Abstract of the lecture

NON - ARCHIMEDEAN DIFFERENTIATION

held on Tuesday, June 5, 1979 at the "VI Jornadas de Matemáticas Hispano-Lusas" organized by the University of SANTANDER,

by

W.H. Schikhof

§ 1. Introduction.

The subject is part of the so-called non-archimedean (or ultrametric) analysis. Roughly speaking, one may say that this is the analysis that one obtains when replacing in the "classical" analysis \(\mathbb{R} \) or \(\mathbb{C} \) by a non-archimedean valued field \(K \).

A non-archimedean valued field is a (commutative) field \(K \), together with a map \(| | : K \to \mathbb{R} \) (the valuation) satisfying

\[
|a| \geq 0 , \quad |a| = 0 \text{ iff } a = 0 \\
|ab| = |a| \cdot |b| \\
|a+b| \leq \max(|a|,|b|) \quad \text{(the strong triangle inequality)}
\]

for all \(a,b \in K \).

We have the following remarks.

(1) Apart from \(\mathbb{R} \) or \(\mathbb{C} \), every complete valued field is non-archimedean.

(2) If \(K \) is a non-archimedean valued field and if \(L \supset K \) is an overfield of \(K \) then the valuation on \(K \) can be extended to a non-archimedean valuation on \(L \).

(3) If \(K \) is a (non-archimedean) valued field then its completion \(\tilde{K} \) (with respect to the metric \((x,y) \mapsto |x-y| \) can, in a natural
way, be given the structure of a non-archimedean valued field. In the sequel we exclude the so-called trivial valuation given by

$$|x|' = \begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } x \neq 0.
\end{cases}$$

The non-archimedean analysis has several branches, similar to the classical analysis. Thus we have non-archimedean functional analysis, harmonic analysis, theory of analytic functions in one or several variables, etc.

In this talk we consider a more elementary subject, namely infinitesimal calculus in K. More specifically, we want to see what remains of the so-called Fundamental Theorem of Calculus (in \mathbb{R}) that states that the operations of differentiation and integration are in some sense each others inverses.

§ 2. Differentiation in K. Let $X \subset K$ be a subset without isolated points. A function $f : X \to K$ is called differentiable if for all $a \in X$

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. The proof of the well known rules (sum-, product-, chain-rule) can formally be taken over from the classical theory. Thus, a rational function is differentiable if it has no poles on X. An analytic function $x + \sum_{n} a_{n} x^{n}$ is differentiable on

$$\{x : |x| < (\lim \sqrt[n]{a_{n}})^{-1}\}.$$

Deviations from the classical theory appear when we look at the functions whose derivative vanishes everywhere. For example,
let $\varepsilon > 0$, $a \in K$. Then $B(a, \varepsilon) := \{x \in K : |x-a| < \varepsilon\}$ is an open-and-closed subset of K, hence $\xi_{B(a, \varepsilon)}$, defined by

$$
\xi_{B(a, \varepsilon)}(x) := \begin{cases}
1 & \text{if } x \in B(a, \varepsilon) \\
0 & \text{elsewhere}
\end{cases}
$$

is differentiable and $\xi'_{B(a, \varepsilon)} = 0$.

Locally constant functions all have derivative zero. On the other hand they form a uniformly dense subset of $C(X)$, the space of all continuous functions: $X 	o K$.

Even worse: let \mathbb{Q}_p the field of the p-adic numbers and let $\mathcal{Z}_p := \{x \in \mathbb{Q}_p : |x| \leq 1\}$. Then the function $f : \mathcal{Z}_p \to \mathbb{Q}_p$ defined by

$$f(\Sigma_n p^n) = \Sigma_n p^{2n} \quad (\Sigma_n p^n \in \mathcal{Z}_p)$$

satisfies $|f(x) - f(y)| = |x-y|^2$ for all $x, y \in \mathcal{Z}_p$. So $f' = 0$ but f is injective, hence not locally constant.

