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This book is about a particular discrete-time Markov model for categorical 
data. Like many other Markov models for categorical data, the model pre-
sented can be used to estimate the probability that an individual (case, ob-
servational unit) will make a transition between the states of a categorical 
variable of interest during some period of time. In contrast to many other 
models, it enables the estimation of such probabilities using data from a 
number of cross sections, independently sampled at regular time intervals. 
Therefore, we refer to the model as the 'repeated cross sections (RCS) 
Markov model'. The model can employ time-constant and time-varying 
predictor variables to yield transition probabilities that vary over time and 
individuals.  

Before going into more details, we will first present a few basic con-
cepts related to statistical Markov models for categorical data and introduce 
some notation. Next, we will briefly discuss a selection of Markov models 
that were developed during the last fifty years, say. Finally, the RCS model 
is introduced and an empirical example is shown. 

 
 

  
 Introduction 
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1.1  Basic concepts 
 
 
Markov models are about Markov processes. Roughly speaking, in such 
processes the outcome of the variable of interest at a given point in time is 
directly related to the outcome(s) of the same variable at a limited number 
of earlier time points. A textbook example of a Markov process is weather 
change. Rainy days often occur in numbers and, consequently, the amount 
of rain that falls on a given day is related to the amount that fell the day be-
fore. It is also related, though less strongly, to the amount of rain that fell 
two days ago. Going back in time more than 2 days, say, often results in a 
zero relation. Although from a meteorological viewpoint presumably not 
satisfactory, a Markov model to predict the amount of rainfall at a given 
day could be 
 

0 1 1 2 2t t t t
R b b R b R ε

− −

= + + +  (1) 
 
with 

t
R  denoting the rainfall (e.g., in millimetres) at day t , 

1t
R

−

 and 
2t

R
−

 
the rainfall for the preceding two days and 

t
e  being the error associated 

with the model. In this model equation a limited 'history' of the dependent 
variable itself is used to predict its current value. The history here contains 
two time points in the past and hence the model is called a 'second order' 
Markov model. The terms 'autoregressive Markov model', 'autoregressive 
model' or simply 'AR-model' are also used for models in which the depend-
ent variable is regressed on itself as it was observed at one or more earlier 
points in time. In Figure 1.1 the above equation is presented in the form of 
diagram that only considers the first five days of a possibly long series of 
daily observations that could have been made.  

The solid arrows along with the regression effects 
1
b  and 

2
b  of Equa-

tion (1) represent the influence of rainfall of the previous two days. The 
dotted arrows refer to the contribution of the error term in (1) to each day's 
observed rainfall, from day 2 onwards. The second order property of the 
Markov process is represented by the omission of arrows between observa-
tions separated three or more days. There is for example no arrow going 
directly from 

2
R  to 

5
R  since, if controlled for 

3
R and 

4
R , the effect of 

2
R  

on 
5

R  is considered to be zero. The second order property does not imply 
that there is no effect of 

2
R  on 

5
R , but only that there is no direct effect. 
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 There are indirect effects, however, as the diagram shows, for exam-
ple the effect from 

2
R  on 

3
R , from 

3
R  on 

4
R , and from 

4
R  on 

5
R . Thus, 

2
R  effects 

5
R  indirectly via 

3
R and 

4
R . There are two more indirect paths, 

2
R , 

3
R , 

5
R  and 

2
R , 

4
R , 

5
R  by which the influence of 

2
R  on 

5
R  is passed 

on. 
The dependent variable used in the above example is ratio-scaled and, 

apart from round-off error, can have an infinite number of possible out-
comes or 'states'. If the variable of interest is categorical and hence has a 
finite number of states, the Markov process is typically referred to as a 
'Markov chain'. The next example is more similar to the repeated cross sec-
tions Markov model, because it is concerned with a first order Markov 
chain, i.e., it deals with a categorical variable and uses a history of only 1 
time point. Suppose there is an election taking place with two candidates, A 
and B say, running for president. Of the people who favoured candidate A 
one week prior to the election, 80% still favours A at election day, while 
20% has switched to candidate B. Of those favouring B one week before 
the election, 90% still favours B at election day and 10% has switched to 
A. These percentages constitute the cell entries of Table 1.1. 

From the high percentages on the diagonal of Table 1.1 it can be con-
cluded that, at election day, most people for some reason stick to the pref-
erence they had one week earlier, whether it was A or B. Thus, for an arbi-
trary chosen individual, the outcome of the variable 'favoured candidate' at 
election day is strongly related to the outcome of that variable one week 
earlier. Let 

,i t
ϒ  and , 1i t−

ϒ  be variables indicating whether A or B is fa-
voured by person i  at election day t  and one week before, respectively, 
both taking value 0 if A and 1 if B is favoured. The following logistic 

Figure 1.1 Diagram of a second order Markov model

5R3R

2
R

2
b

1
b

2 4

3 5

2b 2b

1R

1
b

1
b

1
b

4
R
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Markov model equation may then be used for the probability that person i  
favours B at day t : 

 

P( =1)    /(1+ 0 1 , 1 0 1 , 1

,

)i t i t
b b b b

i t
e e

− −

+ ϒ + ϒ
ϒ = . (2) 

 
Based on Equation (2) the observed value 

,i t
ϒ  can be expressed as 

=
, , ,

( 1)
i t i t i t

P εϒ = ϒ +  with 
,i t

ε denoting the error part of 
,i t

ϒ  not accounted 
for by =

,
( 1)

i t
P ϒ . In (2) only one past observation, , -1i t

ϒ , of the dependent 
variable itself is used as predictor variable, as opposed to two in the rainfall 
example. Hence, the model is first-order Markov. In general, such a model 
can be visualized by a diagram as the one in Figure 1.2, where the first five 
out of potentially much longer series of observations are shown. ,4i

ϒ  could 
be the observation made at election day, then ,3i

ϒ  would be the observation 
of the week before. Also, ,2i

ϒ , ,1i
ϒ  and ,5i

ϒ  would then denote observa-
tions made two and three weeks before election day and one week after, re-
spectively. The solid arrows indicate the direct influences of candidate 
preference one week before and 

1
b  the corresponding regression effect de-

noted in Equation (2). The dotted arrows represent the error term contribu-
tions to the 

,i t
ϒ  values. Note that, as in Figure 1.1, each observation 

,i t
ϒ  

has an effect on all later observations, be it directly or indirectly. 
 
 

 

Table 1.1 Favoured candidate at election day and one week before 
 

               election day 

 A B  

A 80% 20% 100% 

 
 

one week before 
B 10% 90% 100% 
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The result of using predictor , -1i t
ϒ  in (2) is that two different outcomes can 

occur for the probability to favour candidate B at election day, one outcome 
for each candidate favoured one week earlier. Thus, the model is able to 
deal with the two different percentages for favouring B at election day, 
20% and 90%, given in the example. In terms of Equation (2), the two pos-
sible outcomes of the probability to favour A at election day are given by 
 

P( =1 | =0)  / (1+ 0 0

, , 1
)b b

i t i t
e e

−

ϒ ϒ =          and 
P( =1 | =1) =  / (1+ 0 1 0 1

, , 1
)b b b b

i t i t
e e

+ +

−
ϒ ϒ . 

 
Denoting these probabilities as conditional probabilities, conditional on the 
value of , 1i t−

ϒ , shows that they are actually 'transition probabilities'. The 
first one refers to the transition from state A to B and the second one to the 
transition from state B to B. The true population values of these two prob-
abilities as well as those for favouring A at election day given , 1i t−

ϒ , would 
undoubtedly be considered valuable information by both candidates. In ad-
dition, Equation (2) can incorporate other predictor variables such as gen-
der, race, age, highest completed education etc., an example of which is 
given below. By doing so, the model may reveal significant characteristics 
of voters who are willing to switch candidate or to stay with their earlier 
choice. This possibility to explore which type of individuals are inclined to 
make particular transitions is one of the reasons that Markov models have 
frequently been used, not only in voting transition research but in many 
other research areas as well. 
 The election example above concerned two states, A and B, of a cate-
gorical variable of interest ϒ  that was observed at two different time 
points. More generally, Markov models for categorical data can be used to 
study transitions between any finite number of states of a categorical vari-
able that is observed at any finite number of time points: cases move from 
one state of ϒ  at a given time point 1, say, to another state or to the same 
state of ϒ  at time point 2, and again to another or the same state at time 
point 3, etc. If ϒ  has M states then there are 2

M  different transition prob-
abilities when going from any previous time point 1t −  to time point t . 
These transitions can be summarized in the so-called 'transition matrix' 
given in Table 1.2. 



 6 

 
 
In this matrix 

,
( , )

i t
p j k  refers to the transition probability 

, , 1
( | )

i t i t
P k j

−

ϒ = ϒ = , that is the probability for case i  to be in state k  of 
ϒ  at time point t  given that the previous state at 1t −  was j . Within a 
single row j  the probabilities sum to 1 since they cover all possible transi-
tions a case can make from state j  at time point 1t −  to all M  states at 
time point t . 
 With T  consecutive time points a case realizes 1T −  transitions dur-
ing the time period under study and, consequently, there are also 1T −  
transition matrices for each individual case. With the same N  individual 
cases observed at each time point there would be a total of 2( 1)M T N−  
transition probabilities. It is not surprising then that most Markov models 
assume some kind of structure to exist in what can become a very large 
amount of possibly different transition probabilities. An example of such a 
hypothesized structure is the assumption that the transition matrix is con-
stant over time for each individual case. Such a model is said to be 'time-
invariant' as opposed to a 'time-varying' model in which individual transi-
tion matrices are assumed to change over time. Another hypothesized struc-
ture is to assume is that for each time point t  the transition matrix is the 
same for all cases. Such a model is called 'individual homogeneous' as op-
posed to 'individual heterogeneous'. 
 If we let ϒ  be a binary variable with states 0 and 1, the transition ma-
trix collapses to a 2x2 matrix with the probabilities in the left column the 
complement of those in the right column. If ϒ  is observed at only three 
consecutive time points then there are two separate transition matrices as 
represented in Table 1.3. 

Table 1.2 Transition matrix for case i  at time point t  

               
,i t

ϒ  

 1  2  . . . M  

1  ,

(1,1)
i t
p  

,

(1,2)
i t
p     .       .       .    

,

(1, )
i t
p M      1  

2  ,

(2,1)
i t
p  

,

(2,2)
i t
p     .       .       .    

,

(2, )
i t
p M      1  

. . .    .       .       .    .     1  

. . .    .       .       .    .     1  

. . .    .       .       .    .     1  

, 1i t−
ϒ

 

M  ,

( ,1)
i t
p M  

,

( ,2)
i t
p M     .       .    .    

,

( , )
i t
p M M      1  
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Table 1.3 Transition matrices for case i  for binary ϒ  and three time points 
 
 

 

 

 

 
 

Table 1.3a contains the probabilities for all four transitions a case can pos-
sibly make from 1t =  to 2t =  and Table 1.3b those for the transitions 
from 2t =  to 3t = . For a binary variable ϒ  we prefer to use different 
symbols for particular transitions. We use 

,i t
µ  to denote the 'entry-

probability' or the probability to have entered state 1 at t , given state 0 at 
1t − . Also we use 

,i t
λ  to denote the 'exit-probability' or the probability to 

have exited state 1 at t  (or entered state 0 at t ), given state 1 at 1t − . In 
symbols: 

, , , 1
( 1 | 0)

i t i t i t
Pµ

−

= ϒ = ϒ =  and 
, , , 1

( 0 | 1)
i t i t i t

Pλ
−

= ϒ = ϒ = . 
The complements of the diagonal probabilities 

,

1
i t

µ−  and 
,

1
i t

λ− , refer to 
the probability to stay in state 0 or in state 1 of ϒ , respectively, i.e., 

, , , 1
1 ( 0 | 0)

i t i t i t
Pµ

−

− = ϒ = ϒ =  and 
, , , 1

1 ( 1 | 1)
i t i t i t

Pλ
−

− = ϒ = ϒ = . 
 
This concludes the introduction of concepts and notation. We will now dis-
cuss a selection of statistical Markov models for categorical data that have 
been developed in the past. Most of these models can deal with multi-state 
ϒ  variables. However, to explain a particular model we will often use a 
two state ϒ  and hence the symbols µ  and λ . 
 
 
 

1.2 A classification of Markov models 
 
 
Different types of Markov models for studying longitudinal categorical 
data have been developed in the past. Especially since about 1950, many 
treatises of such models have appeared in the literature. One of several pos-
sible ways to classify these models is to focus on the type of ϒ  data ob-
served in the applications. We will mention in some detail three main 
streams of models corresponding to three types of ϒ  data. These types of 

,3i
ϒ  

 0 1  

0 ,3i
µ1−  ,3i

μ   

b) 
 
 

,2i
ϒ  

1 ,3i
λ  ,3i

λ1−   

,2i
ϒ  

 0 1  

0 ,2i
µ1−  ,2i

μ   

a) 
 
 

,1i
ϒ  

1 ,2i
λ  ,2i

λ1−   
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data can be summarized by cross-classifying the number of occasions at 
which each unit is observed by the aggregation level of the units. The result 
is shown in the table below. 
 

 
Aggregation level 

  
 individual aggregate 

>1 

1 
individual 
panel data 

(section 1.2.1) 

2 
repeated aggregated 

 proportions 
(section 1.2.2) 

Number of  
occasions 
each unit 

is observed 
1 

3 
repeated 

cross sections 
(section 1.2.3) 

 

 
 
As to the number of occasions, only the distinction between 'one' and 'more 
than one' occasion is relevant for the present purpose. With respect to the 
aggregation level, 'aggregate' refers to situations in which only data on ag-
gregates or groups (e.g., school classes, voting districts, cities) of individual 
cases are available with the individual data that constitutes the aggregates 
being unobserved. Nevertheless, in the Markov models for aggregate data 
discussed below, the transitions pertain to the individuals that constitute the 
aggregates and not to the aggregates themselves. The data types numbered 
1, 2 an 3 in the above table will be discussed in some detail below along 
with associated Markov models and relevant literature. 
 

 

1.2.1  Models for individual panel data 
 
In many applications, the values of ϒ  for all individual cases in a sample 
are observed at all, T  say, evenly spaced time points under study. This 
kind of data is known as 'individual panel data' or 'repeated measures'. The 
rainfall and the election example in the previous section were based on 
such data. For binary ϒ  with values 0 and 1 and 3T = , individual panel 
data can be presented as a set of 8 (= 2x2x2) sequences of values ,1i

ϒ  , ,2i
ϒ  

and ,3i
ϒ  followed by the corresponding number of cases for each sequence. 

An example using fictitious data is given in Table 1.4. 
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For individual panel data, such as presented in Table 1.4, contingency ta-
bles of 

1t−
ϒ  by 

t
ϒ  for all time points t  can be constructed (dropping sub-

script i  for convenience and 
t

ϒ  denoting variable ϒ  observed at time 
point t ). The cells of these tables contain the observed number of cases 
making all possible transitions. For the data of Table 1.4, with 3T = , 
there are two such tables, presented in Table 1.5 a/b. Anderson (1954) 
showed how observed transition frequencies, as those in Table 1.5a/b, can 
be used to obtain maximum likelihood (ML) estimates of the unknown un-
derlying transition probabilities. Anderson and Goodman (1957) formally 
proved that, for individual panel data following a first-order Markov chain, 
the transition frequencies are sufficient statistics for the observed ϒ -
sequences such as those presented in Table 1.4. Also, they discussed the 
asymptotic distributions of the ML estimates of the transition probabilities. 
Furthermore, they developed several statistical tests, for example tests re-
lated to the Markov process being time-varying or time-invariant and to the 
order of the Markov process.  
 
 
Table 1.5 Transition frequencies for fictitious individual panel data 
 

 
 

 

 
 

3
ϒ  

 0 1  

0 8 3  

(b) 
 
 

2
ϒ  1 4 10  

2
ϒ  

 0 1  

0 7 3  

(a) 
 
 

1
ϒ  1 4 11  

Table 1.4 Fictitious individual panel data for binary ϒ  at three time points 
 

,1i
ϒ  ,2i

ϒ  ,3i
ϒ  frequencies 

0 0 0  5 
0 0 1  2 
0 1 0  1 
0 1 1  2 
1 0 0  3 
1 0 1  1 
1 1 0  3 
1 1 1  8 
    N=25 
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The Anderson/Goodman model is rather basic, since it cannot easily deal 
with a heterogeneous population and hence with different transition prob-
abilities for different strata of the population. At the end of his 1954 article 
Anderson spends a few words on heterogeneity and suggests his Markov 
model to be applied to each stratum separately. He concludes with saying 
that the 'best' stratification variable may not always be observable. The idea 
to model different transition probabilities for unobservable strata was also 
applied by Blumen, Kogan and McCarthy (1955) in their 'stayer-mover' 
model. In this model, two different Markov chains are assumed to be 
'mixed' within a population, one chain for 'stayers', who stay in the same 
state of ϒ  at each time point and another chain for 'movers', who may 
switch from one state to another. The stayers and movers can be considered 
as two unobserved strata, with each individual case having an unknown to 
be estimated probability of belonging to each stratum. 
 The idea to deal with heterogeneity in a regression like manner, by 
exploiting predictor variables that enable different outcomes of the transi-
tion probabilities for cases having different predictor values, was intro-
duced some years later. In the election Equation (2), we could for example 
add Age as a predictor to obtain different transition probabilities for people 
of different ages, leading to: 
 

 
Age Age

Age AgeP( =1) =
1+

0 1 , 1 2 , 3 , 1 ,

0 1 , 1 2 , 3 , 1 ,,

i t i t i t i t

i t i t i t i t

b b b b

i t b b b b

e

e

− −

− −

+ ϒ + + ϒ ∗

+ ϒ + + ϒ ∗
ϒ . (3) 

 
In (3) the interaction product Age, 1 ,i t i t−

ϒ ∗  enables a separate age-effect 
for each value of , 1i t−

ϒ , i.e., for the entry and exit probability. Spilerman 
(1972, p278) elaborates on the advantages of such a regression approach as 
opposed to the earlier Markov models which required that 'all persons must 
transfer according to an identical transition array'. He employs a linear re-
gression model to explain and 'project' (forecast) transitions of persons be-
tween geographic regions, with individual (e.g. occupation, race, age) as 
well as macro (city size) predictor variables. Amemiya (1985) speaks of 
'exogenous variables' and Diggle, Liang and Zeger (1994) of 'covariates' to 
be used in Markov models as a way to deal with a population consisting of 
heterogeneous individuals. Cook and Ng (1997) and Stott (1997) further 
extend the regression approach by adding an (unobserved) random normal 
deviate to the logits of the entry and exit probabilities to account for even 
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more, i.e. unobserved, heterogeneity, in addition to the heterogeneity mod-
elled by the (observed) predictors. 
 Another powerful extension of the individual panel data Markov 
model has been proposed by Wiggins (1973), and is known as the latent 
Markov model. This model is meant to deal with possible measurement er-
ror in the observed values of ϒ . Instead of transitions between the states of 
the observed ϒ , the model pertains to transitions between the states of the 
'true' but latent variable Z  that determines the outcome of the observed 
value of ϒ . Also, two or more ϒ  variables can be used as so-called 'indi-
cator variables' of the true unobserved Z , as in linear structural equation 
models. Building on the work of Hagenaars (1990), Vermunt, Langeheine 
and Böckenholt (1999) show how a latent Markov model can be con-
structed that incorporates covariates affecting the latent variables.  
 
 
1.2.2  Models for repeated aggregated proportions 
 
Individual panel data or, to use the words of Lee, Judge and Zellner (1968, 
p1163) 'time-ordered data which reflects the movements of the micro units' 
are not always available. Instead, in many research problems the data per-
tain to higher level or macro units, such as geographical areas, voting dis-
tricts, companies, schools etc., observed at a number of consecutive time 
points. More specifically, the data consist of aggregated proportions or fre-
quency counts of individual cases in each state of a categorical variable ϒ  
for each of a number macro units at two or more, evenly spaced, moments 
in time. As an example, suppose one is interested in voting transitions for 
an election taking place every four years. Assume that there are only two, 
and always the same two, political parties, 0 and 1 say, for voters to choose 
from at each separate election. For all voting districts of a particular city, 
the proportions of people voting for the two parties are known for three 
consecutive elections. For any given voting district, these proportions can 
be presented as in Table 1.6, where they form the margins of the subtables. 
Note that in Table 1.6a the column margins .4 and .6 are equal to the row 
margins of Table 1.6b, since both refer to 

2
ϒ , i.e., the results of the second 

election. Presenting the data this way, as was also done in Table 1.5 for in-
dividual panel data, points to the fact that the transition proportions are un-
known, as symbolized by the question marks in the interior cells. Only the 
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Table 1.6 Repeated aggregated proportions for a fictitious voting district at three  

 consecutive elections 
 
 
 
 
 

 
 
'marginal' outcome of each election is observed but the individual voting-
sequences, like those in Table 1.4, are not. Hence, the transition frequen-
cies/proportions of individuals making any particular transition cannot be 
inferred from the unobserved sequences. For individual panel data, pre-
cisely these transition proportions provide the information necessary for es-
timating the unknown transition probabilities. Thus, compared to individual 
panel data, in models for repeated aggregated proportions a lesser amount 
of data is observed and as a result the estimation of the entry and exit prob-
abilities is less straightforward. The lack of data in each separate macro 
unit is compensated, however, by obtaining aggregated proportions for (as) 
many macro units (as possible), all of which are thought to be governed by 
transition rules or probabilities that are either the same for all or in some 
way related to each other. 

When using repeated aggregated proportions specific attention should 
be given the following. Consider the individual cases that make up a par-
ticular macro unit at each time point. In the most ideal situation the macro 
unit consists of the same individuals at all time points involved. For voting 
districts in the above example this would mean that there is no inflow 
(coming of voting age, immigration) or outflow (dead, emigration) of vot-
ers during the eight year period covering the three elections. Obviously, 
such ideal situation will seldom occur in practice: due to in- and outflow 
the macro units do not consist of the same (number of) individuals at each 
point in time. In the most extreme situation all individuals in a macro unit 
will have been replaced by others at the next point in time. The models for 
repeated aggregated proportions can nevertheless be applied in situations 
where in- and outflow occurs, provided that two assumptions are satisfied. 
These are discussed below. 

