)).

Definition 2.1. Let \(\sigma : \Sigma \rightarrow \Sigma \) be any map. A function \(f : X \rightarrow K \) is monotone of type \(\sigma \) if, for all \(x, y \in X \), \(x \neq y \),
\[n(f(x) - f(y)) = \sigma(n(x - y)) \]
(i.e., if \(x - y \in \sigma \in \Sigma \) then \(f(x) - f(y) \in \sigma(x) \)).

We call \(f \) of type \(\beta \in \Sigma \) if \(f \) is of type \(\sigma \) where \(\sigma \) is the multiplication with \(\beta \), i.e.,
\[\frac{f(x) - f(y)}{x - y} \in \beta \quad (x, y \in X, x \neq y). \]

We call \(f \) increasing if \(f \) is of type \(\sigma \) where \(\sigma \) is the identity, i.e.,
\[f(x) - f(y) \] is positive \((x \neq y)\).

Clearly, if \(f \) is of type \(\beta \), and if \(b \in \beta \), then \(b^{-1} f \) is increasing.

First, we look at increasing functions, then we discuss more general types \(\sigma \).
Notice that increasing functions are isometries hence are in \(M_{bs}(X) \). If \(f \) is increasing then \(f(x) = x + h(x) \), where \(|h(x) - h(y)| < |x - y| \quad (x, y \in X, x \neq y)\).

Such \(h \) we call pseudo-contractions.

Lemma 2.2. Let \(X \) be an ultrametric space. Then the following are equivalent

(a) \(X \) is spherically complete,

(b) Each pseudocontraction \(X \rightarrow X \) has a (unique) fixed point.

Proof (sketch). - (a) \(\rightarrow \) (b). Let \(\sigma : X \rightarrow X \) be a pseudocontraction. A convex set \(C \subseteq X \) is called invariant if \(\sigma(C) \subseteq C \). It is easily proved that the invariant convex subsets of \(X \) form a nest. Let \(C_0 \) be the smallest invariant convex set. If \(a \in C_0 \) and \(\sigma(a) \neq a \) then
\[B_0 := \{x \in X ; \ d(x, \sigma(a)) < d(a, \sigma(a))\} \]
is invariant, convex, and does not contain \(a \). Hence \(\sigma(a) = a \) for all \(a \in C_0 \), and \(C_0 \) is a singleton. (b) \(\rightarrow \) (a). If \(B_1 \neq B_2 \neq \ldots \) are balls in \(X \) with \(\cap B_n = \emptyset \) then choose \(x_n \in B_n \backslash B_{n+1} \quad (n \in \mathbb{N}) \). The map \(\sigma : X \rightarrow X \) defined by
\[\sigma(x) = x_{n+1} \quad (x \in B_n \backslash B_{n+1}) \]
is a pseudocontraction without a fixed point.
COROLLARY 2.3. - Let X be convex, let K be spherically complete, and let $f : X \to K$ be increasing. Then $f(X)$ is convex. If $f(X) \subseteq X$, then f is surjective.

Proof. - Let $f(X) \subseteq X$. Choose $\alpha \in X$. Then $x \mapsto -f(x) + x + \alpha$ is a pseudocontraction mapping X into X, hence has a fixed point. So $f(x) = \alpha$ for some $x \in X$.

If K is not spherically complete, we have always increasing $f : K \to K$ that are not surjective. (Let $h : K \to K$ be a pseudocontraction without a fixed point. Let $f(x) = x - h(x)$ ($x \in K$), then $0 \not\in \text{Im } f$). The inverse $f^{-1} : f(K) \to K$ can, of course, not be extended to an increasing function $K \to K$.

THEOREM 2.4. - Let K be spherically complete, and let $f : X \to K$ be increasing. Then f can be extended to an increasing function $K \to K$.

Proof. - By Zorn's Lemma, it suffices to extend f to an increasing function on $X \cup \{a\}$, where $a \not\in X$. We are done if we can find $\alpha \in K$ such that, for all $x \in X$,

$$|\alpha - f(x)| < 1$$

i.e. $\alpha \in B_{f(x)}(a - x)$ for all $x \in X$. These balls form a nest.

Let us call a function $f : X \to K$ positive if $f(X) \subseteq K^+$.

THEOREM 2.5.

(i) If $f : X \to K$ is increasing then f' is positive,

(ii) If $g : X \to K$ is a positive Baire class one function, then g has an increasing antiderivative,

(iii) If $g : X \to K$ is continuous and positive, then g has a C^1-antiderivative,

(iv) If $f \in C^1(X)$ and f' is positive then $f = j + h$ where j is increasing, and h is locally constant.

EXAMPLES.

1° The exponential function (defined on its natural convergence region) is increasing.

2° Let $f \in C(\mathbb{Z}_p)$, and let $e_n = e_n^{\mathbb{Z}_p}$, for $n \in \mathbb{N}$,

$$e_n(x) = \begin{cases} 1 & \text{if } |x - n| < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases} \quad (x \in \mathbb{Z}_p).$$

Then e_0, e_1, \ldots form an orthonormal base of $C(\mathbb{Z}_p)$, so there exist $\lambda_0, \lambda_1, \ldots \in \mathbb{Q}_p$ such that $f = \sum_{n=0}^{\infty} \lambda_n e_n$, uniformly.
f is increasing if, and only if, for all \(n \in \mathbb{N} \),
\[
|\lambda_n - \{n\}| < \{n\}
\]
(where, if \(n = a_0 + a_1 p + \ldots + a_k p^k \) (\(a_i \in \{0, 1, \ldots, p - 1\} \) for each \(i \), \(a_k \neq 0 \)), then \(\{n\}_1 = a_k p^k \)).