The above example shows also that a Mean Value Theorem is necessarily absent in our theory.

Notice that the difficulties encountered above also appear when we study differentiability of functions $f : \mathcal{D} \to \mathbb{R}$, where $\mathcal{D} \subset [0,1]$ is the Cantor set. So it is the domain of f that is responsible for the troubles rather than its range.

§ 3. Continuously differentiable functions.

If we follow naively the path of the classical analysis and define

$$C^1(X) := \{f : X \to K, f \text{ is differentiable, } f' \text{ is continuous}\}$$

then we run up against difficulties.

First of all, one can prove that $C^1(\mathcal{Z}_p)$ (with the norm
f \mapsto \max(\|f\|_{\infty}, \|f'\|_{\infty}) \) is not a Banach space. In fact one shows that for every pair of continuous functions $f, g : \mathbb{R} \to \mathbb{R}$ there exists a sequence f_1, f_2, \ldots in $C^1(\mathbb{R})$ for which both $f_n \to f$ and $f'_n \to g$ uniformly.

What is worse, we have no local invertibility theorem for such C^1-functions.

In fact, let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^{-p^{2n}} & \text{if } |x^{n}| < p^{-2n} \\ x & \text{elsewhere} \end{cases} (n \in \mathbb{N})$$

Then $f'(x) = 1$ for all $x \in \mathbb{R}$. But $f(p^n) = f(p^{-n}2^n)$ for all $n \in \mathbb{N}$, so f is not even locally injective at 0.

Therefore we are led to define:

Let $f : X \to K$. Put

$$\Phi f(x,y) := \frac{f(x) - f(y)}{x - y} \quad (x, y \in X, x \neq y).$$

We say that $f \in C^1(X)$ if Φf can continuously be extended to a function $\tilde{\Phi} f : X \times X \to K$.

Then $BC^1(X) := \{ f \in C^1(X) : f$ and Φf are bounded\}$ is a Banach space under $f \mapsto \|f\|_1 := \max(\|f\|_{\infty}, \|\Phi f\|_{\infty})$.

Further, if $f \in C^1(X)$, $f'(a) \neq 0$ for some $a \in X$, then f has a C^1-inverse, locally at a.

Theorem. Differentiation is a continuous surjection $BC^1(X) \overset{D}{\to} BC(X)$.

(here $BC(X)$ is the space of all bounded continuous functions with the supremum norm)

§ 4. "Integration".

Next, we want to define an "indefinite integral" $P : BC(X) \to BC^1(X)$.
(an analogue of \((Pf)(x) := \int_0^x f(t) dt\) for real functions) such that \(DP\) is the identity on \(BC(X)\).

A natural try is first to find an analogue of the Lebesgue measure in \(K\). But this turns out to be a dead end road. For example if \(K = \mathbb{Q}_p\) there does not exist a nonzero translation invariant bounded additive \(\mathbb{Q}_p\)-valued function \(m\) defined on the compact open subsets of \(\mathbb{A}_p\). (By translation invariance
\[
|m(p^nA_p)| = p^n|m(A_p)| \to \infty \text{ if } m(A_p) \neq 0.
\]
For similar reasons it goes wrong for every local field \(K\).

Following the ideas of Dieudonné, Treiber, we define for \(f \in BC(X)\)
\[
(Pf)(x) := \sum_{n=1}^{\infty} f(x_n)(x_{n+1} - x_n) \quad (x \in X)
\]
Here the \(x_n\) are defined as follows. For each \(n \in \mathbb{N}\) the equivalence relation \(\sim^n\) defined by \(x \sim^n y\) if \(|x-y| < \frac{1}{n}\) yields a partition of \(X\) into balls. Choose a center in each ball and let \(R_n\) be the set of these centers.

For each \(x \in X\) and \(n \in \mathbb{N}\), \(x_n\) is defined by \(x_n \in R_n\), \(|x_n - x| < \frac{1}{n}\).