The individuals making up a given macro unit at time point 1t −  can 
be split up in a stay-group and an outflow-group: those who belong to the 

3
ϒ  

 0 1  

0 ? ? .4 

(b) 
 

 

2
ϒ  1 ? ? .6 

  .3 .7 N=100 

2
ϒ  

 0 1  

0 ? ? .8 

(a) 
 

 

1
ϒ  1 ? ? .2 

  .4 .6 N=100 
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stay-group are still in the macro unit at the next time point t , while those in 
the outflow-group are not. The first assumption to be satisfied concerns the 
outflow-group. At time point 1t − , the ϒ proportions observed for the en-
tire macro unit must also apply to the outflow-group. To put it differently, 
the stay-group and the outflow-group at time point 1t −  must be homoge-
neous in their ϒ proportions, which for both groups have to be equal to the 
observed proportions of the entire macro unit at 1t − . Furthermore, at the 
next time point t , the individuals who then make up the macro unit, consist 
in part of an inflow-group: these are the individuals who were not yet in 
that same unit at the previous time point 1t − . The second assumption 
concerns this inflow-group. The inflow-group of a given macro unit at time 
point t  had (or would have had if, e.g., they would have been of voting 
age) the same ϒ  proportions at time point 1t −  as the proportions actually 
observed for that macro unit at time point 1t − . If both assumptions are 
met, the models for repeated aggregated proportions can be applied even if 
the macro units involved are subject to inflow and outflow of individual 
cases. 
 From the many publications on Markov models dealing with repeated 
aggregated proportions during the last 50 years, we selected a few that, in 
our view, can be considered important for the development of this branch 
of models. Again, Goodman (1953, 1959) appears as a pioneer. Inferring 
micro characteristics (here: transition probabilities which are thought to 
hold for each individual in each macro unit) from macro data (here: ob-
served proportions) is an example of what is often called 'ecological infer-
ence'. Goodman's approach is known as 'ecological regression'. From Table 
1.6a the following equation can be derived between the left column margin 
and the row margins, involving the transition probabilities 

2
1 µ−  and 

2
λ  

that were introduced before: 
2 2

.4 .8(1 ) .2μ λ= − + . If the observed column 
marginal .4 does not depend totally on the values of 

2
1 µ−  and 

2
λ  but also 

contains some error, then the equation becomes 
2

.4 .8(1 )µ= − +
2

.2λ
i
e+ , 

with 
i
e  expressing the error part for voting district i , say. A similar expres-

sion can be given for the other districts, with different marginal values and 
errors but with the same parameters 

2
1 µ−  and 

2
λ  that, together with the 

error, 'generate' the value of the left column margin given the row margins. 
Thus, 

2
1 µ−  and 

2
λ  can be thought of as the unknown parameters in the 

linear regression of the left marginal column proportion on the two mar-
ginal row proportions of Table 1.6a. The same holds for 

3
1 µ−  and 

3
λ  and 
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the corresponding margins of Table 1.6b. Goodman specifies conditions 
under which this ecological regression method can be meaningfully applied 
to estimate the unknown transition probabilities. However, the method suf-
fers from a number of shortcomings, that are very carefully pointed out by 
King (1997). 
 Lee, Judge and Zellner (1968) describe a maximum likelihood (ML) 
procedure to estimate the transition probabilities. They argue that for a 
given macro unit the observed totals (i.e., numbers of individual cases) in 
all categories of ϒ  at time point t , given those at time point 1t − , can be 
regarded as if they arise from a multinomial distribution. In terms of Table 
1.6a this would for example imply that, given the row proportions, the dis-
tribution of the left column total is binomial( ,n p ) with 100n =  and 

2 2
.8(1 ) .2p μ λ= − + . So, for each voting district in the city under study 

the 
2

ϒ  frequencies follow a binomial distribution with the success prob-
ability depending on the observed 

1
ϒ  proportions and the unknown 

2
µ  and 

2
λ . Given the observed proportions of 

1
ϒ and 

2
ϒ  of all voting districts in 

the city, ML estimates of 
2

µ  and 
2

λ  (and 
3

µ  and 
3

λ ) can be obtained fol-
lowing the procedure described by the authors. Building on the supposed 
binomial (or multinomial) distribution of the category totals of 

t
ϒ , given 

those of 
1t−

ϒ , they also develop a Bayesian approach in which they use a 
multivariate beta distribution as a prior for the transition probabilities. 
 Hawkes (1969) shows that the distribution of the observed totals in all 
categories of 

t
ϒ , given those of 

1t−
ϒ , is not a simple multinomial but a 

weighted sum of multinomials. Translated to Table 1.6a, the distribution of 
the left column total, given the two row totals, is binomial(

2
80,1 µ− ) + bi-

nomial(
2

20,λ ) being the sum of the unobserved upper and lower left cell 
frequencies which are thought to be binomial(

2
80,1 µ− ) and bino-

mial(
2

20,λ ) respectively. Hawkes (1969) also derives the means and 
(co)variances of the joint distribution of all 

t
ϒ  category totals, and ap-

proximates this distribution by a multivariate normal which forms the base 
of his ML approach. Also, he proposes two other procedures, one being a 
slightly adjusted form of Goodman's ecological regression, accounting for 
different 'district' sizes. Hawkes's third model considers 

2
µ  and 

2
λ  for a 

particular district to be randomly drawn from some joint distribution. The 
expectation and covariance matrix of this distribution are the statistics to be 
estimated. 
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An important contribution has also been made by MacRae (1977). She ex-
tends the notion of the exact distribution of the observed totals in all cate-
gories of 

t
ϒ  given those of 

1t−
ϒ . The distribution is described in detail and 

has come to be known as the 'convolution of multinomials'. A special in-
stance of this distribution, the 'convolution of two binomials' is discussed 
by McCullagh and Nelder (1989) in a ML setting. Furthermore, MacRae 
(1977) shows how to account for heterogeneity by using exogenous macro 
level variables in the ML approach; these variables are allowed to affect the 
transition probabilities using a logistic link function. Brown and Payne 
(1986) use the same convolution of multinomials but they compound it 
with a Dirichlet distribution to account for unobserved heterogeneity, 
thereby giving rise to what they have called the 'aggregate compound mul-
tinomial'. 
 We would like to mention two more recent contributions to the esti-
mation of transition probabilities for repeated aggregated proportions. The 
first one uses the maximum entropy criterion which is closely related to the 
information-theory developed by Shannon (1948) and Jaynes (1957). 
Willekens (1982) shows how, in the analysis of multiway contingency ta-
bles, the maximization of entropy can be used to obtain expected cell fre-
quencies if only marginal totals are known. Golan, Judge and Miller (1996) 
describe entropy more generally as a criterion that is especially appropriate 
to solve 'ill-posed' problems that arise in situations where data are 'limited, 
partial, aggregated and incomplete'. The related criterion of cross-entropy 
can be used when prior information about transition probabilities is avail-
able. Karantininis (2002) applies this approach to model size-changes over 
time of pork farms in Denmark during the period 1984-1998. Also, the ef-
fects of exogenous macro-level variables on transition probabilities can be 
assessed. Karantininis (2002) investigates effects of pig feed prices, pork 
prices and interest rate on the transition probabilities. 
 The second more recently developed approach is King's (1997) so-
called 'ecological inference' (EI) method. For each 'district' the true values 
of 

2
1 µ−  and 

2
λ  range from 0 to 1. Hence, they can be represented by a 

point located somewhere in the unit square formed by a horizontal axis rep-
resenting the value of 

2
1 µ−  and a vertical axis representing the value of 

2
λ , as shown in Figure 1.3a. For the district of Table 1.6, the relation 

2 2
.4 .8(1 ) .2μ λ= − +  (between the left column and the two row propor-
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Figure 1.3 Tomography lines in the unit square 

 
 (a)  (b) 
 
 
 
 
 
 
 
tions of Table 1.6a) implies that for this district the point in the unit 
square must be located on the line given by equation 

2 2
2 4(1 )λ μ= − − . 

The intersection of this line and the unit square is drawn in Figure 1.3a be-
tween the points 1

4( , 1)  and 1
2( , 0) . King calls this line 'tomography line' for a 

given district. In Figure 1.3b the tomography lines of all 8, say, districts of 
a city are shown, representing all possible true values of 

2
µ1−  and 

2
λ  for 

each district. There's a high concentration of lines in the upper left corner 
of the square, especially in the area bounded by the ellipse. Following 
King, this would indicate that, for each district, a low value of 

2
1 µ−  and a 

high value of 
2

λ  is more likely than, say, the reverse. To determine which 
values of 

2
µ1−  and 

2
λ  are most likely, King assumes the district values of 

2
µ1−  and 

2
λ  to be drawn from a truncated bivariate normal distribution 

(TBN). This distribution can be imagined as a Gaussian hat rising above 
the unit square, being higher for more likely combinations of 

2
µ1−  and 

2
λ  

and lower for less likely ones. The distribution is truncated since it has to 
fit in the unit square. To estimate the exact form and place of the TBN 
above the square the locations of all tomography lines in the unit square are 
used. The ellipse in Figure 1.3b actually represents a contour line of the 
TBN after form and place were estimated for the given eight tomography 
lines. Each line segment located within the ellipse area defines the most 
likely values of 

2
µ1−  and 

2
λ  for the corresponding district. What is more, 

imagine a plane perpendicular to the unit square passing through the tomo-
graphy line for a given district. Also, imagine the intersection of this plane 
with the TBN, like a very thin piece of a pie. Projecting this intersection on 
the axes of 

2
1 µ−  and 

2
λ  yields the so-called posterior distribution of both 

2
1 µ−  and 

2
λ  for the district in question, the modes of which correspond 

to the most likely values. Thus, King's EI procedure not only provides in-

2
1 µ−  

2
λ  

(0,0) (1,0) 

(1,1) (0,1) 
1
4( ,1)  

1
2( , 0)  

(0,0) (1,0) 

(1,1) (0,1) 

2
λ  

2
1 µ−  
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formation about the entry and exit rates averaged over all districts, but also 
about the two rates in each separate district. 

A more detailed discussion of other specific models for repeated ag-
gregated proportions is given by King, Rosen and Tanner (2004). More im-
portant, the authors present an overview of the latest developments in this 
field. Also, they show many applications to real data and evaluations of 
models using artificial data. 
 
 
1.2.3  Models for repeated cross sections 
 
Repeated cross sections (RCS) data consist of a number of cross sections 
independently sampled at consecutive time points. The separate cross sec-
tions are usually made up of different individual cases for each of which 
the value of ϒ  is observed. As opposed to repeated aggregated proportions, 
RCS data refer to data from individual cases, as do individual panel data. In 
contrast with the other data types, in RCS data there is typically only one 
observation available for each (individual) unit in each cross section. If the 
population is small in relation to the sample size, it may happen that the 
same individuals are sampled in two or more cross sections. These indi-
viduals, however, cannot be traced and consequently, a Markov model can-
not borrow strength in any way of such 'hidden individual panel data' being 
part of the repeated cross sections. 

Suppose there are three cross sections, A, B and C say, observed at 
time point 1, 2 and 3 respectively. The ϒ  data observed can then be repre-
sented as in Table 1.7 where they constitute the margins of the three sub-
tables labelled A, B and C to refer to the corresponding cross section.  
 
 
Table 1.7 Repeated cross sections at three time points 

 
(A) 

1
ϒ    (B)  

2
ϒ     (C)  

3
ϒ  

 0 1     0 1      0 1  
     0 ? ? ?   0 ? ? ? 
     1

ϒ  
1 ? ? ?   2

ϒ  
1 ? ? ? 

 80 20     48 72      60 140  
                 
                 

 



 18 

These margins represent the numbers of individual cases in each ϒ  cate-
gory at each point in time, that is, in each cross section. 
 As for Table 1.6 with aggregated proportions, presenting RCS data by 
way of the empty cross tables of 

1t−
ϒ  by 

t
ϒ , as in subtables 1.7B and 

1.7C, reveals many unknown quantities in RCS data as compared to indi-
vidual panel data. In addition to these cross tables, the columns of which 
contain the ϒ  totals of cross sections B and C, an extra frequency table 
1.7A is needed to show the totals of the first cross section A. Note that, 
with RCS data, not only are the transition frequencies unknown for each 
particular transition, but also unknown are the ϒ  totals at time point 1t −  
of the cross section that is actually observed at time point t . Thus, for cross 
section B only the totals 48 and 72 at 2t =  are observed and nothing is 
known about the ϒ  values of the 120 individuals of cross section B at time 
point 1. Therefore, from the point of view of studying transitions, of the 
three data types considered here, RCS data have the highest level of miss-
ing data, hence higher than repeated aggregated proportions for which at 
least both margins of the cross tables of 

1t−
ϒ  by 

t
ϒ  are observed. 

 Although many models and techniques have been developed specifi-
cally for analyzing RCS data1, this is not true for Markov chain models. 
Given the large number of unknown quantities in RCS data, this is not sur-
prising. In contrast with this scarcity of models however is the abundance 
of RCS data (with the same variables observed in every cross section) in 
many different research areas. Clearly, the availability of categorical 
Markov models would create new perspectives for analyzing these data, 
with attention also focused on the dynamics (i.e., the transitions) behind the 
observable states of individuals over time. The model presented in the 
chapters to follow illustrates the great but rather unexplored potential of 
RCS data for studying individual transitions over time. 

The basic version of the RCS Markov model for categorical data was 
proposed by Robert Moffitt (1990) who shows how data of even a single 
cross section can be exploited to model transitions over time, by using the 
ages of the individuals in the cross section to represent the time axis along 
which transitions take place. Moffitt applies this 'one cross section' version 
of the model to investigate how a person's marital status is influenced by 

                                                 
1  See e.g. special issue "Analysis of repeated cross-sectional data" of Statistica Neerlandica, 

Journal of the Netherlands Society for Statistics and Operations Research (2001, volume 55, 
nr. 2). 
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the amount of benefit received from the U.S welfare system. Since, in gen-
eral, only female-headed households with no able-bodied male present are 
eligible, negative effects were expected of benefit rate on the probability to 
transit from 'unmarried' to 'married' and positive effects for transition in the 
reverse direction. Moffitt shows that the model indeed is able to display 
such effects, using data from a single cross section of the U.S. Current 
Population Survey of 1985. 

Later (Moffitt 1993) essentially the same model is presented, but now 
for data of repeated cross sections. Instead of respondent's age, the time 
axis now refers to the time points the cross sections were observed. The 
model is applied to investigate female labor supply using 21 annual cross 
sections of the U.S. Current Population Survey over the period 1968-1988. 
Transitions between the states 'employed' and 'unemployed' of women 
(white, married, aged 20-59) are explained by a number micro and macro 
predictor variables. Furthermore, it is interesting to note that in the same 
paper, Moffitt puts the model in a broader perspective of different types of 
models to be applied to RCS data, one of which is an (autoregressive) 
Markov model for interval level ϒ  data. 

We have extended Moffitt's model for categorical data in a number of 
ways, each of which is described in the following chapters and illustrated 
with an application to real data. Also, we developed standalone computer 
software for applying the model, the user manual of which is included in 
Appendix 1. We shall now briefly discuss the model and offer an example 
application. 
 
 
 
1.3 Repeated cross sections Markov model for  
 categorical data 
 
 
In the presentation of the model that follows now, we first show a most 
simple model. This one uses data from three cross sections and has no pre-
dictor variables. The basic model equation is explained and a straightfor-
ward estimation procedure of the unknown transition probabilities is 
shown. The next model presented is about dealing with more then three 
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cross sections and, again, using no predictor variables. At that place we in-
troduce the maximum likelihood estimation procedure. Finally, we discuss  
an application using real data of five cross sections and show how predictor 
variables can be incorporated into the model. 
 
 
1.3.1  Three cross sections, no predictor variables 
 
Suppose there are three cross sections A, B and C, say, observed at time 
point 1, 2 and 3, respectively. Also assume that the unknown true values of 
the entry (

,i t
µ ) and exit (

,i t
λ ) probabilities are time-invariant and homoge-

neous. Hence, we omit the subscripts to indicate time point and individual 
and simply use µ  and λ . Also, we use 

1
p , 

2
p  and 

3
p  to denote the 'state 1' 

probabilities at time point 1, 2 and 3 respectively. The probabilities can be 
presented in (cross) tables, one for each point in time, as in Table 1.8.  

In the title, nor in the subtabels of Table 1.8, reference is made to the 
observed cross sections A, B and C. This is because the probabilities p , µ  
and λ  do not pertain to a particular cross section but, instead, to the time-
points that are denoted by the subscript of ϒ  above the subtables. For ex-
ample, 

2
p  denotes the probability for an individual to be in state 1 of ϒ  at 

timepoint t =2, no matter what particular cross section that individual be-
longs to. Also, µ  and λ  denote the entry and exit probabilities for t =2 and 
= 3t  for all individuals of all three cross sections. 

 From the middle subtable of Table 1.8 one can deduce that for the 
probability 

2
p  to be in state 1 at 2t =  the equation 

2
p =  

1
(1 )p λ− +  

1
(1 )p μ−  must hold. Likewise, from the right subtable of Table 1.8 it can 
be derived that 

3 2 2
(1 ) (1 )p p pλ μ= − + − . In general, for 2t ≥ , it holds 

that: 

                
2

ϒ  

 0 1  

0 1 µ−  μ  
1

1 p−  

 
 
 

1
ϒ  

1 λ  1 λ−  1
p  

  2
1 p−  2

p   
 

                
3

ϒ  

 0 1  

0 1 µ−  μ  
2

1 p−  

 
 

 

2
ϒ  

1 λ  1 λ−  2
p  

  3
1 p−  3

p   
 

          
1

ϒ  

0 1 

  
  

1
1 p−  1

p  
 

Table 1.8 Unknown probabilities for three time points 
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1 1
(1 ) (1 )

t t t
p p pλ μ

− −

= − + − . (4) 
 
Equation (4) is the kernel of the RCS Markov model. For individual het-
erogeneous and time variant models, subscripts for individuals and time 
points could be added to p , µ  and λ . According to Equation (4) the prob-
ability 

t
p  for an individual to be in state 1 at a given time point t  is the 

sum of 
1
(1 )

t
p λ
−

− , i.e., the probability of being in state 1 at the previous 
time point and staying there until the next, and of 

1
(1 )

t
p μ
−

− , the probabil-
ity of not being in state 1 at the previous time point but switching to it at 
the next. Hence the two 'previous' probabilities 1t

p
−

 and 11
t
p
−

−  and the 
two transition probabilities λ  and µ  together determine the 'next' probabil-
ity 

t
p  to be in state 1. Obviously, the fact that the previous state of ϒ  is not 

observed in RCS data implies that in the model equation, both previously 
possible ϒ  states must be taken into account as well as both transitions, 
that can lead to state 1 at the next time point. It is useful to compare Equa-
tion (4) with Equation (5) below, which could be applied if individual panel 
data would be available: 
 

, 1 , 1
(1 ) (1 )

t i t i t
p λ μ

− −

= ϒ − + −ϒ . (5) 
 
In individual panel data, instead of 1t

p
−

 in (4), the observed value of , 1i t−
ϒ  

can be used in the equation and consequently (5) results in either 
1

t
p λ= −  or 

t
p µ= , depending on the observed value of , 1i t−

ϒ  being 1 
or 0. Thus, applying (5) to individual panel data boils down to dividing the 
individuals into two groups, depending on the value of , 1i t−

ϒ ; each group 
has its own probability 1 λ−  or µ  to be in state 1 at time point t  and this 
state 1 probability is actually the transition probability one is interested in. 
(Equation (2) is an example of applying (5) to individual panel data using a 
logistic expression for 

t
p .) In contrast to individual panel data, in RCS data 

the value of , 1i t−
ϒ  is not observed and therefore dividing the individuals on 

the basis of such value is impossible. Consequently, following Equation 
(4), there is only one probability 

t
p  which applies to all individuals, while 

there are two transition probabilities 1 λ−  and µ  which also apply to all 
individuals. One could argue that this is the price to pay for having cross-
sectional data only, which enable the use of (4) as a model equation but not 
(5). However, as will be shown below and in the chapters to follow, the 
more macro and/or micro level covariate information about the individuals 
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in the cross sections is available, the less of a problem this limitation of 
RCS data becomes. 
 Note that in (4) each 'next' probability 

t
p  is thought to directly depend 

only on the immediately preceding probability 1t
p
−

 and not on 2t
p
−

, 3t
p
−

 
etc. Hence, (4) is a first order Markov model equation. Following (4), for 

t
p  one may write 

1
(1 )

t t
p p λ μ μ

−

= − − +  and thus for 2p  and 3p  it holds 
that 
 

2 1
(1 )p p λ μ μ= − − + , (6) 

2

3 1
(1 ) (1 )p p λ μ μ λ μ μ= − − + − − + . (7) 

 
Equation (7) results if, in 

3 2
(1 )p p λ μ μ= − − + , one substitutes for 2p  

the expression 
1
(1 )p λ μ μ− − +  given in (6). From (6) and (7) it follows 

that, given the values of 1p , µ  and λ , those of 2p  and 3p  automatically re-
sult. That is, the probability to be in state 1 on the first time point and the 
two transition probabilities together determine the probability to be in state 
1 at the two subsequent time points. There are only two subsequent state 1 
probabilities here, 2p  and 3p , but the same would hold for 

4
p , 5p , etc. In 

general, the following expression for 
t
p  applies, for 2t ≥ : 

 
2

1

1

0

(1 ) (1 )
t

t

t
p p

τ

τ

λ μ μ λ μ
−

−

=

= − − + − −∑ . (8) 