In other words, \(f = \sum \lambda_n e_n \in \mathcal{C}(\mathbb{Z}_p) \) is increasing if, and only if, \(\lambda_{n}/\{n\} \) is positive for all \(n \in \mathbb{N} \).

Let \(\alpha, \beta \in \Sigma \). If the set theoretic sum \(\alpha + \beta := \{x + y ; x \in \alpha, y \in \beta\} \) does not contain 0 then \(\alpha + \beta \in \Sigma \), notation \(\alpha \circ \beta \). It follows that \(\alpha \circ \beta \) is defined if, and only if, \(\alpha \neq - \beta \).

If \(x, y \in \alpha \in \Sigma \) then \(|x| = |y| \). This defines \(|\alpha| \) in a natural way.

We have the following results.

THEOREM 2.6. Let \(f : \mathbb{K} \rightarrow \mathbb{K} \) be monotone of type \(\sigma : \Sigma \rightarrow \Sigma \). Let \(\alpha, \beta \in \Sigma \),
\[
\begin{align*}
(i) & \quad \sigma(- \alpha) = - \sigma(\alpha), \\
(ii) & \quad \text{If } \sigma(\alpha) \circ \sigma(\beta) \text{ is defined then so is } \alpha \circ \beta \text{ and } \sigma(\alpha \circ \beta) = \sigma(\alpha) \circ \sigma(\beta), \\
(iii) & \quad |\alpha| < |\beta| \text{ implies } |\sigma(\alpha)| < |\sigma(\beta)|, \\
(iv) & \quad \text{If } |\beta| = 1, \beta \text{ contains an element of the prime field of } \mathbb{K} \text{ then } \\
& \quad \sigma(\beta \alpha) = \beta \sigma(\alpha), \\
(v) & \quad f \in \mathbb{M}_1(\mathbb{K}), \\
(vi) & \quad f \text{ is either nowhere continuous or uniformly continuous}.
\end{align*}
\]

THEOREM 2.7. Let \(f : \mathbb{K} \rightarrow \mathbb{K} \) be monotone of type \(\sigma : \Sigma \rightarrow \Sigma \). Then the following conditions are equivalent,
\[
\begin{align*}
(a) & \quad \sigma \text{ is injective}, \\
(b) & \quad f \in \mathbb{M}_b(\mathbb{K}), \\
(c) & \quad \text{If for some } \alpha, \beta \in \Sigma, \alpha \circ \beta \text{ is defined, then so is } \sigma(\alpha) \circ \sigma(\beta), \\
(d) & \quad |\sigma(\alpha)| < |\sigma(\beta)| \text{ implies } |\alpha| < |\beta| (\alpha, \beta \in \Sigma).
\end{align*}
\]

COROLLARY 2.8. Let \(\mathbb{K} \) be a prime field, and let \(f : \mathbb{K} \rightarrow \mathbb{K} \) be monotone of type \(\sigma : \Sigma \rightarrow \Sigma \). Then \(\sigma \) is injective.

(If \(\mathbb{K} = \mathbb{Q}(\sqrt{-1}) \), \(p = 3 \mod 4 \), we can find an example of an \(f : \mathbb{K} \rightarrow \mathbb{K} \) monotone of type \(\sigma \), where \(\sigma \) is not injective).

EXAMPLE 2.9. Let \(\mathbb{K} = \mathbb{Q}_p \). Then
\[
\{\sigma : \Sigma \rightarrow \Sigma : \text{there is } f : \mathbb{Q}_p \rightarrow \mathbb{Q}_p, \text{ } f \text{ monotone of type } \sigma\}
\]
consists of all \(\sigma : \Sigma \to \Sigma \) of the form
\[
\phi p \mapsto \phi \delta^x(n) \lambda(n)
\]
where \(s : \mathbb{Z} \to \{0, 1, 2, \ldots, p-2\} \) and \(\lambda : \mathbb{Z} \to \mathbb{Z} \) is strictly increasing.

3. Functions of bounded variation.

Lemma 3.1. Let \(f : X \to K \) have bounded difference quotients. Then \(f \) is a linear combination of two increasing functions.

Proof. Choose \(\lambda \in K \),

\[
|\lambda| > \sup \{ |f(x) - f(y)| / (x - y) ; x \neq y \}.
\]

Then \(\lambda^{-1} f \) is a (pseudo-) contraction, so \(g(x) := -x + \lambda^{-1} f(x) \) \((x \in X) \) is increasing. If \(h(x) := x \) \((x \in X) \), then \(\lambda h + \lambda g = f \).

Corollary 3.2. Let \(X \) be the unit ball of a local field \(K \) and let \(f : X \to K \). Then the following are equivalent

(\(\alpha \)) \(f \in BA(X) \) (i.e., \(\sup \{ |f(x) - f(y)| / (x - y) ; x \neq y \} < \infty \)),

(\(\beta \)) \(f \) is a linear combination of two increasing functions,

(\(\gamma \)) \(f \in [I^b_\varphi(X)] \),

(\(\delta \)) \(f \in [I^b_\varphi(X)] \).

Proof. Use 1.6.

References