Theorem. (A NON-ARCHIMEDEAN FORM OF THE FUNDAMENTAL THEOREM).\(P\) is a linear isometry of \(BC(X)\) into \(BC^1(X)\). \(DP\) is the identity on \(BC(X)\), whereas \(PD\) is a projection of \(BC^1(X)\) onto a complement of \(\{f \in BC^1(X) : f' = 0\}\).

§ 5. Generalizations of the Fundamental Theorem.

We may ask whether there exists some form of the Fundamental Theorem for functions belonging to spaces, larger than \(BC(X), BC^1(X)\)
respectively. (For example, compare the classical theorem on L^1-functions versus absolutely continuous functions).

We have the following striking fact that has no counterpart in classical analysis. We say that $g : X \to K$ is of the first class of Baire if there exists a sequence g_1, g_2, \ldots of continuous functions $X \to K$ such that $\lim g_n = g$ pointwise.

THEOREM. (a) Let $f : X \to K$ be differentiable. Then f' is of the first class of Baire.

(b) Let $g : X \to K$ be of the first class of Baire. Then g has an antiderivative.

Let $B^1_b(X)$ be the Banach space consisting of all bounded functions $X \to K$ of the first class of Baire with respect to the supremum norm. Let $BD(X)$ be the Banach space of all differentiable $f : X \to K$ for which both f and Φf are bounded, with respect to the norm $f + ||f||_\infty \vee ||\Phi f||_\infty$. Then we have

THEOREM. Differentiation is a quotient map $BD(X) \xrightarrow{D} B^1_b(X)$.

If K has discrete valuation then there exists a continuous linear $P : B^1_b(X) \to BD(X)$ for which DP is the identity on $B^1_b(X)$.

Notes.

1. The construction of the above P is awful and, contrary to § 4, P does not resemble an indefinite integral in any way.

2. If the valuation of K is dense the existence of such a P is still an open question.
§ 6. **Restriction of the Fundamental Theorem.**

In classical analysis, we have that if \(f \in C^n \) then
\[
x \mapsto \int_0^x f(t) \, dt \end{array} \right.
\] is in \(C^{n+1} \). In our situation we define for \(f : X \to K \):
\[
f \in C^2(X) \text{ if the function } \Phi_2 f, \text{ defined by}
\]
\[
\Phi_2 f(x,y,z) = \frac{\Phi_1 f(x,z) - \Phi_1 f(y,z)}{x-y} \quad (x,y,z \in X, \ x \neq y, \ y \neq z, \ x \neq z)
\]
can continuously be extended to \(\Phi_2 f : X^3 \to K \). Similarly, we define
\(C^3(X), C^4(X), \ldots \). Let \(C^\infty(X) := \bigcap_{n=1}^\infty C^n(X) \).

The map \(P \), defined in § 4, does not always map \(C^1 \)-functions
into \(C^2 \)-functions. But we have (notations as in § 4)

THEOREM. Let the characteristic of \(K \) be unequal to 2. Then the map
\[
P_2 \text{ defined via}
\]
\[
(P_2 f)(x) := \Sigma f(x_n) (x_{n+1} - x_n) + \frac{1}{2} \Sigma f'(x_n) (x_{n+1} - x_n)^2 \quad (x \in X)
\]
maps \(C^1(X) \) into \(C^2(X) \) and \((P_f)' = f \) for all \(f \in C^1(X) \).

Similarly, one can define antiderivation maps \(P_n : C^{n-1}(X) \to C^n(X) \)
in case the characteristic of \(K \) is unequal to \(2,3,\ldots,n \).

OPEN QUESTION. Let \(K \) have characteristic 0. Does every \(f \in C^\infty(X) \)
have a \(C^\infty \)-antiderivative?

W. Schikhof

Reference

Schikhof, W. : Non-archimedean calculus. (Lecture Notes). Report 7812,
Mathematisch Instituut, Nijmegen, The Netherlands.

49