 
Equation (8) shows that each subsequent 

t
p  can be reduced to 1p , µ  and 

λ . These last three probabilities are therefore the quantities of interest to be 
estimated. The reduction of each subsequent 

t
p  to 1p , µ  and λ  is visual-

ized in Figure 1.4. The figure shows a diagram of the RCS Markov model 
for the first five time points of a potentially longer series of observations. 
The solid arrows represent the influence of the immediately preceding state 
1 probability on the next, with µ  and λ  as parameters determining the 
strength of this influence. Note e.g. that, if 1 λ μ− = , from Equation (4) if 
follows that 

t
p µ=  for all 2t ≥  so that 

t
p  only depends on µ  and not on 

1t
p
−

, which would imply that 
,i t

ϒ  and , 1i t−
ϒ  are independent. Also, if 

0μ λ= = , then from (4) it follows that 
1t t

p p
−

=  for all 2t ≥ , implying 
that the influence of 1t

p
−

 on 
t
p  is at its maximum or that , 1i t−

ϒ  completely 
determines 

,i t
ϒ . The dotted arrows are related to the fact that 

,i t
ϒ  can be 

expressed as 
, ,i t t i t

p εϒ = + , i.e., both 
t
p and 

,i t
ε  determine the value of 
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,i t
ϒ . In the diagram 5p  is completely determined by 

4
p  (i.e., there is no 

other arrow pointing to 5p ), 
4

p  completely by 3p  etc. all the way back to 

1p  and hence 5p  can be expressed completely in terms of 1p , µ  and λ . 
 Given data for only three cross sections, a fairly simple procedure for 
estimating 1p , µ  and λ  is to employ the sample moments 1ϒ , 2ϒ  and 3ϒ  
as estimates of the true or population moments 1p , 

2
p  and 3p , respectively, 

where 
t

ϒ  denotes the mean ϒ -value for the individuals of the cross section 
observed at t , which is equal to the observed state 1 proportion for that 
cross section. Doing so, one obtains the following equations: 
 

1 1
p̂ϒ = , (8) 

2 1

ˆ ˆ ˆˆ (1 )p λ μ μϒ = − − + , (9) 
2

3 1

ˆ ˆˆ ˆ ˆ ˆˆ (1 ) (1 )p λ μ μ λ μ μϒ = − − + − − + . (10) 
 
with (9) and (10) following from (6) and (7). Solving these equations for 
the unknowns 1̂p , µ̂  and ˆλ  yields the estimates  
 

1 1
p̂ = ϒ , (11) 

1

2 3 2 2 1 1
ˆ ( )( )µ

−

= ϒ − ϒ −ϒ ϒ −ϒ ϒ , (12) 
1

2 3 2 2 1 1

ˆ 1 ( )( ) (1 )λ
−

= −ϒ − ϒ −ϒ ϒ −ϒ −ϒ . (13) 
 
For the state 1 proportions 1 .2ϒ = , 2 .6ϒ =  and 

3
.7ϒ =  of the data in 

Table 1.7, applying (12) and (13) results in the estimates 55.µ̂ =  for the 
entry and 20.ˆλ =  for the exit probability. 
 This simple example demonstrates that, as Moffitt (1990) has noted, it 
is actually possible to estimate a dynamic model using cross-sectional data, 
given that certain assumptions are met. A crucial assumption made was the 
time invariance of µ  and λ  which, together with the assumption of indi-
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vidual homogeneity, resulted in only two unknown transition probabilities 
to be estimated, instead of the four 

2
µ
�

, 
3

µ̂ , 
2

ˆλ  and 
3

ˆλ  if only individual 
homogeneity would have been assumed, but time varying entry and exit 
probabilities. However, with the only unknowns being 1̂p , µ̂  and ˆλ  the 
equations (8), (9) and (10) can be solved. The time invariance assumption 
would theoretically speaking not be needed for a Markov model applied to 
individual panel data. However, in applications of Markov models, as-
sumptions regarding time invariance of the transition probabilities are very 
often made, for example to achieve parsimonious models. Furthermore, as 
will be shown below, for the RCS Markov model the time invariance as-
sumption can be relaxed if covariates are incorporated into the model. 
 We previously noted that the marginal proportions at 1t −  are un-
known for the cross section observed at .t  For the data of Table 1.7 the 
marginal frequencies for ( 0ϒ = , 1ϒ = ) are (80,20), (48,72) and (60,140) 
for cross section A, B and C, respectively. For the 120 cases of cross sec-
tion B one may for example guess that, at 1t = , 80% of them were in state 
0 and 20% in state 1. In other words, one may assume that, at 1t = , the ϒ  
proportions of cross section B are equal to the ϒ  proportions observed at 

1t =  for cross section A. In the RCS Markov model a similar assumption 
is made, be it not with respect to the unknown proportions of ϒ  at 1t =  of 
cross section B, but with respect to the underlying probability 1p  to have 
been in state 1 at time point 1. That is, the cases of cross section B are as-
sumed to have had the same probability to be in state 1 at 1t =  as the 
cases of cross section A had at the moment they were actually observed. 
The same assumption is made for the value of 1p  of the cases of cross sec-
tion C; also, for these cases the value of 2p  is assumed to be equal to the 
value of 2p  for the cases of cross section B. 
 It is relevant to note that evaluating (12) and (13) does not always 
produce estimates µ̂  and ˆλ  that lie in the feasible range (0,1). If the true 
data generating process does not behave as was assumed, i.e., first order 
Markov, individually homogeneous and time invariant, one could find val-
ues for µ̂  and/or ˆλ  outside the range (0,1). A few examples in which this is 
the case are worth to consider in some detail.  
 Suppose that for the means of the three cross sections it holds that 

1

3 2 2 1
( )( ) 1−

ϒ −ϒ ϒ −ϒ = , i.e., 3 2 2 1ϒ −ϒ = ϒ −ϒ . This would imply 
that the proportion individuals in state 1 increases (or decreases) over time 
with a constant value, as e.g. with .61ϒ = , .72ϒ =  and .83ϒ = . Such a 
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linear proportional growth of individuals in state 1 cannot be the result of a 
first order, time invariant, individual homogenous Markov process. This 
can be explained as follows. Suppose the values of 3p , 2p  and 1p  are such 
that 

3 2 2 1
p p p p c− = − =  with c  being some constant for which 5 5. .c− ≤ ≤  

holds. Since both first order equations 
2 1 1

(1 ) (1 )p p pλ μ= − + −  and 

3 2 2
(1 ) (1 )p p pλ μ= − + −  should hold, subtracting the first from the sec-

ond implies that 3 2p p− =  
2 1 1 2

( )(1 ) ( )p p p pλ μ− − + −  should hold and 
thus also that (1 )c c cλ μ= − −  and μ λ= −  should hold, which of course 
could only be the case if either 0µ <  or 0λ < . 
 As another example, suppose that 

1 2 3
ϒ = ϒ ≠ ϒ  or in terms of the 

population means 
1 2 3
p p p= ≠ . The fact that 0

2 1
ϒ −ϒ =  would cause a 

division by zero in (12) and (13) and would thus result in no solution for μ̂  
and ˆλ . Again, the supposed sequence of means 

1 2 3
p p p= ≠  could never 

arise from the assumed Markov process, since if so, the equations 

1 2 1 1
(1 ) (1 )p p p pλ μ= = − + −  and 

3 2 2
(1 ) (1 )p p pλ μ= − + − =  

1 1
(1 ) (1 )p pλ μ− + −  should both be valid and hence it should be so that 

1 3
p p=  which is contradictory to 

1 3
p p≠ . 

 As a last example, suppose 
1 2 3

ϒ = ϒ = ϒ  or in words: the propor-
tional distribution of ϒ  is in equilibrium. Again, division by zero due to 

0
2 1

ϒ −ϒ =  causes (12) and (13) to not yield a solution for μ̂  and ˆλ , 
which should be interpreted here as 'no unique solution'. This can be under-
stood as follows. Suppose .2

1 2 3
p p p= = = . Knowing the true value of 

.2 does not provide enough information to conclude anything about the true 
values of µ  and λ . As long as the first order equations 

( )
1 1
(1 ) 1

t t t
p p pλ μ

− −

= − + −  hold, which for both 2t =  and 3t =  re-
sult in 2 2 1 8. . ( ) .λ μ= − +  or 4λ μ= , any pair of values for µ  and λ  is 
equally acceptable for which .25µ ≤  and 0 1λ≤ ≤  (the constraint on the 
value of µ  follows from 2 2 1 8. . ( ) .λ μ= − +  implying that both 
2 1 2. ( ) .λ− ≤  and 8 2. .µ ≤  must be true, resulting in 1λ ≤  and 25.µ ≤ ). 

Taking e.g. the values 25.µ = , 1λ =  and 2
1

.p =  results in the equilib-
rium 2

2 3
... .p p= = = , as would the values 1.µ =  and 4.λ =  do or the 

values 0µ = , 0λ = . In this last situation there would be no switching 
from 0 to 1 or from 1 to 0, meaning that each individual simply remains in 
the same state over time which is the most obvious way to achieve an equi-
librium in 

t
p . The conclusion that the time invariant individual homoge-

nous model does not produce unique estimates of the transition probabili-
ties in case of an equilibrium in 

t
p  is not to be considered a serious draw-
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back in the context of social research: the behaviour of many individuals 
over a longer time period will hardly ever be ruled by such a simple 
Markov process. 
 
 
1.3.2   More than three cross sections, no predictor variables, 

maximum likelihood 
 
We now turn to a situation in which there are data of four cross sections 
available, the extension to five or more being straightforward. Suppose 
that, in addition to the data presented in Table 1.7, there is a fourth cross 
section consisting of 100 individuals, say, 75 of which are in state 1. As be-
fore, the transition probabilities are considered time invariant and individ-
ual homogeneous. Then one can write for 

4
p : 

 
3 2

4 1
(1 ) (1 ) (1 )p p λ μ μ λ μ μ λ μ μ= − − + − − + − − + . (14) 

 
There are three equations now, (6), (7) and (14), that express each 

t
p , with 

2t ≥ , as a function of 1p , µ  and λ . To obtain estimates for 1p , µ  and λ , 
one could use the sample means 1ϒ , 2ϒ , 3ϒ  and 

4
ϒ  as estimates of 1p , 

2p , 3p  and 
4

p . This would again yield (8), (9) and (10) for 1̂p , 2̂p  and 3p̂ , 
while for 

4
p̂  the equation 

 
3 2

4 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ (1 ) (1 ) (1 )p λ μ μ λ μ μ λ μ μϒ = − − + − − + − − +  (15) 
 
arises which is the sample equivalent of (14). In total then, there would be 
four equations in only three unknowns 1̂p , μ̂  and ˆλ , and hence a unique 
and perfectly fitting solution for 1̂p , μ̂  and ˆλ  generally does not exist. It 
would exist only if for the estimates 1̂p , μ̂  and ˆλ , as could be obtained 
from only evaluating (11) through (13), Equation (15) would happen to 
hold. Usually, this will not be the case due to sampling error in the cross 
sections, causing the sample moments 

t
ϒ  to deviate from the correspond-

ing probabilities 
t
p . To account for this error in 

t
ϒ , the expression for each 

of the four 
t

ϒ  is extended with an error term 
t̂
e : 

 

1 1 1
ˆ ˆp eϒ = + , (16) 

2 1 2

ˆ ˆ ˆˆ ˆ(1 )p eλ μ μϒ = − − + + , (17) 
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2

3 1 3

ˆ ˆˆ ˆ ˆ ˆˆ ˆ(1 ) (1 )p eλ μ μ λ μ μϒ = − − + − − + + , (18) 
3 2

4 1 4

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 )p eλ μ μ λ μ μ λ μ μϒ = − − + − − + − − + + . (19) 
 
In the case of three cross sections, only the first three of the above equa-
tions apply. As shown before, values of 1̂p , μ̂  and ˆλ  can then be found 
that exactly 'reproduce' 1ϒ , 2ϒ  and 3ϒ  , i.e., with 0

1 2 3
ˆ ˆ ˆe e e= = = . 

Therefore, in the discussion of the estimators 1̂p , μ̂  and ˆλ  for three cross 
sections, paying attention to the error involved in 

t
ϒ  was not necessary. 

However, with more than three cross sections, values of 1̂p , μ̂  and ˆλ  for 
which all error terms are exactly zero will, in general, not exist. Therefore, 
some criterion is needed to determine which values of 1̂p , μ̂  and ˆλ  are 
'best'. To this aim the maximum likelihood (ML) criterion can be deployed. 
Following (16) through (19) each 

t
ϒ  can be written as ˆ ˆ

t t
p e+ , with ˆ

t
p  be-

ing the estimate of the true state 1 probability 
t
p . Assuming that the num-

ber of individuals in state 1 in the cross section at t  follows a binomial dis-
tribution with expectation ˆ

t
p  and assuming independence of the binomials 

for the four cross sections, the likelihood �  of a given triplet 1̂p , μ̂  and ˆλ  
is given by: 
 

80 20 72 48
100 120

80 721 1 2 2
ˆ ˆ ˆ ˆ(1 ) (1 )p p p p

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= − ∗ − ∗⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
�  

 

140 60 75 25
200 100

75140 3 3 4 4
ˆ ˆ ˆ ˆ(1 ) (1 )p p p p

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− ∗ −⎟ ⎟⎜ ⎜⎟ ⎟⎟⎟ ⎜⎜ ⎝ ⎠⎝ ⎠
 . 

 
In words, the value of �  represents the probability of obtaining exactly 80, 
72, 140, and 75 'successes' given 100, 120, 200 and 100 'draws' with suc-
cess probabilities 1̂p , 2̂p , 3p̂  and 

4
p̂ , respectively. Clearly, �  is a function 

of the four ˆ
t
p  and thus a function of 1̂p , μ̂  and ˆλ . Choosing values of 1̂p , 

μ̂  and ˆλ  such that the resulting value of �  is at its maximum means that 
those values are considered 'best' for which the probability is highest that 
the observed state 1 marginals of the four cross sections would occur. By 
applying this criterion, standard ML theory can be applied which, among 
others things, offers the possibility to perform hypothesis tests on the true 
values of 1p , µ  and λ . Examples of such tests will be given below. For 
now, we only present the estimated values of 1̂p , μ̂  and ˆλ  that maximize 
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the likelihood. These are: 20061̂ .p = , 54ˆ .μ =  and 17ˆ .λ = . Based on 
these estimates the resulting values for 2̂p , 3p̂  and 

4
p̂  are 5937. , 7076.  and 

7409. , respectively. It can be concluded that the four estimates ˆ
t
p  are very 

close to the corresponding observed sample proportions .20, .60. ,70, and 
.75, respectively. Following ML theory, one can calculate the deviance of 
the current model from the saturated model (see e.g. Collett, 1991). Like 
Pearson's 2

X , the deviance is a goodness of fit measure which, for the cur-
rent example, follows a 2

χ distribution with 5 (=number of cross sections) 
minus 3 (=number of parameters estimated, i.e., ˆ

t
p , μ̂  and ˆλ ) makes 2 df, 

provided that the current model holds. Both Pearson's 2
X and the deviance 

are .12 here, this value being indicative of the good fit of the model pre-
dicted proportions to the proportions actually observed. 
 Applying the ML principle means that some method is needed to 
search the values of 1̂p , μ̂  and ˆλ  for which the likelihood function �  ob-
tains its maximum. These values can in general not be evaluated analyti-
cally but, instead, must be determined by some iterative search procedure. 
During the search process the likelihood of candidate values of 1̂p , μ̂  and 
ˆλ  is evaluated. To prevent these values from falling outside the (0,1) range, 
a function can be applied that links each of the three probabilities to a pa-
rameter that is actually estimated. We used the logit link function implying 
that, instead of directly estimating values of 1̂p , μ̂  and ˆλ , the logits of 
these probabilities are estimated. The logit link function is also used to in-
corporate predictor variables in the model as will be shown below. 
 We finally note that the ML method can also be applied if there are 
only three cross sections. The ML estimates of 1̂p , μ̂  and ˆλ  are then equal 
to those obtained by applying (11), (12) and (13), provided these are in the 
(0,1) range. Using the ML approach has the advantage that not only point 
estimates but also standard errors of (the logits of) 1̂p , μ̂  and ˆλ  are easily 
obtained. 
 
 
1.3.3  Including predictor variables and an empirical application 
 
The potential application of the RCS Markov model is enhanced if the 
cross sections include data related to the unknown values of 1p , 

t
μ  and 

t
λ . 

By employing these data as predictor variables for 1p , 
t

μ  and 
t

λ , the 
model becomes more refined in the sense that individuals with different 
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predictor values may have different initial and transition probabilities. Fur-
thermore, if for a given individual the value for a predictor variable 
changes during the time period under study, the transition probabilities for 
that individual change over time. As a consequence, by using predictors 
variables, the resulting Markov model can be individual heterogeneous and 
time varying. 
 To link predictor values to the initial, entry and exit probabilities we 
use the logit link function. To let 1p , 

t
μ  and 

t
λ  depend on the predictors 

sex and age, say, the following expressions would be used for the logits of 
the three probabilities: 
 

logit ( sex +  age,1 0 1 2 1)
sa
p b b b= + , (20) 

logit ( )  sex + age, 0 1 2sa t t
b b b
μ μ μ

μ = + , (21) 
logit ( ) sex + age, 0 1 2sa t t

b b b
λ λ λ

λ = +  (22) 
 
where the subscript ' ,sa ' denotes the dependence on sex and age. Given 
these logits, not only the corresponding probabilities ,1sa

p , ,sa t
µ  and 

,sa t
λ  

can easily be derived, but also all other state 1 probabilities 
,sa t

p  for 1t >  
by using the Markov identity 
 

, , 1 , , 1 ,(1 ) (1 )
sa t sa t sa t sa t sa t
p p pλ μ

− −

= − + − .  (23) 
 
In the logit expressions (20), (21) and (22) the variable age is subscripted 
with a time index, either 1  or t , since its value changes over time for each 
individual. Note that in the Markov identity given in Equation (23) the 
value of , 1sa t

p
−

 actually depends on the respondents age at 1t − . (It would 
therefore be more precise to use 

1
, 1

t
sa t
p

−

−

 instead of , 1sa t
p

−

. However, the 
latter is preferred since the link between time point and corresponding age 
value is obvious.) In the logits, the variable sex has no time index, since its 
value does not change over time. For the respondents of the cross section 
observed at 3t = , say, the value of age

1
 can of course be derived from the 

observed age at 3.t =  To use Moffitt's words: one can 'backcast' the age 
variable in time, in order to derive previous age values. Obviously, such 
'backcasting' in time of predictor variables is easy for time-constant vari-
ables like a person's sex and race. For certain time-varying variables like 
income, marital status, attitudes etc., backcasting is often not possible and 
this limits the possibility to include these variables as predictors. Other 
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time-varying variables like age and macro variables, like unemployment 
rate or GNP, are easy to backcast and, hence, to employ as predictors in the 
model. Also, for certain variables it may be valid to backcast them for only 
1 or 2 time points, say, if they can be assumed to remain stable for such 
short period of time. 
 In (20), (21) and (22) there are nine b  parameters, three for each prob-
ability. Note that 

1
b
μ  denotes the effect of a respondents sex on each of the 

1T −  entry probabilities 
t

µ , where T  is the total number of time points or 
cross sections available. Hence the effect of sex on the entry probability is 
assumed not to vary over time. The same holds for the effect of age and the 
effects of sex and age on the 1T −  exit probabilities

t
λ . These rather re-

strictive assumptions can be loosened in a number of ways to which we 
shall return in the chapters to follow.  
 If sex takes the values 1 or 2 and age ranges from 18 to 70 years, then, 
for the model equations (20), (21) and (22), the likelihood is given by 
 

1, 1,

2 70

, ,
1,1 1 18

(1 )( ) tsatsa tsa

T

tsa

sa t sa t
tsa

t s a

n n nn
p p

n
= = =

−

= −∏∏∏�  

 
where 

tsa
n  denotes the number of individuals in the cross section of time 

point t  with sex s  and age a , of which 1,tsan  are in state 1 of ϒ . Each ,sa t
p  

in the function �  depends on all previous 
,sa t

µ , 
,sa t

λ  and/or ,sa t
p  which in 

turn depend on the nine parameters. The maximum likelihood estimates of 
the parameters are the ones that maximize the value of � . In this example 
the value of �  would depend on 2 (70-18+1)=106 independent draws from 
as many binomial distributions for each of the T  time points, given that 
each sex/age combination would occur in each cross section. The predictor 
variables thus break down the cross sections into groups of individuals, 
each of whom has the same initial and transition probabilities. In the ex-
treme case, each group contains only a single individual, in which case the 
likelihood turns into 
 

 , , , ,

1 1

(1 )(1 )[ ]
tT

i t i t i t i t

t i

n

p p

= =

= ϒ + −ϒ −∏∏�  
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with 
t

n  denoting the number individuals in the cross section observed at 
time point t . Every individual case may have its own unique set of values 
for the initial and transition probabilities, different from those of all other 
individuals. This explains why the RCS model was earlier classified as a 
model appropriate for individual (as opposed to aggregate) data. However, 
the parameters that determine the individual specific probabilities are 
common to many or even all individuals. 
 We will now illustrate the model using actual data. In doing so, we 
will also discuss some additional model details. The data we will use are 
taken from the 5 'Social and Cultural Developments in the Netherlands' 
(SOCON) surveys, conducted in 1979, 1985, 1990, 1995 and 2000. In each 
survey, a sample of the Dutch population aged 18 to 70 is interviewed on a 
number of social-cultural issues. One point of interest is the degree to 
which respondents maintain a cultural conservative attitude. This attitude is 
measured with a set of items, one of which is: 'Do you think it should be 
possible for a woman to have an abortion without further preface, if she 
wants to?' with response categories 'yes', 'no' and 'no opinion'. We restrict 
the analysis to the responses 'yes' and 'no' (97% for the five surveys to-
gether) and exclude respondents with 'no opinion'.  
 Table 1.9 gives proportions 'yes' (i.e., pro-abortion) and the totals for 
3*41=123 different combinations of age and education. The rightmost col-
umn of Table 1.9 reveals a large increase between 1995 and 2000 of the 
proportion of people who feel that women should have the possibility of an 
abortion without preface. 
 The column labelled 'age' contains the history of (maximally five) age 
values for the period starting in 1979 up until the year that the respondents 
were interviewed. A dash '-' denotes that these respondents did not reach the 
age of 18 yet at the time that the survey took place. We explained above 
that in the RCS model the initial probability 

1
p  is used as the starting point 

for the Markov process under study. For the current example 
1
p  refers to 

the year 1979. However, the respondents in the 2000 cross section with age 
profile '---00' were 2 to 6 years of age in 1979. Consequently, for these 
respondents the initial probability 

1
p  would represent the probability to 

have a certain opinion about abortion at childhood age. This unwanted 
situation is typically encountered if the data cover a relatively long time pe-
riod. A first but rather crude way to get rid of the problem is to select only 
those respondents of each cross section who were old enough to have (had) 
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Table 1.9 Pro-abortion attitude by survey year, age and education in the SOCON 
 surveys conducted in 1979, 1985, 1990, 1995 and 2000 
 

survey 
year 

age   low educ middle educ  high educ 
per  survey 

year 

1979  0*  .31  (103)**  .27  ( 73)  .46  ( 99) .36 (978) 
1979 1  .35  (253)  .37  (153)  .48  (122)  
1979 2  .24  (115)  .41  ( 37)  .35  ( 23)  

1985 -0  .33  ( 81)  .36  (118)  .41  (142) .39(2885) 
1985 00  .35  (108)  .34  (171)  .52  (188)  
1985 01  .32  (151)  .42  (178)  .51  (137)  
1985 11  .30  (396)  .43  (402)  .55  (264)  
1985 12  .28  (122)  .42  ( 88)  .41  ( 41)  
1985 22  .22  (135)  .25  ( 87)  .30  ( 76)  

1990 --0  .39  ( 59)  .44  ( 87)  .43  ( 83) .44(2250) 
1990 -00  .41  (101)  .40  (118)  .52  (126)  
1990 000  .38  ( 21)  .33  ( 36)  .49  ( 51)  
1990 001  .37  ( 76)  .34  ( 90)  .52  (123)  
1990 011  .43  (116)  .53  (100)  .62  (130)  
1990 111  .42  (206)  .44  (175)  .57  (160)  
1990 112  .18  ( 67)  .50  ( 62)  .51  ( 43)  
1990 122  .29  ( 78)  .33  ( 33)  .42  ( 36)  
1990 222  .26  ( 35)  .43  ( 23)  .60  ( 15)  

1995 ---0  .50  ( 30)  .50  ( 46)  .56  ( 61) .41(1933) 
1995 --00  .48  ( 21)  .46  ( 70)  .48  ( 89)  
1995 -000  .32  ( 31)  .40  ( 42)  .55  ( 62)  
1995 -001  .21  ( 24)  .17  ( 42)  .48  ( 81)  
1995 0001  .27  ( 22)  .34  ( 35)  .37  ( 54)  
1995 0011  .35  ( 52)  .40  ( 73)  .46  (111)  
1995 0111  .34  ( 73)  .52  ( 97)  .49  (106)  
1995 1111  .35  (101)  .41  ( 99)  .49  (114)  
1995 1112  .26  ( 57)  .51  ( 45)  .43  ( 46)  
1995 1122  .21  ( 56)  .36  ( 28)  .34  ( 50)  
1995 1222  .28  ( 60)  .31  ( 26)  .45  ( 29)  

2000 ---00  .50  (  6)  .52  ( 29)  .81  ( 21) .62(902) 
2000 --000  .33  (  3)  .53  ( 17)  .73  ( 33)  
2000 --001  .63  (  8)  .50  ( 12)  .70  ( 23)  
2000 -0001  .54  ( 13)  .64  ( 22)  .70  ( 33)  
2000 -0011  .64  ( 11)  .57  ( 30)  .69  ( 32)  
2000 00011  .50  ( 12)  .65  ( 17)  .74  ( 19)  
2000 00111  .58  ( 26)  .63  ( 49)  .73  ( 55)  
2000 01111  .57  ( 28)  .67  ( 61)  .74  ( 53)  
2000 11111  .48  ( 21)  .57  ( 35)  .69  ( 35)  
2000 11112  .40  ( 25)  .61  ( 23)  .73  ( 30)  
2000 11122  .45  ( 29)  .58  ( 12)  .54  ( 24)  
2000 11222  .45  ( 29)  .54  ( 13)  .62  ( 13)  

        Total N=8948 

* Ages for the five periods, '-' = less than 18, 0=18-30, 1=31-55, 2=56-70 years old; e.g.  
 '--001' means: less than 18 years in 1979 and 1985, 18 through 30 years in 1990 and 1995, 

and 31 through 55 years of age in 2000. 
** Proportion with pro-abortion attitude in the subclass (subclass total) 
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a valid response in the year of the first cross section. For the SOCON data 
one could, for example, select respondents who were at least 18 years of 
age in 1979. For the cross section of 2000 this would mean that only re-
spondents of at least 39 years of age would be retained, which is obviously 
not desirable. A second solution to this problem is to let the initial probabil-
ity of a respondent not necessarily relate to the year of the first survey but, 
instead, to the earliest survey year in which the respondent is at least 18 
years old, say. For the respondents of the 2000 cross section with age pro-
file '---00' the initial probability then refers to the year 1995. These respon-
dents make their entrance into the model in 1995 and participate in only a 
single transition, the one from 1995 to 2000. Consequently, the probabili-
ties 

1
p , 

2
p  and 

3
p  are irrelevant for them, 

4
p  and 

5
p  being the only state 

probabilities that matter. Furthermore, for these cases 
4

p  serves as the ini-
tial probability and hence is modelled by a logistic link function, similar to 
the one for 

1
p  in (20). For other respondents 

4
p  is modelled by the usual 

Markov accounting identity 
4 3 4 3 4

(1 ) (1 )p p pλ μ= − + − . In general, in 
this second way of treating respondents who are too young in the year(s) of 
the first cross section(s), it is the respondents birth cohort that determines 
which of all T  probabilities 

t
p  serves as the initial probability. For the 

SOCON data, the birth cohort, initial year and initial probability are shown 
in Table 1.10. 

The rightmost column in Table 1.10 shows that for a considerably 
large number of respondents (1870) the initial year comes after 1979, 
which justifies the second method of treating respondents who were too 
young in the year(s) of the first survey(s). Note that there are 63 respon-
dents in the youngest birth cohort 1978-1982 who cannot have participated 
in any transition. Because our main interest here are the transitions, we ex-

Table 1.10   Birth cohort, initial year and initial probability for the SOCON  
  cross sections conducted in 1979, 1985, 1990, 1995 and 2000 

 
birth cohort initial year initial probability N 
1909-1961 1979 1

p  7141 
1962-1967 1985 2

p  1109 
1968-1972 1990 3

p  505 
1973-1977 1995 4

p  193 
1978-1982 2000 5

p  63 
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cluded these 63 respondents from this analysis, which is thus based on 
8948 respondents. 
 Table 1.11 summarizes different models applied to the data on attitude 
towards abortion. For this dependent variable, we used the values 0 and 1 
to denote the anti-abortion and pro-abortion attitude, respectively. As pre-
dictors we employed the variables age and education. As to the initial prob-
ability, we expect older and lower educated people to be more conservative 
and thus to be more opposed to abortion than younger and higher educated 
people. With respect to the transition probabilities, we expect older and 
lower educated people to have lower entry (switch to pro-abortion) and 
higher exit (switch to anti-abortion) probabilities than younger and higher 
educated people. Furthermore, an extra intercept parameter (named i2000 in 
Table 1.11) was added to the logits of the entry and exit probabilities for 
the 1995-2000 transition. This was done since we expect a higher entry 
and/or lower exit probability for the 1995-2000 transition than for the pre-
vious three, because of the large proportional increase of 'yes' answers in 
the 2000 survey. 
 For each of the models presented in Table 1.11, we started with a full 
model including all predictor effects in each logit equation. We then 
searched for a more parsi-monious model using a stepwise backward pro-
cedure2. The restricted models thus achieved, are the ones presented in Ta-
ble 1.11. 
 In model 1 both age and education are treated as interval level vari-
ables. For age, the values 0, 1, 2 were used for the categories 18-30, 31-55 
and 56-70 years of age, respectively; for education, we used the values -1, 
0, +1 to denote low, middle and high education, respectively. The estimates 
of all parameters selected by the backward procedure are in the expected 
directions, except for the effect of age on the probability to change from 
pro-abortion to anti-abortion: older people are apparently less inclined to 

                                                 
2  From the predictor variables that were not significant at the 5% level in one of the logit equa-

tions, we selected the one that was least significant. That predictor was removed from the 
equation and the model re-estimated. This step was repeated until all the remaining predic-
tors had significant effects. After each removal step, predictors removed earlier were re-
entered into the equation and tested for significance at the 5% level. The most significant 
one, if any, was incorporated anew in the equation. The process of removing and re-entering 
predictors was continued until no more predictors could be removed and none could be re-
entered. 
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change their attitude. However, according to the Pearson's 2
X  the fit of the 

model is not very good. 
 Model 2 includes two refinements in order to improve the fit. First, 
age was treated as a nominal predictor for the following reason. Table 1.9 
reveals that in 9 of the 15 combinations of survey year and education, the 
highest proportion pro-abortion is found for respondents who are in the 
middle age category in the given survey year (value 1 for the rightmost 
digit of the age profile) and not, as we initially expected, for the youngest 
respondents. Also, if the abortion attitude is (logistically) regressed on age 

Table 1.11   Parameter estimates and goodness of fit 

 

  

initial 
probability 

 

entry 
probability 

(anti → pro) 

exit 
probability 

 (pro → anti) 
Model 1 
Pearson 2

X =146.7 age -.197 * -.710 * -.649 * 
df =112, sig=.02 education .200 *  -.853 * 
LL=-337.31 i2000  1.433 *   
 intercept -.344 *  .165  .834 
Model 2 

Pearson 
2

χ =111.1 
 
ic1909-1961 

 
-.536 * 

 
 

  
  

df=110, sig=.45 ic1962-1967  .013    
LL=-321.41 ic1968-1972  .236    
 ic1973-1977 .571 *   
 age 31-55  .108 .201 *   
 age 56-70 -.369 *  -.491   
 education .238 * .507 *   
 i2000  1.468 *   
 intercept  -1.274 * -.820 * 
Model 3 

Pearson 
2

χ =255.5 
 
ic1909-1961  .089   

df=232, sig=.14 ic1962-1967  -.062   
LL=-542.99 ic1968-1972  .157   
 ic1973-1977 .406 *   
 age 31-55 .186 * .249 *  
 age 56-70  -.307 -.405 *  
 education .243 * .529 *  
 pchurch -.814 *  .985 * 
 i2000  1.396 *  
 intercept  -1.268 * -1.526 * 

 
* indicates significance at the 5% level 
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and education, with all cross sections taken together, it turns out that treat-
ing age as a nominal variable greatly improves the log- likelihood of this 
logistic model; this is not true for education. If age has a nonlinear effect on 
the logits of the marginal state 1 probabilities in this logistic model, this 
may also be the case for the transition probabilities. Therefore, in model 2 
we employed two dummy variables for age, the youngest age category 
functioning as the reference category. The second refinement deals with the 
different age cohorts discussed earlier. After omitting the youngest cohort 
containing 63 respondents, there are four cohorts left. For these, the ob-
served proportions pro-abortion are .42, .44, .48 and .55 respectively, 
younger cohorts being less opposed to abortion than older cohorts. To en-
able the model to also recover this trend in the initial probabilities of the 
cohorts (if such would be necessary after controlling for the other effects) 
we used a baseline intercept for the oldest cohort which is labelled ic1909-

1961; for the other three cohorts we used dummy variables, labelled ic1962-

1967, ic1968-1972 and ic1973-1978, the effects of which represent deviations from 
the baseline. During the search procedure for a parsimonious model, the 
three dummies were treated as a block, meaning that if only one was sig-
nificant, none of them were fixed to zero. The same block treatment was 
applied to the two age dummies. 
 The results of model 2 confirm the expectations, albeit that many pre-
dictors located at the exit-transition part of the model are insignificant. Ap-
parently, neither age nor education is (significantly) related to the attitude 
change from pro-abortion to anti-abortion. As to the significant effects, the 
cohort estimates follow a similar rising pattern over time as the observed 
cohort proportions do. Note that only the youngest of the four cohorts, born 
in period 1973-1977, differs significantly from the baseline value -.536 of 
the oldest cohort. The age effects are nonlinear, as we presumed, with the 
middle age category having the highest value for the initial as well as for 
the entry probability. The effects of education are also as expected, with 
higher education associated with a higher initial probability, i.e., a more 
permissive initial attitude towards abortion; also, higher education implies 
a higher probability to change from anti-abortion to pro-abortion. The ef-
fect of i2000 on the entry probability has a positive sign, again as we ex-
pected it to be. Note that, as was intended, the fit of the model has im-
proved dramatically compared to the fit of model 1. 
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Without presenting the data necessary to perform the analysis, we finally 
show the results of still another model in which an additional predictor is 
used. It concerns the predictor labelled 'pchurch' in Table 1.11 which refers 
to whether or not (value 1 and 0, respectively) the respondent's parents 
were member of a Christian church or religious community. If so, we ex-
pect the respondent to have a more conservative attitude and, consequently, 
a lower entry and a higher exit probability. The variable was treated to be 
constant over time. The results are shown under model 3 in Table 1.11. Fo-
cusing only on the two significant church effects, it can be seen that both 
are in the expected direction. Furthermore, parents' church membership ap-
pears to be the only predictor of the ones used here that has a significant 
effect on the probability to change attitude from pro-abortion to anti-
abortion. As to the fit, it should be noted that Pearson's 2

X  and the likeli-
hood of model 3 cannot be compared directly with those of model 1 and 2 
since the number of (aggregate) cases is not the same. For model 1 and 2 
there are 123 cases (i.e., combinations of 41 age-profiles and 3 education 
levels) while for model 3 there are 245 cases. Nevertheless, based on the 
significance level of Pearson's 2

X  it can be concluded that the fit for model 
3 is lower than the one for model 2. 

 
This concludes our introductory treatment of the RCS Markov model. The 
following chapters provide additional details along with a number of model 
extensions and applications in diverse research areas. 
 Chapter 2 starts with a brief comparison of RCS data and individual 
panel data as to the opportunities for investigating individual-level change. 
The structure of the RCS Markov model is explained and the exact initial 
time point at which a Markov process starts is contrasted with the initial 
time point as we defined it above, i.e., the time point of the first cross sec-
tion. A concise expression is derived for the probability 

it
p  of case i  to be 

in state 1 at time point t , which forms the basis for the log-likelihood for-
mula. The procedure of maximum likelihood estimation is explained and 
the derivatives of 

it
p  with respect to the regression parameters in the logit 

link functions are given. The Fisher scoring algorithm, that is used to find 
the maximum of the log-likelihood function, is briefly discussed along with 
the estimated covariance matrix of the parameter estimates. Furthermore, 
for these parameters it is explained how polynomials in time may be used 
to overcome the assumption of regression parameters being constant for the 
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total time period covered by all cross sections. The chapter offers an appli-
cation of the model to cross-sectional data on female labor force participa-
tion in the Netherlands and West Germany for the 1987-1996 period. 
 Chapter 3 resembles Chapter 2 in that it starts with a description of the 
model, the maximum likelihood estimation procedure and a few model ex-
tensions. Also, the application is similar to the one in the previous chapter, 
using the same dependent and independent variables and the data covering 
roughly the same time period. However, instead of cross sections, in Chap-
ter 3 we use individual panel data, the waves of which are treated as inde-
pendent cross sections. In doing so, we are able to compare the transition 
frequencies for the panel waves with transitions frequencies predicted by 
the RCS model. 
 Chapter 4 contains two model extensions. The first deals with the pos-
sibility to use predictor variables that are not backcastable. In the basic 
model as proposed by Moffitt, such (time-varying) predictors, like income, 
cannot be used, which may seriously limit the potential application of the 
model. The second extension deals with modelling unobserved heterogene-
ity. Due, for example, to influences from the (unmodelled) period prior to 
the first observed cross section, or due to the fact that important predictor 
variables are not available in the data, the distributions of the 

,i t
ϒ  may se-

riously deviate from the modelled binomial distributions and consequently, 
the likelihood function may be incorrect. We propose a method to take ac-
count of such unmodelled sources of variation. Furthermore, the RCS 
model is compared with ecological inference approaches for the estimation 
of transition probabilities using cross-sectional data. Such approaches are 
frequently used in political science studies. The application in this chapter 
again uses individual panel data. The dependent variable is vote intention 
for the U.S. presidential elections of 1976. Both model extensions just 
mentioned are applied. Panel transition frequencies and RCS model predic-
tions are compared. Also, the results of a individual panel model are com-
pared with those of the RCS model. 
 In Chapter 5 the properties of the ML estimators are investigated for 
the example data used. These are again panel data, containing 13 annual 
waves of Dutch households for the 1986-1998 period. The dependent vari-
able concerns the presence (or absence) of a PC in the household. Three 
different procedures are employed to gain insight into the properties of the 
ML estimators of the particular model that we used. These include a 
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MCMC procedure, parametric bootstrapping and cross-sectional sub sam-
pling, the last procedure implying that from each panel wave a sub sample 
is taken in such a way that each sub sample contains data from different re-
spondents. 
 Chapter 6 deals with the problem that, due to the many unobserved 
quantities in RCS data, finding the values for the model parameters that 
maximize the likelihood may not be easy. In practice, the likelihood func-
tion may have multiple modes with only slight differences in the likelihood 
associated with each mode. We use a Bayesian approach to enquire into the 
likelihood function's shape for a simple simulated data example. In addi-
tion, it is shown how, in a Bayesian analysis, a small individual panel data 
set can be used to provide prior information about the RCS model parame-
ters. This information is thereupon used to come to well defined posterior 
distributions of the RCS model parameters that could not have been ob-
tained without the 'panel' priors. 
 Chapter 7 gives a summary of the preceding chapters and an overview 
of our future activities to further develop the RCS Markov model's poten-
tial. 
 Appendix 1 contains a user manual of the stand-alone computer pro-
gram Crossmark that we developed for estimating the RCS Markov model. 
Apart from ML estimation using Fisher's scoring method, the program can 
perform Metropolis sampling and parametric bootstrapping. Most model 
extensions discussed are included in the program. 
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2 
 
 
 Female Labor Force Participation in 
 the Netherlands and West-Germany 
 
 
 
This chaptera considers the implementation of a non-stationary, 
heterogeneous Markov model for the analysis of binary dependent 
variables in a time series of repeated cross-sectional (RCS) surveys. The 
model offers the opportunity to estimate entry and exit transition 
probabilities and to examine the effects of time-constant and time-varying 
covariates on the hazards. We show how maximum likelihood estimates of 
the parameters can be obtained by Fisher’s method-of-scoring and how to 
estimate both fixed and time-varying covariate effects. The model is 
exemplified with an analysis of the labor force participation decision of 
Dutch and West German women using ISSP (and other) data from 10 
annual Dutch surveys conducted between 1987 and 1996 and 7 annual 
West German surveys conducted between 1988 and 1994. Some open 
problems concerning the application of the model are discussed. 
 

                                                           
a This chapter has been published as Pelzer, B.J., R. Eisinga, and P.H. Franses. 2005. 

"Panelizing" Repeated Cross Sections. Quality & Quantity, 39: 155-174. 

  
 "Panelizing" Repeated Cross Sections 
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2.1 Introduction 
 
 
In the past few decades there has been a considerable expansion in the 
availability of repeated cross-sectional (RCS) surveys. Some important 
examples include the General Social Survey, the European Value Survey, 
and the International Social Survey Program (ISSP). This accumulation not 
only provides researchers with a growing opportunity to analyze over-time 
change but also raises questions about new analytic methodology for 
exploiting the properties of RCS data for longitudinal study.  

Repeated cross-sectional data contain information on different cross-
sectional units (typically individuals) independently drawn from the same 
population at multiple points in time and aim to provide a representative 
cross section of the population at each sample point. A limitation of this 
type of data for longitudinal research is that the sample units are not 
retained from one time period to the next. RCS data are therefore, in the 
context of dynamic modeling, generally regarded as inferior to genuine 
panel data, that is, repeated observations on the same individual units 
across occasions. An important advantage to using a matched panel file is 
that it provides a measure of gross individual change for each sample unit 
and that it enables us to use each unit as its own control. Panel data, 
however, may also be inferior to the available cross sections in terms of 
sample size, representativeness, and time period covered. The size of a 
panel is commonly reduced over time by the process of selective attrition, 
which may create serious biases in the analysis. Especially in the case of 
long-term panel surveys the panel may become unrepresentative as time 
proceeds. Moreover, logistical constraints often preclude tracking 
individual units through long periods of time, so that analyzing rolling 
cross-sectional data for the assessment of long-run change is the best one 
can do. 

In this paper we discuss, for the case of binary dependent variables, a 
dynamic model originally considered by Moffitt (1990, 1993) that permits 
the identification and estimation of entry and exit transition rates from a 
time series of RCS samples. The model also offers the opportunity to 
examine the effects of covariates on the hazards. In doing so, we extend 
the framework put forth by Moffitt on two points: (i) a procedure is 
derived to obtain maximum likelihood (ML) estimates of the parameters 



 45 

and their dispersion, and (ii) the time-constant coefficient model is 
expanded to also incorporate time-varying coefficients. The proposed 
model is likely to be useful to researchers seeking to explain over-time 
change at the micro level in the absence of microlevel data. It should 
equally be of interest to researchers whose concern resides with the 
explanation of macrolevel trends as it reveals to them the microlevel 
contours underlying such trends. 

The paper is organized as follows. Section 2 presents the model, 
discusses the ML estimation of the parameters and gives additional 
extensions and refinements. We then provide an example application 1 

using a time series of cross-sectional data on female labor force 
participation taken from the Dutch and German omnibus surveys that 
incorporated the ISSP modules, i.e., the Dutch CULTURAL CHANGES surveys 
by the SCP and the German ALLBUS surveys by ZUMA and ZA. The paper 
concludes with some open problems requiring further study. 
 
 
 
2.2 Dynamic model for RCS data 
 
 
The problem of analyzing repeated cross-sectional data has attracted 
increasing attention in econometrics and other disciplines in the past 
several years. One class of models considered is the linear fixed effects 
model (Deaton 1985; Nijman and Verbeek 1990; Verbeek 1996; Verbeek 
and Nijman 1992, 1993; Baltagi 1995; Collado 1997). In this approach 
individual observations are grouped into cohorts based on a time-invariant 
characteristic (typically date of birth) which results in a so-called pseudo 
panel with cohort aggregates. The studies are concerned with the 
conditions under which we can validly ignore the cohort nature of the 
averaged data and treat the pseudopanel of cohorts as if it were a panel of 
individuals. Moffitt (1993) has generalized this approach by considering 
models with a more dynamic structure and binary dependent variables. In 
his method actual grouping of the data into cohorts need not be done and 
the variation in the micro-data is utilized as part of the analytic procedure. 
This section discusses and elaborates his method. It is assumed in the 
sequel that the responses are observed at equally spaced discrete time 
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intervals 1,2,...t =  and that the samples at periods 
j
t  and 

k
t  are 

independent if j k≠ . The symbol it  is commonly used to indicate 
repeated observations on the same sample element i . As there can be no 
misunderstanding, this paper also uses the symbol it  to index individuals 
in RCS samples. 
 
 
2.2.1 First-order Markov model 
 
Suppose, for the moment, that we have a multinomial distribution with 
probabilities 
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Obviously, this distribution is only observed with panel data and not with a 
series of cross-sectional samples. If we define the cell probabilities so that 
they sum to unity across rows and set 
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− = , then the matrix becomes 

 

1

0 1

10

1 1

it

it it

it

it it

y

y

μ μ

λ λ−

−⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠

 

 
This expression is a two-state first-order Markov matrix of transition rates 
that records the probabilities of making each of the possible transitions 
from one time period to the next; e.g., 

it
µ  represents the probability that 

the unit satisfying 0
i
y =  at time 1t −  subsequently satisfies 1

i
y =  at 

time t . Note that the Markov process assumes that the underlying process 
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of change can be described in terms of one-step transitions, i.e., the 
probability of occupying a state at time t  depends only on the state 
occupied at time 1t − . This first-order assumption implies that the 
dependency between successive transitions can be eliminated by 
conditioning on the previous state. Operationally this can be achieved, as 
we will show, by including the previous state in the model as a covariate 
predicting 

it
y . Also note that, if we let  

 
( 1)

it it
p P Y= = , 

(
1

1 | 0)
it it it

P Y Yµ
−

= = = ,  

(
1

0 | 1)
it it it

P Y Yλ
−

= = = , 

 

then we have 
 

1 1 1
( ) (1 ) (1 )

it it it it it it it it it
E Y p p p pμ λ μ η

− − −

= = − + − = + , (1) 
 
where 1

it it it
η λ μ= − − . As noted by Moffitt (1990), the accounting 

identity in Equation (1) is the critical equation for estimating dynamic 
models with repeated cross-sectional samples as it relates the marginal 
probabilities 

it
p  at t  and 

1it
p

−

 at 1t −  to the probabilities of inflow ( )
it

μ  
and outflow ( )

it
λ  from each of the two states. Obviously, the difficulty 

with using cross-sectional surveys is that the state-to-state transitions over 
time for each sample unit are not observed, but rather one observes at each 
of a number of times a distinct cross section of units and their current 
states. And it is immediately obvious that the hazards in (1) are not 
identified given only the marginal probabilities.2 This implies that 
identification of the unobserved transitions over time in RCS data is only 
possible with the imposition of certain restrictions over i  and/or t . 
 A popular restriction is to assume that the transition probabilities are 
the same during the period of time under consideration and that the 
individuals are in a steady state. Then the Markov process is said to have 
time-stationary and unit-homogeneous transition probabilities, hence 

it
µ µ=  and 

it
λ λ=  for all i  and t . Using 1η λ μ= − − , it is easy to 

show that the long-run outcome of the t sets of successive transitions is 

t
p =  

0
( ( ))(1 )t t

i
pμ μ λ η η+ − + , which collapses to /( )

t
p μ μ λ= +  as 

t  goes to infinity.3 This limiting result gives the long-run probability of 
being in a state. That is, for a time point sufficiently far in the future the 
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probability is /( )μ μ λ+  that the state is ‘1’. Note that this probability does 
not depend on the initial probability 

0i
p . Hence there is a tendency as time 

passes for the probability of being in a state to be independent of the initial 
condition. Moreover, as Moffitt (1993) has argued, the initial probability 
refers to the value of the state prior to the beginning of the Markov 
process, for example the state of being unemployed at the beginning of an 
unemployment spell, rather than to the first observed outcome (which is 

1i
p ). It is therefore assumed in many applications to finite-horizon 
situations that 

0
0

i
p =  (see, e.g., Bishop, Fienberg, and Holland 1975). 

This time-invariant steady state model is the standard approach to the 
problem of estimating transition rates from aggregate frequency data in the 
statistical literature (see, e.g., Lee, Judge, and Zellner 1970; Firth 1982; 
Kalbfleish and Lawless 1984, 1985; Lawless and McLeish 1984; Li and 
Kwok 1990; Hawkins, Han and Eisenfeld 1996). The formulation has been 
applied in several economic studies, for example, by Topel (1983) in his 
study on employment duration and by McCall (1971) in his Markovian 
analysis of earnings mobility. Similar uses occur in the social science 
literature on intra-generational job mobility processes where it has come to 
be know as the 'mover-stayer' model (see, e.g., Goodman 1961; 
Bartholomew 1996). 

Because the assumption of stationarity and homogeneity is generally 
not plausible and frequently violated in applications (see, e.g., McFarland 
1970), it is desirable to relax this restriction. If we define the model as in 
Equation (1) and let 

0
0

i
p =  (or t → ∞ ), it may be verified that 

it
p  has 

the representation  
 

1

1 1

( )
t t

it it i is

s

p
τ

τ τ

μ μ η
−

= = +

= +∑ ∏ , (2) 

 
where 1

is is is
η λ μ= − − .4 This reduced form equation for 

it
p  accounts for 

time-dependence and heterogeneity in a flexible manner and it will 
therefore be maintained in the ensuing method. 

To estimate the model in (2) with RCS data, Moffitt (1990, 1993) 
uses an instrumental variable estimation procedure. While repeated cross-
sections lack direct information on the individual transition probabilities, 
they often do provide a set of time-invariant or time-varying covariates 

it
X  

that affect the hazards. The history of these covariates (
1 1

, , ,
it it i

X X X
−

… ) 
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can be employed to generate backward predictions for the transition 
probabilities ( and

1 1 1 2
, , , , , ,

it it i it it i
μ μ μ λ λ λ

− −

… … ) and thus for the 
marginal probabilities (

1 1
, , ,

it it i
p p p

−

… ). Hence the basic idea is to model 
the current and past 

it
µ 's and 

it
λ 's in a regression setting as functions of 

current and backcasted values of time-invariant and time-varying 
covariates 

it
X . Parameter estimates of the covariates are thereupon 

obtained by substituting the hazard functions into Equation (2). Of course, 
this estimation procedure can only be applied if an instrument for 

1it
y

−

 can 
be constructed, that is, if one has available a vector of time-invariant or 
time-varying variables 

it
X  which affect the transition probabilities. 

Moreover, the model can be validly estimated provided we assume that 
measured explanatory variables capture the differences between 
individuals that affect the hazards. 

A common specification for the hazard functions uses a separate 
binary logistic regression for 

1
( 1 | ),

it it it
P Y Y y

−

= =  0,1
it
y = . That is, 

we assume that  
 

logit logit '

1
( 1 | 0) ( )

it it it it
P Y Y Xμ β

−

= = = = , and 
logit logit ' *

1
( 1 | 1) (1 )

it it it it
P Y Y Xλ β

−

= = = − = , 
 
where the parameters β  and *β  may differ. Hence the model assumes that 
the effects of the covariates will differ depending on the previous response. 
A condensed form for the same general model is 
 

logit ' '

1 1 1
( 1 | )

it it it it it it
P Y Y y X y Xβ α

− − −

= = = + , (3) 
 
where *α β β= − . This equation expresses the two regressions as a single 
dynamic model that includes as predictors both the previous response 

1it
y

−

 
(given that the intercept vector is included in 

it
X ) and the interaction of 

1it
y

−

 and the covariates 
it

X . Note that the transition matrix varies across 
both individuals and time periods because the hazards depend on the 
current and backcasted values of the covariates. Theoretical uses of 
Equation (3) for panel data occur in Amemiya (1985), Diggle, Liang and 
Zeger (1994), and Hamerle and Ronning (1995). Boskin and Nold (1975) 
offer an application of a heterogeneous but stationary model with 
exogenous variables to the case of turnover in welfare based on panel data. 
See Toikka (1976) for an application of a three-state Markov model with 
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exogenous variables to labor market choices (employed, unemployed and 
searching for a job, and withdrawal from employment) in which the 
transitions are estimated using frequency data disaggregated by sex.  

According to Equation (3) the transition rates are '( )
it it

F Xμ β=  and 
'1 ( )

it it
F Xλ α β⎡ ⎤= − +
⎣ ⎦

, where F  is the logistic function. Maximum 
likelihood estimates of α  and β  can be obtained by maximization of the 
log likelihood function 
 

 [ ]
1 1

log( ) (1 )log(1 )
t

nT

it it it it

t i

LL y p y p
= =

= + − −∑∑ , (4) 

 
with respect to the parameters, with 

it
p  defined by Equation (2). As 

indicated by Moffitt (1993), obtaining 
it
p  by means of the reduced form 

equation is equivalent to 'integrating out' over all possible transition 
histories for each individual i  at time t  to derive an expression for the 
observed marginal probabilities. To see this, a graphical presentation of the 
model is given in Figure 2.1, omitting the subscript i  for clarity.  
 The marginal probability 

it
p  depends on the set of all possible 

transition histories for each individual i  up to time t . That is, 
it
p  is a 

polynomial in the transition rates 
it

µ  and 
it

λ . The unobserved transition 
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probabilities themselves are modeled as functions of current and 
backcasted values of time-invariant and time-varying covariates 

it
X . 

Hence an important feature of the model is that the transition probabilities 
and the marginal probabilities are estimated as a function of all available 
cross sections rather than simply the observations from the current time 
period. Thus estimates of the distribution at the beginning of the Markov 
chain, for example, are not determined solely by the sample obtained for 
the first time period but by all the samples. 
 
 
2.2.2 Maximum likelihood estimation 
 
Maximum likelihood fitting of the model in Equation (2) requires the 
derivatives of the likelihood function (4) with respect to the parameters. 
The gradients of such models are frequently, as in Moffitt (1993), 
calculated by means of numerical differentiation, but there is no need to 
perform the maximization of the likelihood numerically if expressions are 
available for the derivatives. A major advantage of using analytical 
gradients is that they considerably speed up estimation. The gradients 
generate large and computationally cheap likelihood increases especially 
during the first iteration steps and thus considerable savings in computer 
time. Another advantage is that an asymptotic estimate of the dispersion 
matrix for the estimators is obtained from (the expectation of) the second-
order derivatives of the likelihood surface. For ease of exposition, 
subscript i  is omitted in the expressions of the derivatives and Equation 
(2) is re-written as 
 

1

1
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t s

s
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τ τ
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−
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β
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s
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The first order partial derivatives of 
t
p  in Equation (5) with respect to the 

parameters β  and α  are  
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1

1
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τ τ γ τ

∂ ∂η
μ η η

∂α ∂α
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respectively, where / (1 )x

τ τ τ τ
μ β μ μ∂ ∂ = − , /

s
η β∂ ∂ =  (1 )

s s s
x λ λ− −  

(1 )
s s s
x µ µ− , and / (1 )

s s s s
xη α λ λ∂ ∂ = − . Using these expressions we can 

calculate the derivatives of the log likelihood function with respect to the 
parameters.5 The ML estimates are the values of the parameters for which 
the efficient scores (Rao 1973) are zero. To obtain a solution to the 
equations resulting from setting / / 0LL LLβ α∂ ∂ = ∂ ∂ = , we use a 
modified Newton method6 called Fisher's method-of-scoring which 
provides an iterative search procedure for the computation of β

�

 consisting 
of the iterations: ( 1) ( ) ( ) 1 ( )ˆ[ ( )] ( ( ) )i i i i

LLβ β ε β β β
+ −

= + ∂ ∂I
� � � �

 (see, e.g., 
Amemiya 1981). The parameter ε  denotes an appropriate step length 
which scales the parameter increments and ( )ˆ ˆ( )i

βI  is an estimate of the 
Fisher information matrix 2( ) [ ( )/ ]

j k
LLβ β β β=−Ε ∂ ∂ ∂I  evaluated at 

( )iβ β=

�

, where 2 ( )/
j k

LL β β β∂ ∂ ∂  is the Hessian matrix. As a by-product 
of this iterative scheme, the method-of-scoring produces an estimate of the 
asymptotic variance-covariance matrix of the model parameters, being the 
inverse of the information matrix 1( )β−

I  evaluated at the values of the 
maximum likelihood estimates. 
 
 
2.2.3 Model extension and refinement 
 
A drawback to the Markov model presented by Moffitt (1990, 1993) is that 
it assumes that the covariate effects are fixed over time, implying that the 
covariates are expected to have much the same impact over the period of 
time during which the observations were obtained.7 This restriction cannot 
be expected to remain valid over long time periods and potentially biases 
the estimated effects, particularly those of time-varying variables and the 
baseline hazards. A question arises, however, as to what alternative model 
to consider if we drop the assumption of time-constant parameters. Even 
for moderate numbers of time periods, modifying continually the values of 
the parameters so as to allow the model to adapt itself to ‘local’ conditions 
produces problems of over-parameterization. Due to the large number of 
parameters involved, this will often lead to the nonexistence of unique ML 
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estimates. We try to avoid such problems by a parsimonious 
parameterization suitable for practical applications and introduce time 
variation into the model by allowing the regression coefficient to become 
polynomials in time using the expression 

0 1t
tβ γ γ= + +

2

2
tγ  

d

d
tγ+ +� , where d  is a positive integer specifying the degree of the 

polynomial. This parametric specification is particularly useful in 
situations where we have some prior expectations about how the covariate 
effects vary over time and if the effects evolve slowly. Further, the relative 
ease with which the likelihood function may be maximized adds to the 
usefulness of polynomials as practical tools for time dependence in the use 
of covariates. Of course, in practice it will be desirable to have models 
with low degree polynomials that combine parsimony of parameterization 
with fidelity to data.  

A further way in which we accommodate the model is that whereas 
Moffitt defined the first observed outcome of the process 

1
( 1)

i
P Y =  to 

equal the transition probability 
1i

µ , we take 
1

( 1)
i

P Y =  to equal the state 
probability 

1i
p . That is, we assume that the 

1i
Y 's are random variables with 

a probability distribution '

1
( 1) ( )

i it
P Y F X δ= = , where δ  is a set of 

parameters to be estimated and F  is the logistic function. The δ -
parameters for the first observed outcome at 1t =  are estimated 
simultaneously with the entry and exit parameters of interest at 

2, ,t T= … . Recall that the probability vector at the beginning of the 
Markov chain is estimated as a function of all of the cross-sectional data, 
rather than simply the observations at 1.t =  

Finally, we also relax the assumption that the cross-sections at each 
time t  are of the same sample size. To ensure a potentially equal 
contribution of the cross-sectional samples to the likelihood, we use the 
weighted log likelihood function  
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where 

1
( )/T

t t t t
w n Tn

=

= Σ , 
t

n  is the number of observations of cross sec-
tion t  and T  is the number of cross sections. 
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Table 2.1 Marginal fraction of female employment, n=6,411 (NL) and 4,150 (WG) 
 

 

 The Netherlands West Germany 
 Year tn  1=y  tn  1=y  
 

 

 1987 586 .276 
 1988 582 .325 869 .420 
 1989 611 .358 468 .391 
 1990 839 .455 792 .509 
 1991 584 .430 413 .508 
 1992 637 .425 690 .525 
 1993  578 .483 283 .502 
 1994 609 .435 635 .573 
 1995 659 .490 
 1996 726 .493   
 

 
 
2.3 Application 
 
 
Our empirical application employs ISSP data for married and unmarried 
cohabiting women aged 20-64 drawn from 10 annual Dutch (NL) surveys 
conducted in the period 1987-1996 and 7 annual West German (WG) 
surveys conducted in the 'Alte Bundesländer' in the period 1988-1994. 
Because the ISSP surveys failed to provide some relevant covariates, 
additional information was taken from the omnibus surveys that 
incorporated the ISSP modules. The Dutch ISSP data were part of the 
omnibus survey CULTURAL CHANGES conducted by the Social and Cultural 
Planning Office (SCP). Because the SCP failed to conduct a survey in 1990, 
the cross sections were supplemented by data from the survey SOCIAL AND 

CULTURAL DEVELOPMENTS IN THE NETHERLANDS 1990 (SOCON) by the 
University of Nijmegen (Eisinga et al. 1992). The West German data were 
taken from the ISSP surveys of 1989 and 1993 and the ALLBUS omnibus 
surveys of 1988, 1990-1992, and 1994 by ZUMA and ZA that incorporated 
the ISSP modules. 

The labor market status 
it
y  is defined to equal 1 if the woman 

participates in the labor force (i.e., one or more hours of paid work per 
week) and 0 otherwise. Table 2.1 gives the number of respondents and the 
marginal distribution of participation over time in the Netherlands and 
West Germany. The table shows that over the period considered the female 
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participation rate in the Netherlands almost doubled from about 28% in 
1987 to around 49% in 1996. While the rates for West Germany are 
generally higher, the increase over time is smaller. 

As time-varying covariates, the analysis employs (linear, quadratic 
and cubic terms in) age, number of children at three different age 
categories (< 5, 5-17, ≥  18 years of age), and the annual nationwide 
unemployment rate (%). The covariates completed education and religious 
upbringing (NL) or religion (WG) are taken to be fixed over time. Next to 
these variables the analysis also includes three initial conditions variables 
that capture the first entry into the process at age 20, the interaction of first 
entry with education and the interaction with the aggregate unemployment 
rate.8 It is of interest to note that the individual observations were back-
casted until the minimum age of 20, at which the first entry into the 
participation process is taken to have occurred. For observations whose 
back-casted value of age in a particular cross section was less than 20, the 
entry and exit rates for that time period were fixed to zero. Table 2.2 
presents the parameter estimates for a time-constant-coefficient model 
specifying women's transition into and out of employment.9 The model 
defines the first outcome to equal the transition probability 

1i
µ , as in 

Moffitt (1990, 1993), and not the state probability 
1i

p . 
The first and third column in Table 2.2 present the effect of the 

variables on the transition from non-employment to employment in the 
Netherlands and West Germany, respectively. As can be seen, the 
parameters in both countries are well determined. Whereas education is 
significant in encouraging entry into the labor force, young children in the 
household (especially preschool children) negatively affect the entry 
decision. We also find that age has a substantial curvilinear effect on entry 
implying that the entry rates increase until a certain age after which they 
decline. The initial conditions variables indicate that higher unemployment 
rates and, in the Netherlands, higher education decrease the probability of 
entry at age 20. According to the standard errors, however, these variables 
have little impact on the hazards. The same goes for religious upbringing 
(NL) and religion (WG) and the aggregate unemployment rate. 

The second and fourth column in Table 2.2 give the effect of the 
variables on the transition into non-employment. We find that in the 
Netherlands the exit rates are negatively affected by education and 
positively by the number of preschool children in the household. In West 
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Germany the exit rates are unaffected by education, but positively affected 
by religion and the number of children of different ages. Particularly strong 
is the positive effect on exit of the number of preschool children in 
German households. The coefficients of the age terms imply that in both 
countries the incentives to end a job increase with age, but that the increase 
is not linear. The exit rates initially increase with age, temporarily decrease 
and thereupon increase again. In both countries the effect of the aggregate 
unemployment rate on the transition into non-employment is insignificant. 

There are several arguments to anticipate that some of the covariate 
effects vary over time. First, the presence of young children in the 
household may have become less of an impediment to women's 
employment in the Netherlands and West Germany. The extension of 
statutory maternity leave, the growing access to child care arrangements 
and the availability of non-parental supervision on schools, may all have 
eroded the effect of young children on the entry and exit decisions of 
mothers. Second, over the time period considered, the increase in women's 
schooling has contributed directly and indirectly, through wages, to an 
increase in women's labor supply. The educational expansion increased 
their opportunities in the labor market and gave way to an increasing 
attachment to paid work. The growth in real earning opportunities altered 
women's work decision in that it increased the costs of staying at home 
with an infant and thereby pulled women into the labor force. These 
changes are likely to have led to a strengthening of the effect of education 
on entry and exit. Third, religious secularization may have weakened the 
norms against women's participation in the labor force and we may thus 
expect to find a decreasing effect of religious upbringing and religion on 
entry and exit.  

To examine these expectations, the baseline hazards and the effects of 
the covariates mentioned were allowed to vary over time. The effects of 
the age terms and the unemployment rate were held constant. We also 
separated the first observed outcome of the process from the subsequent 
ones and considered it to equal the state probability 

1i
p  rather than the 

transition probability 
1i

µ . After some testing with several specifications, 
we decided to model all time-varying parameters in the Netherlands by a 
second-degree polynomial. Because of the smaller number of West Germany 
cross sections, the effects of the parameters on the entry rates were 
modeled by a second-degree polynomial, but their effects on the exit rates 
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Table 2.2 Time-constant Markov estimates of women’s transition into and out of 

employment;  n=6,411 (NL) and 4,150 (WG) a 
 

 

 The Netherlands West Germany 
 ( )

t
β μ  b - *( )

t
β λ

 ( )
t

β μ  - *( )
t

β λ  
 

 

Fixed covariates c 
Intercept -2.788* -7.107 -3.688* -18.861* 
 (1.104) (4.223) (1.108) (5.942) 
Education completed .220* -.719* .344* -.072 
 (.066) (.105) (.081) (.130) 
Religious upbringing (NL) -.148 -.008 .074 1.131* 
 / religion (W G) (.125) (.178) (.200) (.399) 
 
Varying covariates 
Age .179* .710* .177* 1.267* 
 (.051) (.335) (.045) (.451) 
Age2 ÷ 100 -.281* -1.936* -.283* -3.300* 
 (.061) (.882) (.054) (1.127) 
Age3 ÷ 10,000  1.804*  2.850* 
  (.760)  (.919) 
Number of children: 
   < 5 years old -.770* .575* -.629* 3.847* 
 (.116) (.143) (.112) (.482) 
   5-17 years old -.460* -.066 -.332* .585* 
 (.076) (.117) (.074) (.141) 
   ≥ 18 years old -.083 -.054 .266* .504* 
 (.129) (.208) (.105) (.176) 
Unemployment rate -.076 -.160 .078 -.018 
 (.097) (.133) (.076) (.090) 
Age20 5.223  3.045 
 (3.347)  (3.810) 
Age20 ×  education -.523  .474 
 (.681)  (.893) 
Age20 ×  unemployment -.618  -.433 
               rate (.417)  (.463) 
 
Log likelihood ( ∗LL ) -3706.729 -2416.144 
 

 

* Significant at 5% level. 
a Asymptotic estimates of standard errors in parentheses.  
b The β -parameters represent the effect on entry (i.e., 

t
μ ), the *

β -parameters the effect on 
1( )

t
λ−  and thus - *

β  the effects on exit (i.e., 
t
λ ). 

c Range of covariates: Education completed (low-high): 1-4 (NL) / 1-3 (WG); Religious 
upbringing (NL) and religion (WG): 0 (no),1 (yes); Age (backcast) in years: 20-64; Number of 
children (backcast) <5: 0-4; Number of children (backcast) 5-17: 0-7 (NL) / 0-6 (WG); Number 
of children (backcast) ≥ 18: 0-5; National unemployment rate (backcast) in each year in 
percentages; Age20: 1 if age (backcast) = 20, 0 if not. 
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were designed by a first-degree polynomial. Further, the effect of religion 
on exit in West Germany turned out to be more or less constant over time 
and this parameter was therefore held time-constant. 
 According to the Akaike information criteria in Table 2.3, that adjust 
the log likelihood for the number of estimated parameters, in both 
countries the time-varying-coefficient model slightly better describes the 
data than the time-constant-coefficient model. This indicates that pooling 
the estimates may be a misspecification, although we have not tested this 
hypothesis formally. The time-paths of the estimated parameters are 
displayed in Figure 2.2. It should be noted that the parameters at 1t =  
(i.e., 1987 in NL and 1988 in WG) represent the effect on the state 
probability and not the effect on entry. 
 Not surprisingly the parameter estimates change substantially if we 
allow for time variation. For the Netherlands, most of the time-paths traced 
out by the Markov coefficients are broadly consistent with the 
expectations: the declining effects of young children (under 18) on both 
entry and exit indicate positive reactions of mothers of preschool children 
to improvements in child care arrangements. Further, the growing positive 
effect of education on entry and its growing negative effect on exit reveal 
women's increasing occupational aspirations. For West Germany, we see 
that the positive effects of education on both entry and exit have declined 
over time. Whereas the negative effect of preschool children on entry has 
declined, the strong positive effect of preschool children on exit has 
increased over time. Hence most of the effects in West Germany are not 

Table 2.3 Goodness of fit statistics; n=6,411 (NL) and 4,150 (WG)  
 
 

 The Netherlands West Germany 
 
 

Time-constant-coefficient model  
Log likelihood ( ∗LL ) -3706.729 -2416.144 
number of parameters 22 22 
Akaike information criterion 1.163 1.175 
 
Time-vaying-coefficient model 
Log likelihood ( ∗LL ) -3669.815 -2382.010 
number of parameters 56 48 
Akaike information criterion 1.162 1.171 
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consistent with the expectation of an increasing effect of education and a 
decreasing effect of the presence of young children.  
 To illustrate the model's ability in predicting life-cycle employment 
and non-employment patterns, Figure 2.3 (top) presents the observed and 
predicted marginal employment probabilities by age.10 The figure shows 
that in both countries the predicted probabilities are very similar to the 
observed. In the Netherlands, the participation rates increase substantially 
until the age of 24 but they are depressed (by the presence of preschool 
children) from age 25 to 34. The rates remain almost unchanged during age 
35-44 and they are forced down again (by occupational pension) after the 
age of 45. For West Germany, we see that the high employment rates at 
age 24 decline until the age of 32, then increase until the age of 43 after 
which they fall again rapidly. Hence the most important difference 
between the countries is the substantial increase in participation in West 
Germany during  the ages 32-43.  This  may   be the result of either higher 

  
≥



 60 

(re-)entry rates after childbearing or lower exit rates during childbearing 
and childrearing in West Germany.  

To examine this issue, the bottom part of Figure 2.3 shows the life 
cycle profile of entry into and exit from the labor force, obtained from 

2, ,t T= … .11 As can be seen, the entry rates in the Netherlands decline 
slightly after age 23 (due to the impact of childrearing), increase slightly 
after the age of 32 (return to work) and then fall substantially past the age 
of 45. With respect to the entry rates the two countries are relatively 
similar, albeit that the German rates are lower. The countries differ 
substantially, however, with respect to the life cycle profile of exit. The 
exit rates in the Netherlands accelerate rapidly after age 25 (the presence of 
young children), remain high and relatively flat during age 36-46, and then 
increase again after age 46. In West Germany, on the other hand, the exit 
rates increase until the age of 27, remain flat during age 28-34, 
substantially decrease after age 35 and then increase again after the age of 
50. Hence the most important difference between the two countries seems 
to be the strong decline in exit rates in West Germany during the ages 
35-50. These life cycle profiles clearly visualize the employment 
interruption during childbearing and childrearing and the effect of 
occupational pension. It should be noted, however, that the rates are 
averages and that they thus confound within-cohort rates with across-
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cohorts rates. A more comprehensive analysis of these transitions could be 
conducted by verifying the results in panel data where sequences are 
known. Such an analysis, however, is beyond the scope of the present 
study and must be left for future research. 
 
 
 
2.4 Conclusion 
 
 
The overall conclusion that we draw from this example is that the proposed 
model can be a useful tool in applied work. It is not a panacea, nor does it 
supersede genuine panel designs, but it puts a series of one-shot surveys 
into perspective and it can certainly provide more refined results and 
interpretations than those available from a single cross-sectional study. 
Micro-data panel sets, without any question, offer the potential for the 
construction of more flexible and richer statistical models of transition 
dynamics than do those based upon cross-sectional information. However, 
while there has been a substantial increase of data archives holding vast 
collections of repeated cross-sectional data, panel data represent the 
exception of these collection efforts, rather than the rule. Moreover, a 
disadvantage to using pure panel surveys is the limited number of time 
points at which persons are usually re-interviewed. Hence the small 
number of time points in panel surveys has to be balanced against the lack 
of direct information on the transitions in long-run RCS data. The ideal 
situation would be to have complete histories of individual moves among 
states over a long time span. This life history information can be collected 
in both panel and RCS surveys through a retrospective interview. 

Some problems we encountered in trying to model unobserved 
transitions over time using RCS data deserve to be mentioned. The 
application of the method presented here requires knowing the history of 
the explanatory variables for the individuals in the samples. We often have 
characteristics for which the history is unknown however. These 
characteristics may be relevant explanatory variables, but in many 
applications the analysis would omit them. Nevertheless, it is our believe 
that relatively rich dynamic models can be developed with a time series of 
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RCS data. Many individual variables can be back-cast with considerable 
accuracy and many aggregate indicators are also measurable in the past.12  

A somewhat related problem, common to all duration analyses, is that 
the model specification assumes that individual heterogeneity is due to the 
observed variables. It is likely, however, that unobserved and possibly 
unobservable variables including the initial conditions are also a source of 
population heterogeneity. The pre-sample history is lost by imposing an 
arbitrary survey window on the behavioral process, thus left-censoring the 
process and omitting events of interests associated with, or arising from, 
the periods prior to the first survey. The potential effect of this 
uncontrolled heterogeneity can bias the estimated effects of the 
explanatory variables included in the model. It is unknown, however, how 
serious the consequences of misspecification are if we have sufficiently 
flexible models for baseline hazards and time-varying covariates. The 
latter are often interpreted as caused by heterogeneity (Fahrmeier and 
Knorr-Held 1997). Hence further investigation is needed on how much of 
the evidence in censored, for example by examining the application of 
mixture models which allow for residual heterogeneity. These models 
include an additional, individual-specific random error term (or nuisance 
parameter) in the linear predictor of the logistic function of the hazards to 
account for omitted variables (or extra-binary variance). 

Another subject for future study is the extension to both higher-order 
and multi-state models. In practice the dependent variable may depend not 
on just the most recent observation but on other previous observations of 
the process as well. Although no essential new theory is involved in such 
an extension, a higher-order chain may have too many parameters in the 
model unless there are some structural constraints imposed on the hazards. 
An initial, computationally tractable way to improve over the example 
application presented here is to consider a first-order model that 
distinguishes exit into non-employment from exit into early retirement, 
where the latter is modeled as an absorbing state (Andersen 1980: 304), 
implying that once entered it is never left. 

Finally, our approach to imposing restrictions on the time-varying-
coefficient model is through low degree polynomial functions. In some 
applications this parametric bases may not provide enough flexibility and 
local adaptiveness. It would therefore seem important to study the minimal 
requirements needed for a varying-coefficient model to yield uniquely 
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identified parameter estimates. We can prove that under relatively mild 
conditions there always exists exactly one solution for the parameters, but 
we can only verify this for relatively simple Markov models, for example, 
those with constant terms only. Unfortunately, no complete set of 
identification rules has yet been found guaranteeing unique solutions in 
more complex models with continuous regressors. It is worthwhile to 
pursue this thorny problem further. 
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Notes 
 
 
1. See Felteau et al. (1997) for an application to the marriage and fertility decisions of 

Canadian women using data from the Survey of Consumer Finances of Statistics Canada. 
2. More generally, a higher-order Markov chain of order l  on m  states has ( 1)l

m m−  
independent transition probabilities. Given m  possible states, there are only 1m−  
unique state probabilities. Because for( 1) 1 1l

m m m m− > − >  the transitions are 
not identified (see Tuman and Hannan 1984: 297). 

3. Let 
1 0

,
i i
p pμ η= +  

2 1i i
p pμ η= +

0
( )

i
pμ η μ η= + +  =  (1 )μ η+  +  2

0i
pη . 

Hence 
1

0
(1 )t t

it i
p pμ η η η

−

= + + + +� =

1

1
(1 )t t τ

τ
μ η

− −

=

+Σ +
0

t

i
pη

( ( ))(1 )tμ μ λ η= + −  
0
.

t

i
pη+  As ,t → ∞  t

η  tends to zero, thus 
( ).

it
p μ μ λ= + Obviously, this equation holds for 1η ≠ , and, if 1η = , 0μ λ= = . 
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4. Let 
1 1 1 0

,
i i i i
p pμ η= +  

2 2 2 1i i i i
p pμ η= +  

2 2 1 1 0
( )

i i i i i
pμ η μ η= + +  =  

2i
μ +  

1 2i i
μ η  

0 1 2i i i
p η η+ . Hence 

it it
p μ= +  

1
(

it it
μ η

−

+  
2 1it it it

μ η η
− −

 + +�  
1 2

)
i i it

μ η η� +  

0 1i i it
p η η�

1

1 1 0 1
( )t t t

it i s is i it
p

τ τ τ τ
μ μ η η

−

= = + =
= +Σ Π + Π . As t → ∞ , 

1

t

itτ
η

=

Π  tends to 
zero, thus 1

1 1
( )t t

it it i s is
p

τ τ τ
μ μ η

−

= = +
= +Σ Π . 

5.  The partial derivative of (the contribution 
i

LL  of observation i  to) the log likelihood 
function LL  with respect to 

t
p  is / ( )/ (1 )

i t t t t
LL p y p p p∂ ∂ = − −  and the partial 

derivative of LL  with respect to the parameters can be obtained by the chain rule, for 
example, / / /

t t
LL LL p pβ β∂ ∂ = ∂ ∂ ⋅∂ ∂ . 

6. The modification consists in substituting the Hessian matrix by its estimated expectation. 
If an iterative procedure of the Newton-type is used, involving analytical derivatives, there 
is a choice between using either actual second derivatives or expected second derivatives, 
i.e., the Fisher information (or expected Hessian). According to Cox and Hinkley (1974: 
308) and Greene (1993: 347-348) there is evidence that the latter is to be preferred because 
it performs better in practice. 

7.  It may be of interest to note that while this restriction is not necessary with true panel data, 
in practice most panel studies nevertheless impose the restriction of time-constant 
coefficients in the model specification (see Bell and Ritchie 1997). 

8.  The potentially important initial conditions variable Age20 × children was not included in 
the analysis as the number of mothers aged 20 was insufficient to allow reliable 
estimation. 

9.  The time-invariant Markov model with constant terms only produced ( )
t

β μ  coefficients 
of -1.099 and -.484 and - *( )

t
β λ  coefficients of -.841 and -.583 in the Netherlands and 

West Germany, respectively. This implies constant annual transition rates of μ = .252 and 
λ = .301 in the Netherlands and μ = .381 and λ = .358 in West Germany. 

10. The mean 
m
p  for age category m  was obtained as 1

1

m
n

m m i it
p n p

−

=

= Σ , where 
m

n  is the 
number of observations in age category m  and 

it
p  the predicted probability of 

observation i  at the current time period t  (i.e., when 
it

y  was observed). 
11. The means 

m
µ  and 

m
λ  for age category m  were obtained as a weighted average of the 

transitions up to t  with weights defined by 1 1

2
( ) ( 1)T T T

k t k t j t j tw n T n
− −

= = =

= Σ − Σ Σ . 
12.  Obviously, it also depends on the time span of the repeated cross sections. If the cross 

sections concern a number of consecutive week-surveys, for example, many variables (e.g., 
income) can reasonably be treated as time-constant. 
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3 
 
 
 
This chaptera considers the implementation of a nonstationary, 
heterogeneous Markov model for the analysis of a binary dependent 
variable in a time series of independent cross sections. The model, 
previously considered by MOFFITT (1993), offers the opportunity to 
estimate entry and exit transition probabilities and to examine the effects 
of time-constant and time-varying covariates on the hazards. We show how 
ML estimates of the parameters can be obtained by Fisher’s method-of-
scoring and how to estimate both fixed and time-varying covariate effects. 
The model is exemplified with an analysis of the labor force participation 
decision of Dutch women using data from the Socio-economic Panelb (SEP) 
study conducted in the Netherlands between 1986 and 1995. We treat the 
panel data as independent cross sections and compare the employment 
status sequences predicted by the model with the observed sequences in 
the panel. Some open problems concerning the application of the model 
are also discussed. 
 
 

                                                           
a  This chapter has been published as Pelzer, B., R. Eisinga, and P.H. Franses. 2001. Estimating 

Transition Probabilities from a Time Series of Independent Cross Sections. Statistica 
Neerlandica, 55: 249-262. Our thanks to Marno Verbeek for his helpful comments on a 
previous draft. 

b  The data for Socio-economic Panel (SEP) utilized in this paper were collected by STATISTICS 

NETHERLANDS  (NCBS) and were made available by the SCIENTIFIC STATISTICAL AGENCY 
(WSA) of the NETHERLANDS ORGANIZATION FOR SCIENTIFIC RESEARCH (NWO).  

 Estimating Transition Probabilities from a 
 Time Series of Independent Cross Sections 
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3.1  Introduction 
 
 
The increasing availability of repeated cross-sectional (RCS) surveys not 
only provides researchers with a growing opportunity to analyze over-time 
change but also raises questions about new methodology for exploiting 
these data for longitudinal study. RCS data contain information on different 
cross-sectional units (typically individuals) independently drawn from a 
population at multiple points in time and aim to provide a representative 
cross section of the population at each sample point. A limitation of this 
type of data for longitudinal research is that the sample units are not 
retained from one time period to the next. RCS data are therefore, in the 
context of dynamic modeling, generally regarded as inferior to genuine 
panel data, that is, repeated observations on the same units across 
occasions. Obviously, an important advantage to using a matched panel 
file is that it provides a measure of gross individual change for each 
sample unit and that it enables us to use each unit as its own control. Panel 
data, however, may also be inferior to repeated cross sections in terms of 
sample size, representativeness, and time period covered. The size of a 
panel is commonly reduced over time by the process of selective attrition, 
which may create serious biases in the analysis. Especially in the case of 
long-term panel surveys the panel may become unrepresentative as time 
proceeds. Moreover, logistical constraints often preclude tracking 
individual units through long periods of time, so that analyzing rolling 
cross-sectional data for the assessment of long-run change is the best we 
can do.  
 This paper discusses, for the case of a binary dependent variable, a 
dynamic model previously treated briefly by MOFFITT (1990 1993) that 
permits the estimation of entry and exit transition rates from a time series 
of RCS samples. The model also offers the opportunity to examine the 
effects of covariates on the hazards. It is therefore likely to be useful to 
researchers seeking to explain over-time change at the micro level in the 
absence of microlevel data. The paper is organized as follows. Section 2 
discusses the model, parameter estimation and some refinements of the 
model. Section 3 provides an example application using panel data on 
female labor force participation taken from the Socio-economic Panel (SEP) 
study conducted in the Netherlands between 1986 and 1995. We treat the 
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panel data as independent cross sections and compare the predictions of 
the Markov model for RCS data with the observations in the panel. Section 
4 concludes. 
 
 
 
3.2 Dynamic model for RCS data 
 
 
The problem of analyzing repeated cross-sectional data has attracted 
increasing attention in econometrics and other disciplines in the last 
several years. One class of models considered is the linear fixed effect 
model (BALTAGI 1995, COLLADO 1997, DEATON 1985, GIRMA 2000 2001, 
NIJMAN and VERBEEK 1990, VERBEEK 1996, VERBEEK and NIJMAN 1992 
1993, VERBEEK and VELLA 2000). In this approach individual observations 
are grouped into cohorts based on a time-invariant characteristic (typically 
date of birth) which results in a so-called pseudo panel with cohort 
aggregates. The studies are concerned with the conditions under which we 
can validly ignore the cohort nature of the averaged data and treat the 
pseudo panel of cohorts as if it were a panel of individuals. MOFFITT 
(1993) has generalized this approach by considering models with a more 
dynamic structure and binary dependent variables. In his method actual 
grouping of the data into cohorts need not be done and the variation in the 
micro data is utilized as part of the analytic procedure. This section 
elaborates his method. It is assumed in the sequel that the responses are 
observed at equally spaced discrete time intervals 1,2,...t =  and that the 
samples at periods 

j
t  and 

k
t  are independent if j k≠ . Other discussions 

of the model include FELTEAU et al. (1997) and MEBANE and WAND 

(1997).  
 
 
3.2.1 First-order Markov model 
 
Suppose we have the following two-state first-order Markov matrix of 
transition rates in which the cell probabilities sum to unity across rows: 
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This expression records the probabilities of making each of the possible 
transitions from one time period to the next; e.g., 

it
µ  represents the 

probability that the unit satisfying 0
i
y =  at time 1t −  subsequently 

satisfies 1
i
y =  at time t . Recall that the first-order Markov process 

assumes that the underlying process of change can be described in terms of 
one-step transitions, i.e., the probability of occupying a state at time t  
depends only on the state occupied at time 1t − . This assumption implies 
that the dependency between successive transitions can be eliminated by 
conditioning on the previous state. Operationally this can be achieved by 
including the previous state in the model as a covariate predicting 

it
y . Also 

note that, if we let  
 
 ( 1)

it it
p PY= = , (

1
1| 0)

it it it
P Y Yµ

−

= = = , and (
1

0 | 1)
it it it

P Y Yλ
−

= = =  
 
then we have 
 
 

1 1 1
( ) (1 ) (1 )

it it it it it it it it it
E Y p p p pμ λ μ η

− − −

= = − + − = + , (1) 

 
where 1

it it it
η λ μ= − − . The accounting identity in (1) is the elemental 

equation for estimating dynamic models with repeated cross-sectional 
samples as it relates the marginal probabilities 

it
p  and 

1it
p

−

 to the 
probabilities of inflow ( )

it
μ  and outflow ( )

it
λ  from each of the two states. 

Obviously, the difficulty with using cross-sectional surveys is that the 
state-to-state transitions over time for each sample unit are not observed, 
but rather one observes at each of a number of times a distinct cross 
section of units and their current states. This implies that identification of 
the unobserved transitions over time in RCS data is only possible with the 
imposition of certain restrictions over i  and/or t . 
 A popular restriction is to assume that the transition probabilities are 
both time-stationary and unit-homogeneous, hence 

it
µ µ=  and 

it
λ λ=  

1

0 1

0 1

1 1
.

it

it it

it

it it

y

y
μ μ

λ λ
−

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠
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for all i  and t . Using 1η λ μ= − − , it is easy to show that the long-run 
outcome of 

it
p  based on t sets of successive transitions is 

0
( ( ))(1 )t t

it i
p pμ μ λ η η= + − + , which collapses to /( )

it
p μ μ λ= +  as 

t  goes to infinity. The limiting result for 
it
p  gives the long-run probability 

of being in a state, i.e., for a time point sufficiently far in the future the 
probability that the state is 1 is /( )μ μ λ+ . Note that this probability does 
not depend on the initial probability 

0i
p . Hence there is a tendency as time 

passes for the probability of being in a state to be independent of the initial 
condition. Moreover, as noted by MOFFITT (1993), the initial probability 
refers to the value of the state prior to the beginning of the Markov 
process, for example the state of being unemployed at the beginning of an 
unemployment spell, rather than to the first observed outcome (which is 

1i
p ). It is therefore assumed in many applications to finite-horizon 
situations that 

0
0

i
p =  (see, e.g., BISHOP, FIENBERG, and HOLLAND 1975). 

This time-invariant steady state model is the standard approach to the 
problem of estimating transition rates from aggregate frequency data in the 
statistical literature (see, e.g., FIRTH 1982, HAWKINS, HAN and EISENFELD 
1996, KALBFLEISH and LAWLESS 1984 1985, LAWLESS and MCLEISH 1984, 
LEE, JUDGE, and ZELLNER 1970, LI and KWOK 1990). The formulation has 
been applied in several economic studies, for example, by TOPEL (1983) in 
his study on employment duration and by MCCALL (1971) in his 
Markovian analysis of earnings mobility. Similar uses occur in the social 
science literature on intra-generational job mobility processes where it has 
come to be known as the 'mover-stayer' model (see, e.g., BARTHOLOMEW 
1996, GOODMAN 1961). 
 Because the assumption of stationarity and homogeneity is generally 
not plausible and frequently violated in applications, it is desirable to relax 
this restriction. If we define the model as in Equation (1) and let 

0
0

i
p =  

(or t → ∞ ), it is easy to verify that 
it
p  has the representation  

 
1

1 1

t t

it it i is

s

p
τ

τ τ

μ μ η

−

= = +

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

∑ ∏ ,   (2) 

 
where 1

is is is
η λ μ= − − . This reduced form equation for 

it
p  accounts for 

time-dependence and heterogeneity in a flexible manner and it will 
therefore be maintained in the ensuing method.  
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To estimate the model in (2) with RCS data, MOFFITT (1990 1993) uses the 
following estimation procedure. While repeated cross sections lack direct 
information on the individual transitions, they often do provide a set of 
time-invariant or time-varying covariates 

it
X  that affect the hazards. If so, 

the history of these covariates (
1 1

, , ,
it it i

X X X
−

… ) can be employed to 
generate backward predictions for the transition probabilities 
( and

1 1 1 2
, , , , , ,

it it i it it i
μ μ μ λ λ λ

− −

… … ) and thus for the marginal 
probabilities (

1 1
, , ,

it it i
p p p

−

… ). Hence the basic idea is to model the current 
and past 

it
µ 's and 

it
λ 's in a regression setting as functions of current and 

backcasted values of time-invariant and time-varying covariates 
it

X . 
Parameter estimates of the covariates are thereupon obtained by 
substituting the hazard functions into Equation (2).  
 A common specification for the hazard functions in panel studies uses 
a separate binary logistic regression for 

1
( 1 | ),

it it it
P Y Y y

−

= =  
0,1

it
y = . That is, we assume that  
 

logit logit
1

( 1 | 0) ( )
it it it it

P Y Y Xμ β
−

= = = = , and 
logit logit *

1
( 1 | 1) (1 )

it it it it
P Y Y Xλ β

−

= = = − = , 
 
where β  and *β  are two potentially different sets of parameters. Hence the 
model assumes that the effects of the covariates will differ depending on 
the previous response. A condensed form for the same general model is 
 
 logit

1 1 1
( 1 | )

it it it it it it
P Y Y y X y Xβ α

− − −

= = = + , (3) 

 
where *α β β= − . This equation expresses the two regressions as a single 
dynamic model that includes as predictors both the previous response 

1it
y

−

 
(given that the intercept vector is included in 

it
X ) and the interaction of 

1it
y

−

 and the covariates 
it

X . Note that the transition matrix varies across 
both individuals and time periods because the hazards depend on the 
current and backcasted values of the covariates. Theoretical uses of (3) for 
panel data occur in AMEMIYA (1985), DIGGLE, LIANG and ZEGER (1994), 
and HAMERLE and RONNING (1995). BOSKIN and NOLD (1975) offer an 
application of a heterogeneous but stationary model with exogenous 
variables to the case of turnover in welfare based on panel data. See 
TOIKKA (1976) for an application of a three-state Markov model with 
exogenous variables to labor market choices (employed, unemployed and 
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searching for a job, and withdrawal from employment) in which the 
transitions are estimated using frequency data disaggregated by sex.  

According to Equation (3) the transition rates are ( )
it it

F Xμ β=  and 
[ ]1 ( )

it it
F Xλ α β= − + , where F  - in this article - is the logistic function. 

Maximum likelihood estimates of α  and β  can be obtained by 
maximization of the log likelihood function 
 

[ ]
1 1

log( ) (1 )log(1 )
t

nT

it it it it

t i

LL y p y p
= =

= + − −∑ ∑ , (4) 

 
with respect to the parameters, with 

it
p  defined by (2). As indicated by 

MOFFITT (1993), obtaining 
it
p  by means of the reduced form equation is 

equivalent to 'integrating out' over all possible transition histories for each 
individual i  at time t  to derive an expression for the marginal probability 

it
p . A graphical presentation of the model illustrating this is given in 
Figure 3.1, omitting the subscript i  for clarity. The marginal probability 

it
p  depends on the set of all possible transition histories for each 
individual i  up to time t . That is, 

it
p  is a polynomial in 

it
µ  and 

it
λ . The 

unobserved transition probabilities themselves are modeled as functions of 
current and backcasted values of time-invariant and time-varying 
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covariates 
it

X . Hence an important feature of the model is that the 
transition probabilities and the marginal probabilities are estimated as a 
function of all the available cross sections rather than simply the 
observations from the current time period. Thus estimates of the transitions 
at the beginning of the Markov chain, for example, are not determined 
solely by the sample obtained for the first time period but by all the 
samples. 
 
 
3.2.2 ML estimation 
 

Maximum likelihood fitting of the model in Equation (2) requires the 
derivatives of the likelihood function (4) with respect to the parameters. 
For ease of exposition, subscript i  is omitted in the expressions of the 
derivatives and Equation (2) is re-written as 
 

1

1

( )
tt

t s

s

p
τ τ

τ τ

μ η η
−

= =

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∑ ∏ , (5) 

 
where 1(1 )x

e
τ
β

τµ
− −

= + , 1
s s s
η λ μ= − − , ( ) 1(1 )s

x

s
e

α β
λ

+ −
= + , and 

xτ and 
s
x  the current and backcasted values of the covariates at t τ=  and 

t s= , respectively. The first order partial derivatives of 
t
p  in Equation (5) 

with respect to the parameters β  and α  are  
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respectively, where / (1 )x

τ τ τ τ
μ β μ μ∂ ∂ = − , / (1 )

s s s s
xη β λ λ∂ ∂ = − −  

(1 )
s s s

x µ µ− , and / (1 )
s s s s

xη α λ λ∂ ∂ = − . Using these expressions we can 
calculate the derivatives of the log likelihood function with respect to the 
parameters. The ML estimates are the values of the parameters for which 
the efficient scores (RAO 1973) are zero. To obtain a solution to the 
equations resulting from setting / / 0LL LLβ α∂ ∂ = ∂ ∂ = , we use 
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Fisher's method-of-scoring which provides an iterative search procedure 
for the estimation of β  and α . Let θ  be the vertical concatenation of the 
column vectors β  and α , then the iteration scheme is 

( 1) ( ) ( ) 1 ( )ˆ ˆ ˆ ˆ[ ( )] ( ( ) )i i i i
LLθ θ ε θ θ θ

+ −
= + ∂ ∂I

�

  (see, e.g., AMEMIYA 1981). The 
parameter ε  denotes an appropriate step length that scales the parameter 
increments and ( )ˆ ˆ( )i

θI  is an estimate of the Fisher information matrix 
2( ) [ ( )/ ]

j k
LLθ θ θ θ=−Ε ∂ ∂ ∂I  evaluated at ( )

ˆ
i

θ , where 2 ( )/
j k

LL θ θ θ∂ ∂ ∂  is 
the Hessian matrix. As a by-product of this iterative scheme, the method-
of-scoring produces an estimate of the asymptotic variance-covariance 
matrix of the model parameters, being the inverse of the information 
matrix 1( )θ−

I  evaluated at the values of the maximum likelihood estimates. 
 
 
3.2.3 Some model extensions 
 
A potential drawback to the model presented by MOFFITT (1990 1993) is 
that it assumes that the effects of the covariates are fixed over time, 
implying that they are expected to have much the same impact over the 
period of time during which the observations were obtained. This 
restriction may not be valid for long time periods and potentially biases the 
estimated effects. An alternative model that could be considered is to allow 
the regression coefficient to become polynomials in t  using the expression 

2

0 1 2

d

t d
t t tβ γ γ γ γ= + + + +� , where d  is a positive integer specifying 

the degree of the polynomial. Obviously, in practice it will be desirable to 
have models with low degree polynomials that avoid problems of 
overparametrization (i.e., nonexistence of unique ML estimates) and that 
combine parsimony of parametrization with fidelity to data. Another way 
in which we may accommodate the model is that whereas Moffitt defined 
the first observed outcome of the process 

1
( 1)

i
P Y =  to equal the transition 

probability 
1i

µ , we take 
1

( 1)
i

P Y =  to equal the state probability 
1i

p . That 
is, we assume that the 

1i
Y 's are random variables with a probability 

distribution 
1

( 1) ( )
i it

P Y F X δ= = , where δ  is a set of parameters to be 
estimated and F  is the logistic function. The δ -parameters for the first 
observed outcome at 1t =  are estimated simultaneously with the entry and 
exit parameters of interest at 2, ,t T= … . Moreover, recall that the 
probability vector at the beginning of the Markov chain is estimated as a 
function of all cross-sectional data, rather than simply the observations at 
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1.t =  Finally, we may also relax the implicit assumption that the cross 
sections at each time t  are of the same sample size. To ensure a potentially 
equal contribution of the cross-sectional samples to the likelihood, we use 
the weighted log likelihood function  
 

[ ]
1 1

log( ) (1 )log(1 )
t

nT

t it it it it

t i

LL w y p y p
∗

= =

= + − −∑∑ ,  

 
where /

t t
w n n= , with 

1
/

t

T

t
n n T

=

= Σ , 
t

n  is the number of observations 
of cross section t  and T  is the number of cross sections. 
 
 
 
3.3 Application 
 
 
Our empirical application employs panel data on female labour force 
participation of Dutch women aged 20-64 drawn from the Socio-economic 
Panel (SEP) study conducted by STATISTICS NETHERLANDS in the period 
1986-1995. The panel data were treated as if they were a temporal 
sequence of cross sections of unrelated women (i.e., no estimate of cov 
(

1
,

t t
y y

−

) is available in the data used to estimate the Markov model). These 
data were used because they allow us to verify the results of the Markov 
model. The labor market status 

it
y  is defined to equal 1 if the woman 

participates in the labor force at time t  and 0 otherwise. Table 3.1 gives 
the number of observations (including panel inflow and outflow), the 
marginal distribution of participation over time, and the observed annual 
entry and exit transitions rates in the panel. The table shows that over the 
period considered the female participation rate in the panel increased from 
about 40% in 1986 to around 56% in 1995. It also shows that both the 
panel entry and exit transition rates are relatively low. The analysis uses 
only covariates that are generally available in repeated cross-sectional 
surveys. As time-varying covariates, the analysis employs age in four 
different age categories (20-34, 35-44, 45-54, 55-64 years of age), the 
number of children at three different age categories (< 5, 5-17, ≥  18 years 
of age), and the annual nationwide unemployment rate (in %). The 
covariate completed education is taken to be fixed over time. Next to these 



 77 

variables the analysis also includes three initial conditions variables that 
capture the first entry into the process at age 20, the interaction of first 
entry with education and its interaction with the aggregate unemployment 
rate. The potentially important interaction of first entry with number of 
children was not included, as the number of mothers aged 20 was 
insufficient to allow reliable estimation. It is of interest to note that the 
individual observations were backcasted until the minimum age of 20, at 
which the first entry into the participation process is taken to have 
occurred. If for an observation the backcasted value of age in a particular 
cross section was less than 20, the entry and exit rates at that time period 
were fixed to zero.  

First a simple time-stationary Markov model with constant terms only 
was applied to the data using the software program CrossMark (which is 
available upon request). This model produced a 

1
( )

t
β μ

>
 of -.222 and a 

*

1
( )

t
β λ

>
−  of -.078. These estimates imply constant transition rates of 
µ = .445 and λ = .480; hence implausibly high values that amply exceed 
those reported in Table 3.1. The model was thereupon extended to a 
nonstationary, heterogeneous Markov model by including the covariates 
reported above. The results are shown in Table 3.2. 

The parameters in the first column show the effect of the variables on 
the employment state probability 

1i
p  at 1t = , estimated for all 

Table 3.1 Marginal fraction of women's employment and observed annual entry and 
exit transition rates 

 

 

 year 
t

n             inflow         outflow 
t
y  

1
| 0

t t
y y

−

=   
1

1 | 1
tt

y y
−

− =  

   (age 20)        (age 64)    
 

 

 1986 2,302 52 21 .400   
    87 2,299 18 33 .406 .076 .109 
    88 2,306 39 28 .425 .097 .106 
    89 2,308 30 28 .432 .087 .109 
    90 2,316 36 36 .448 .107 .113 
    91 2,288  8 47 .476 .127 .105 
    92 2,241 0 41 .515 .128 .074 
    93 2,200 0 39 .525 .097 .086 
    94 2,161 0 48 .526 .077 .082 
    95 2,113 0 36 .557 .121 .066 
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observations in the model. As can be seen, the parameters are well 
determined, with employment positively affected by education and 
negatively by age and the number of children (particularly preschool 
children) in the household. The second column in Table 3.2 presents the 
effect of the variables on the transition from non-employment to 
employment. Whereas education is significant in encouraging entry into 
the labor force, young children in the household and the aggregate 
unemployment rate negatively affect the entry decision. We also find that 
age has a negative effect on entry implying that the entry rates decline with 
age. The initial conditions variables indicate that higher unemployment 
rates and higher education increase the probability of entry at age 20. 
According to the standard errors, however, these variables have little 
impact on the hazards. The third column gives the effect of the variables 
on the transition into non-employment. We find that the exit rates are 
negatively affected by education and positively by the number of school 

Table 3.2 Markov repeated cross section estimates for women’s transition into and out 
of employment, n =22,534 

 

 

   
1

( )
t
pδ
=

a 
1

( )
t

β μ
>

  - *

1
( )

t
β λ

>

 

 

 

 Intercept -.027  (.099) -.684  (.468) -1.877* (.670) 
 Education  .322*  (.031) .347*  (.043) -.570* (.067) 
 Age b:  
    35-44 years old  -.199*  (.079) -1.287* (.127) -2.190* (.287) 
    45-54 years old -1.198* (.095) -1.592* (.203) -.311 (.309) 
    55-64 years old  -2.187* (.115) -3.139* (.439) 1.290* (.240) 
 Number of children: 
     < 5 years old -1.543* (.094) -.214* (.089) 2.066* (.151) 
    5-17 years old -.438* (.036) -.017 (.052) .220* (.107) 
    ≥ 18 years old -.176* (.054) .091 (.105) -.253 (.179) 
 Unemployment rate   -.225* (.067) .052 (.093) 
 Age20 b   .853 (1.599)   
 Age20 ×  education   .306 (.209)   
 Age20 ×  unemployment rate   .283 (.191)   
 
 Log likelihood )(LL*  -12760.67 
 
* Significant at 5% level (based on the estimated information matrix). 
a  Estimates of standard errors in parentheses. The β -parameters represent the effect on 

t
μ , the 

*

β -parameters the effect on (1 )
t
λ− , and thus - *

β  the effect on 
t
λ . 

b Reference category Age=20-34 years; Age20: 1 if age = 20, 0 if not. 
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and preschool children in the household. The coefficients of the age terms 
imply that the incentives to end a job initially decrease with age but they 
are forced up again (presumably by occupational pension) after the age of 
54. The effect of the aggregate unemployment rate on the transition into 
non-employment is insignificant. 
 Because there are substantive arguments to anticipate that the effect 
of some of the covariates (intercept, number of young children, education) 
may vary over time, several tests with different time-varying-coefficient 
models were applied to the data. These models, however, describe the data 
only slightly better (in terms of goodness-of-fit) than the time-constant-
coefficient model and their results are therefore not reported here. We 
instead concentrate on an examination of the fit of the estimated model 
presented in Table 3.2 in terms of predictions. There are several ways to do 
so. One is to compare the actual sample frequency of all possible labor 
force participation sequences from 1986 to 1995 with the estimated 
expected frequency of each sequence. The latter were computed as follows. 
With T sample periods, we have 

1
2

T t

t=
Σ  different sequences (which in the 

present application equals 2,046) ranging in length from 1 (e.g., '0')  to T  
(e.g., '0101010101') . We define the probability of a sequence of 
length t for each observation i  of cross section t as 
 
 

1 1 1
( , ..., ) ( )

i t i it t
p y y P Y y Y y= = ∩ ∩ =� � � � �… ,  

 
where 

1
, , 0,1

t
y y =� �… . Hence  

 
 

1 1 1 1 1 1 1
( ) ( ) (1 )(1 )

i i i i
p y P Y y y p y p= = = + − −� � � � � ,  

 
where 

1i
p  is 

1
( 1)

i
P Y = . For 1t > , we have 

 

1
( , ..., )

i t
p y y =� � �

1
( )

i
p y� �

2 00 01 10 11
( )t
p p p p

τ=
Π + + + , 

 
where

00 1
(1 )(1 )(1 )

i
p y y

τ τ τ
µ

−

= − − −� � , 
01 1

(1 )
i

p y y
τ τ τ

μ
−

= − � � , 
10 1
p y

τ−
= �  

(1 )
i

y
τ τ
λ−

� , and 
11 1

(1 )
i

p y y
τ τ τ

λ
−

= −� � . The mean value of 
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all observations of cross section t was obtained as 
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Σ � �� . The estimated expected absolute frequency 

1
( ,..., )

t
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� �  of each participation sequence was thereupon computed by 
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An initial examination is to compare the expected with the observed first-
order transitions over the time period of our data. Table 3.3 shows the 
relative frequencies of the estimated expected 

1
( , )

t t
y y
−

� �  transitions and the 
differences between the expected and the observed relative frequencies. As 
can be seen, the predicted frequencies are concentrated in the continuous 
work (11) and continuous nonwork (00) categories. Further, while for 
some time periods the discrepancies between the predicted and the 
observed proportions are significant at the .05 level, most differences are 
very small. This implies that both the mover and the stayer frequencies are 
predicted fairly well.  
 A further examination of the fit of the model reported here is to 
compare the estimated expected and the actually observed absolute 
frequencies of all 2,046 employment status sequences. Because it is 
unfeasible to tabulate all frequencies, they are graphically displayed in 
Figure 3.2 together with the OLS regression lines.  

The top part of the figure displays the predicted and the actual 
frequencies of all possible employment profiles, but highlights the 
relatively small number of sequences with high frequencies. These 
sequences concern the continuous participation and continuous 
nonparticipation categories. The bottom part of the figure zooms in on the 
employment sequences with relatively low frequencies in the 0-140 range. 
Visual inspection suggests close agreement between the estimated 
expected frequencies predicted by the RCS Markov model and the observed 

Table 3.3 Relative frequencies of estimated expected ( , )1y y
tt−

� �  transitions at sample 
period T  and estimated expected minus observed proportions, n =22,534 

 
 

 T  tn  estimated expected  expected - observed  2

χ   
 
 

   (00) (01) (11) (10) (00) (01) (11) (10) 
 2 2,299     .556  .053 .354 .037 .006 .008 -.007 -.007 6.03 
 3 2,306 .540 .056 .365 .039 .009 -.001 -.003 -.005 1.78 
 4 2,308 .521 .060 .381 .038 .000 .010 -.002 -.009 8.57 
 5 2,316 .495 .067 .400 .038 -.008 .007 .012 -.011 10.49 
 6 2,288 .469 .059 .432 .040 -.007 -.010 .025 -.008 10.96 
 7 2,241 .448 .053 .460 .039 .000 -.013 .011 .003 8.41 
 8 2,200 .441 .038 .482 .039 .011 -.008 .003 -.006 6.12 
 9 2,161 .441 .031 .491 .037 .011 -.005 .001 -.007 5.47 
 10 2,113 .435 .033 .500 .032 .028 -.023 -.001 -.003 36.68 
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frequencies of the spells in the panel. The (unreported) longitudinal 
profiles indicate that most women remain employed or non-employed 
throughout the observation interval and that proportionally few women 
move into and out of the labor force frequently.  
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3.4 Conclusion 
 
 
The overall conclusion that we draw from this example is that the proposed 
model can be a useful tool in applied work. It obviously does not supersede 
genuine panel designs, but it definitely puts a series of one-shot surveys 
into perspective and it provides more refined results than would be 
available from a single cross-sectional study. Microdata panel sets offer 
the potential for the construction of more flexible and richer statistical 
models of transition dynamics than do those based upon cross-sectional 
information. However, while there has been a substantial increase of data 
archives holding vast collections of repeated cross-sectional data, panel 
data represent the exception of these collection efforts, rather than the rule. 
RCS data are cheaper to collect and they do not suffer from problems of 
non-random attrition which plague panel data. Moreover, a disadvantage to 
using pure panel surveys is the limited number of units followed and the 
limited number of time points at which these units are usually re-
interviewed. These limitations have to be balanced against the lack of 
direct information on the transitions in long-run RCS data.  

Some problems we encountered in trying to model unobserved 
transitions over time using RCS data deserve to be mentioned. The 
application of the model presented here requires knowing the history of the 
explanatory variables for the individuals in the samples. We often have 
characteristics for which the history is unknown however. These 
characteristics may be relevant explanatory variables, but in many 
applications the analysis would omit them. Nevertheless, it is our believe 
that relatively rich dynamic models can be developed with a time series of 
RCS data. Many individual variables can be backcasted with considerable 
accuracy and many aggregate indicators are also measurable in the past. 
Moreover, our experiments have shown that it is also possible to specify a 
model with two different sets of parameters for both µ  and λ , i.e., one for 
the past transition rates and a separate one for the transition at the current 
time period. This offers the opportunity to also include relevant non-
backcastable covariates in the (current part of the) Markov model.  

A somewhat related problem, common to all duration analyses, is that 
the model specification assumes that individual heterogeneity is due to the 
observed variables. It is likely, however, that unobserved and possibly 
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unobservable variables including initial conditions are also a source of 
population heterogeneity. The presample history is lost by imposing an 
arbitrary survey window on the behavioral process, thus left-censoring the 
process and omitting events of interests associated with, or arising from, 
the periods prior to the first survey. The potential effect of this 
uncontrolled heterogeneity can bias the estimated effects of the 
explanatory variables included in the model. It is unknown, however, how 
serious the consequences of misspecification are if we have sufficiently 
flexible models for baseline hazards and time-varying covariates. Hence 
further investigation is needed on how much of the evidence is censored. 
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4 
 
 
 
This chapter1 discusses a nonstationary, heterogeneous Markov model 
designed to estimate entry and exit transition probabilities at the micro 
level from a time series of independent cross-sectional samples with a 
binary outcome variable. The model has its origins in the work of Moffitt 
and shares features with standard statistical methods for ecological 
inference. We outline the methodological framework proposed by Moffitt 
and present several extensions of the model to increase its potential 
application in a wider array of research contexts. We also discuss the 
relationship with previous lines of related research in political science. The 
example illustration uses survey data on American presidential vote 
intentions from a five-wave panel study conducted by Patterson in 1976. 
We treat the panel data as independent cross sections and compare the 
estimates of the Markov model with both dynamic panel parameter 
estimates and the actual observations in the panel. The results suggest that 
the proposed model provides a useful framework for the analysis of 
transitions in repeated cross sections. Open problems requiring further 
study are discussed. 
 

                                                 
1 This chapter has been published as Pelzer, B.J., R. Eisinga, and P.H. Franses. 2002. Inferring 

Transition Probabilities from Repeated Cross Sections. Political Analysis, 10: 113-133. We 
would like to thank sincerely the anonymous reviewers for their most helpful comments on an 
early version of the chapter. Their remarks and guidance led to many improvements in the 
presentation of the manuscript. Some elements of the model considered here were published 
previously by the authors (2001).  The data utilized in this chapter were made available by the 
Inter-university Consortium for Political and Social Research (ICPSR). The data for 
Presidential Campaign Impact on Voters: 1976 Panel, Erie, Pennsylvania, and Los Angeles 
were originally collected by Thomas E. Patterson. Neither the collector of the original data nor 
the Consortium bears any responsibility for the analysis or interpretation presented in this 
paper. The data and the stand-alone program CrossMark (including documentation), needed to 
replicate the ML estimations reported here,  are available at the Political Analysis Web site. 

 Inferring Transition Probabilities from 
 Repeated Cross Sections 
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4.1 Introduction 
 
 
Surveys that trace the same units across occasions provide the most 
powerful sorts of data for dynamic analysis of political phenomena. 
However, repeated observations are often unavailable, and many panel data 
sets that do exist are of limited time coverage. This shortcoming combined 
with potential drawbacks such as nonrandom attrition and conditioning 
restrict the use of panel data for the analysis of long-term political change. 

In the absence of suitable panel data, repeated cross-sectional (RCS) 
surveys carried out with a regular periodicity may provide a viable 
alternative. These data do not suffer from problems of selective attrition 
that often plague panel data. Moreover, there exists an abundance of high-
quality RCS data and many repeated cross-sectional surveys are available 
for relatively long time periods, some of which continue to accumulate. 
Given the importance of dynamics in political studies and the lack of panel 
data on many important issues, it would be of great advantage if RCS data 
could somehow be used for the estimation of longitudinal models with a 
dynamic structure. The objective of this paper is to explore those 
possibilities. Specifically, our purpose here is to present a nonstationary, 
heterogeneous Markov model for the analysis of a binary dependent 
variable in a time series of independent crosssectional samples. The model 
has its origins in the work of Moffitt (1990, 1993) and shares features with 
standard statistical methods for ecological or cross-level inference as 
outlined, for example, by Achen and Shively (1995) and King (1997). It 
offers the opportunity to estimate individual-level entry and exit transition 
rates and to examine the effects of timeconstant and time-varying 
covariates on the transitions. Previous discussions of (aspects of) the model 
include those by Felteau et al. (1997), Mebane and Wand (1997) and Pelzer 
et al. (2001). 

The following section first presents the basic Markov model for RCS 
data as proposed by Moffitt and subsequently discusses several extensions 
of his approach and its relationship with related research in political 
science. Section 4.3 provides an example application using panel data on 
American presidential vote intentions from a five-wave survey conducted 
by Patterson (1980) in 1976. We treat these data as independent cross 
sections and compare (i) the parameter estimates obtained from the Markov 
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model for RCS data with the estimates obtained from a dynamic panel 
model and (ii) the transitions predicted by the model with the actual 
transitions in the panel. We do not aim to present a very detailed analysis of 
the electoral data here. The subject matter itself is not the ultimate object 
and we also ignore the potential biases due to panel mortality. Our interest 
here is to calibrate a rather unfamiliar statistical technique on a reasonably 
well-understood set of data to increase the understanding of the model 
rather than offer an immediate analysis of voter preferences and a detailed 
subject-matter interpretation. Most of our substantive results correspond to 
well-accepted political science findings. Yet more crucial to our topic is 
that the validation results suggest that the model can provide a useful tool 
for inferring individual-level transition probability estimates in the absence 
of transition data. We conclude with a discussion of open problems 
requiring further study2. 
 
 
 
4.2 Estimating transition probabilities with RCS data 
 
 
4.2.1 Basic model 
 
Consider a two-state Markov matrix of transition rates in which the cell 
probabilities sum to unity across rows. For this 2×2 table, we define the 
following three terms, where 

it
y  denotes the value of the binary random 

variable y  for unit i  at time t : ( 1)
it it
p P y= = , 

1
( 1 | 0)

it it it
P y yµ

−

= = = , 
and 

1
( 0 | 1)

it it it
P y yλ

−

= = = . These marginal and conditional 
probabilities, respectively, give rise to the well-known flow equation 
 
 

1 1 1
( ) (1 ) (1 )

it it it it it it it it it
E Y p p p pμ λ μ η

− − −

= = − + − = + ,  (1) 
 
where 1

it it it
η λ μ= − − . This accounting identity — also used in 

Goodman’s ecological regression (Goodman 1953; King 1997) — is the 
                                                 
2 It is assumed in this paper that the responses are observed at evenly spaced discrete time 

intervals t  =1, 2, . . . ,  and that the samples at periods 
j

t  and 
k
t  are independent if j k≠ . 

The subscript it  is commonly used to indicate repeated observations on the same sample 
element i . However, to simplify notation, this paper uses the subscript it  to index nonpanel 
individuals in RCS samples. 
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elemental equation for estimating dynamic models with repeated cross 
sections as it relates the marginal probabilities 

i
p  at t  and 1t −  to the 

entry (
it

µ ) and exit (
it

λ ) transition probabilities. Clearly, a dynamic 
analysis of repeated cross sections is difficult because the surveys are 
“incomplete” in the sense that they do not assess directly the state-to-state 
transitions over time for each individual unit. That is, there is no 
information on the temporal covariances (

it
y ,

1it
y

−

) available in the data, 
and this information gap implies that some identifying constraints over i  
and/or t  must be imposed to estimate the unobserved transitions uniquely. 

Different types of restrictions may be called upon (see Moffitt 1990). 
A rather restrictive approach frequently applied in the statistical literature is 
to assume a priori that the transition probabilities are time-invariant and 
unit-homogeneous, hence 

it
µ µ=  and 

it
λ λ=  for all i  and t . It is easy to 

show that in this case the long-run steady-state outcome of 
it
p  is 

/( )
it
p μ μ λ= + .3 Some early references relating to models of this type 
include those that estimate transition rates from aggregate frequency data 
(e.g., Lee et al. 1970; Lawless and McLeish 1984; Kalbfleish and Lawless 
1984, 1985). The formulation has also been used in applied economic 
studies (McCall 1971; Topel 1983), in the famous mover–stayer model of 
intragenerational job mobility (Goodman 1961; Bartholomew 1996), and in 
electoral studies on voter transitions (e.g., Firth 1982). The assumption, 
however, that individual differences in transitions are not present in the 
population lacks plausibility in many empirical applications. Many 
populations studied are heterogeneous in the sense that they comprise 
variation in transitions between units within periods and within units over 
time. Consequently, as noted by Hawkins and Han (2000), studies that 
assume a time-invariant Markov model with a homogeneous transition 
probability matrix have typically found their estimates to be highly 
inefficient. 

Moffitt (1993) proposed a model that relaxes the assumption of a 
time-invariant and unit-homogeneous population. If we define the model as 

                                                 
3 Let 

1 0
,

i i
p pμ η= +  2

2 1 0 0
( ) (1 )

i i i i
p p p pμ η μ η μ η μ η η= + = + + = + + , where 

η = 1 λ μ− − . Hence 1

0
(1 )t t

it i
p pμ η η η

−

= + + + +�

1

1 0
(1 )t t t

i
p

τ

τ
μ η η

− −

=

= + Σ +  
( ( ))(1 )t
μ μ λ η= + −

0

t

i
pη+ . As ,t →∞  the polynomial t

η  tends to 0, thus 
( ).

it
p μ μ λ= + Obviously, this equation holds for 1 1η− < < , as there is no steady-state 
outcome if | | 1η = (see also Bishop et al., 1975: 261-262, and Ross, 1993: 152-153). 
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in Equation (1), it is straightforward to show that the reduced form for 
it
p  

is 
 

 
1

11

t t

it it i is

s

p
τ

ττ

µμ η

−

= +=

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∏ , (2) 

 
where 1

is is is
η λ μ= − − , assuming 

0
0

i
p =  or t → ∞ .4 By explicitly 

allowing for time dependence and unit heterogeneity, this dynamic version 
of Equation (1) is better suited to yield a more informative model, as it 
imposes no a priori homogeneous structure on the transitions. 

The framework Moffitt (1993) uses to estimate Equation (2) is based 
on the following observation. While RCS data lack direct information on 
transitions in opinions, preferences, choices, and other individual 
characteristics, they often do provide a set of time-invariant and time-
varying covariates 

it
x  that affect the hazards (i.e., the entry and exit 

transition probabilities). If so, the history of these covariates (i.e., 

1 1
, ,...,

it it i−

x x x ) can be employed to generate backward predictions for the 
transition probabilities (

1 1
, , ,

it it i
µ µ µ

−

…  and 
1 2

, , ,
it it i

λ λ λ
−

… ) and thus for 
the marginal probabilities (

1 1
, , ,

it it i
p p p

−

… ). Hence the key here is to model 
the current and past 

it
µ  and 

it
λ  in a regression setting as functions of 

current and backcasted values of time-invariant and time-varying 
covariates 

it
x . The parameter estimates of the covariates are obtained by 

substituting the hazards into Equation (2). The hazards themselves are 
specified as ( )

it it
Fμ β= x  and *1 ( )

it it
Fλ β= − x , where F — in the 

current paper — is the logistic link function [Moffitt (1993) uses the 
probit]. Hence, it is assumed that 
 
 logit ( )

it it
μ β= x      and     logit *(1 )

it it
λ β− = x , (3) 

 

where β  and *β  are two potentially different sets of parameters associated 
with two potentially different sets of covariates 

it
x . This regression setup 

offers the opportunity to estimate transition probabilities that vary across 
individuals and — if the model includes time-varying covariates — time 
                                                 
4 Let 

1 1 1 0
,

i i i i
p pμ η= +  

2 2 2 1 2 2 1 1 0 2 1 2 0 1 2
( )

i i i i i i i i i i i i i i i
p p p pμ η μ η μ η μ μ η η η= + = + + = + + . 

Hence 
it
p =

it
μ +

1 2 1
(

it it it it it
μ η μ η η

− − −

+ +
1 2 0 1

)
i i it i i it

pμ η η η η+ +� � � =
it
μ +  

1

1 1
( )t t

i s isτ τ τ
μ η

−

= = +
Σ Π +

0 1

t

i i t
p

τ
η

=

Π . As ,t →∞  
1

t

itτ
η

=

Π  tends to 0, thus 
1

1 1
( )t t

it it it s is
p

τ τ
μ μ η

−

= = +
= +Σ Π . Obviously, we get the same form for 

it
p  if we let 

0
0

i
p = . 
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periods. Note that it is assumed that the regression coefficients are fixed 
over time. This is the fundamental restriction Moffitt (1993) imposes to 
secure the identifiability of the parameters. There is, however, no need to 
invoke the assumption of time-constant parameters if we have a sufficient 
number of cross sections. We will return to this point momentarily. 
Maximum likelihood (ML) estimates of β  and *β  can be obtained by 
maximization of the log-likelihood function 
 

 [ ]
1 1 1 1

log( ) (1 )log(1 )
t t

n nT T

it it it it it

t i t i

LL y p y p
= = = =

= = + − −∑∑ ∑∑�� , (4) 

 

with respect to the parameters, where T  is the number of cross sections and 

t
n  the number of units of cross section t .5 As Moffitt (1993) notes, 
obtaining 

it
p  by means of Equation (2) is equivalent to “integrating out” 

over all possible transition histories for each individual i  at time t  to 
derive an expression for the marginal probability estimates. To convey this 
idea, compare the contribution to the likelihood of the i th case at time t  in 
panel data with the likelihood contribution of the same case in RCS data. 
For a first-order transition model of binary recurrent events the contribution 
can be written as 
 

1 1 1 1(1 ) (1 )(1 ) (1 )(1 ) (1 )it it it it it it it ity y y y y y y y

it it it it it
L µ λ μ λ− − − −

− − − −

= − −  (5) 

 

(e.g., Stott 1997). Hence, conditional on 
it
y  and 

1it
y

−

, the likelihood 
contribution in binary panel data simplifies to a single transition probability 
estimate. In the Markov model for RCS data proposed by Moffitt (1993), 
however, the contribution of the i th case is given by 
 

 [ ] [ ]
1

1 1 1 1
(1 ) (1 ) (1 )(1 )it it

y y

it it it it it it it it it
L p p p pμ λ μ λ

−

− − − −

= − + − − − + . (6) 

 

In this formulation the likelihood contribution is not a single hazard but, 
rather, a weighted sum of two transition probabilities. Note that in the 
Markov model for RCS data the transition probabilities are estimated as a 

                                                 
5 If the samples of the repeated cross-sectional surveys have an unequal number of 

observations, it may be desirable ensure a potentially equal  contribution of the cross-sectional 
units to the likelihood by using the weighted log likelihood function 

1 1

t
T n

t i t it
LL m

∗

= =
= Σ Σ �� , 

where /
t t

m n n= , with 
1

/T

t t
n n T

=

= Σ . 
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function of all of the available cross-sectional samples rather than simply 
the observations from the current time period (Mebane and Wand 1997). 
This full information strategy expresses the notion that in RCS data 
different individuals are observed over time, but individuals sharing the 
same covariate values are considered to be exchangeable in the sense that 
their transition histories are assumed to be identical. Also, note from the 
comparison that some efficiency is likely to be lost if we use RCS data 
instead of a comparable panel data set with the same sample size. But too 
much should not be made of mentioning differences in the efficiency of 
estimators since repeated cross-sectional surveys typically have a larger 
effective sample size than pure panels (see Heckman and Robb 1985; 
Moffitt 1990). 
 
 
4.2.2 Modifications and extensions of the model 
 
4.2.2.1  Infinite time horizon and initial condition 
 
The Markov model presented in Equation (2) assumes that either 

0
0

i
p =  

or t → ∞ . The latter does not imply that the model is appropriate only in 
an infinite-horizon setting. Successful application of the model, as our 
example shows, does not even require data from a large number of time 
points. In fact, given good instrumental variables, two cross-sectional 
samples would be sufficient. Also, inferences in the model are not 
conditional on the observed units and we do not want to make inferences to 
some notational or hypothetical population. The model is used to make 
probability statements about a well-defined sample (or target) population 
from which the purposive repeated samples were selected. The infinite-
horizon notation does imply, however, that there is a tendency as time 
passes for the probability of being in a state to become independent of the 
initial condition at 0t = . For this reason the initial condition is often 
regarded as a matter of minor importance in Markov modeling and in many 
applications involving finite-horizon situations it is assumed that 

0
0

i
p =  

(Bishop et al. 1975). It may be objected that this assumption is not very 
realistic for social and political phenomena, which are often characterized 
by features such as inertia and state dependence. It is clear, however, that 
when the number of time points grows large, the weight of the initial 
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observations in the likelihood becomes negligible and it is appropriate to 
ignore this issue. 

As noted by Moffitt (1993), the initial probability (i.e., 
0i

p ) refers to 
the value of the state prior to the start of the Markov process (for example, 
the state of being below voting age at the beginning of a vote/nonvote 
sequence) rather than to the first observed outcome (which is 

1i
p ). If the 

initial states are known and fixed, they can be included in the model as 
additional explanatory variables. For example, initial condition variables 
can be used to capture the first entry into the vote/nonvote process at voting 
age 18 and, if appropriate, to capture the interaction of first entry with other 
characteristics such as race and education (see Moffitt 1993). To do so, one 
backcasts the individual observations until the minimum age of 18, at 
which the first entry into the process is assumed to have occurred, and 
estimates 

i
p  for the individuals aged 18 (which is not necessarily 

1i
p ). If 

for an individual the backcasted value of age in a particular cross section is 
18 or less, the entry and exit transition probabilities at that time period are 
fixed to 0. So if it is appropriate to assume that an individual is at the start 
of a new process, the initial state can be incorporated into the model. But 
for most individuals in the samples we do not have access to the process 
from the beginning. The first observed outcome for these individuals 
cannot be assumed fixed as it is determined by the process generating the 
sample observations. Getting around this problem is difficult, but it might 
be solved, at least in part, as follows. Moffitt (1993) assumes that 

0
0

i
p =  

and defines 
1

( 1)
i

P y =  to equal the transition probability
1i

µ . In many 
applications this assumption is untenable and it seems more plausible 
simply to take 

1
( 1)

i
P y =  to equal the state probability 

1i
p . Thus for all of 

the cross-sectional samples the model starts with 
1i

p  instead of 
1i

µ , 
invoked by the assumption that 

0
0

i
p = . That is, one assumes that the 

1i
y ’s 

are random variables with a probability distribution 
1

( 1) ( )
i it

P y F δ= = x , 
where δ  is a set of parameters to be estimated and F  is the logistic link 
function. The δ  parameters for the first observed outcomes at 1t =  are 
estimated simultaneously with the entry and exit parameters of interest at 

2,...,t T= . Note, again, that the probability vector at the beginning of the 
observed Markov chain, 

1i
p , is estimated as a function of all cross-sectional 

data, rather than simply the observations at 1t = . 
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4.2.2.2  ML estimation 
 
Maximum likelihood estimation requires the (analytic or numerical) 
derivatives of the loglikelihood function with respect to the parameters. If 
we suppress the subscript i  for the moment to avoid cumbersome notation, 
the first-order partial derivatives of ��  with respect to the parameters β  
and *β  are 
 

1

1
(1 )

(1 )
t t t t t

t t

t t t

p y p p
p

p p p

∂ ∂ ∂ ∂ ∂μ
η

∂β ∂ ∂β ∂β ∂β
−

−

⎛ ⎞− ⎟⎜= ⋅ = ⋅ + − ⎟⎜ ⎟⎟⎜− ⎝ ⎠

�� ��
, 

 (7) 

 1

1* * * *(1 )
t t t t t

t t

t t t

p y p p
p

p p p

∂ ∂ ∂ ∂ ∂λ
η

∂β ∂ ∂β ∂β ∂β
−

−

⎛ ⎞− ⎟⎜= ⋅ = ⋅ − ⎟⎜ ⎟⎟⎜− ⎝ ⎠

�� ��
, 

 
where / (1 )

t t t t
xμ β μ μ∂ ∂ = −  and */ (1 )

t t t t
xλ β λ λ∂ ∂ = − − . Fisher’s 

method-of-scoring (Amemiya 1981) may be used to obtain both the ML 
parameter estimates and an estimate of the asymptotic variance-covariance 
matrix of the model parameters. Further details about the method-of-
scoring procedure, including the analytic derivatives of 

t
p  with respect to 

the parameters, are provided by Pelzer et al. (2001). 
 
4.2.2.3  Nonbackcastable covariates 
 
The estimation strategy proposed by Moffitt (1993) involves searching the 
cross-sectional data files for variables taking known values in the past. 
Clearly, time-invariant characteristics such as sex, race, cohort, and 
completed education are candidates, and time-specific aggregates 
measurable in the past may also enter the model. But variables such as age 
are usable too, as are age-related variables such as the number of children 
at different ages, since knowledge of the current age implies knowledge of 
age in any past year. However, in many application settings we have time-
dependent covariates that the basic model would omit because the past 
histories are unknown. To incorporate these “nonbackcastable” variables, 
we may adopt a model with two different sets of parameters for both 

it
µ  

and 
it

λ , i.e., one for the current transition probability estimates and a 
separate one for the preceding estimates. Define 

it
v  as a vector of 
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nonbackcastable variables and ζ  as the associated parameter vector. One 
can then write  
 

for 
logit

for 

**

( )
1, ,1.

it it

it

it

t

t

β ζ
μ

β

⎧⎪ +⎪⎪= ⎨
⎪ −⎪⎪⎩

…

x v

x
 (8) 

 
A similar model may be specified for 

it
λ . These specifications offer the 

opportunity to express the current transition probability estimates as a 
logistic function of both the backcastable and nonbackcastable variables. 
The expression also affords a test — useful for efficiency gains — of the 
hypothesis **

.β β=  Whether variables can be backcasted with reasonable 
accuracy obviously also depends on the time span of the repeated cross-
sectional data. If, for example, the samples concern a limited number of 
consecutive week surveys, even nonbackcastable variables such as income 
may reasonably be treated as time-constant. Also, the model can easily be 
adjusted so that backcasting is performed for a limited number of time 
periods. Restricted backcasting may be preferred if only the immediate 
history is known or if covariates can safely be assumed to be constant only 
for a particular number of time points. 
 
4.2.2.4  Time-varying covariate effects 
 
Another drawback of the basic model is that it assumes that the parameters 
of the covariates are fixed over the time period during which the repeated 
cross-sectional samples were obtained. As indicated above, this is the 
critical identifying restriction Moffitt imposed to estimate the parameters. 
However, the assumption of time-constant coefficients cannot be expected 
to remain valid for long periods of time and thus potentially biases the 
estimated effects. Relevant changes in the population and events that 
intervene in consecutive cross sections induce variation in the population 
parameters. There are at least two approaches to deal with time 
dependence. One is to use a fully parametric approach, not pursued in this 
paper, and to allow the regression coefficients to become a specific 
function of time using, for example, the polynomial function 

2

0 1 2

d

t d
t t tβ γ γ γ γ= + + + +� , where the positive integer d  specifies 

the degree of the polynomial. Alternatively, one may use a partially 
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parametric approach, as in this paper, divide the time axis into discrete time 
periods, and assume that the parameters are constant within but vary across 
time periods. An advantage of the fully parametric approach is that it often 
requires that fewer additional parameters be estimated, but in some 
applications it may not provide enough flexibility and local adaptiveness. It 
will also be necessary in the fully parametric approach to have models with 
low-degree polynomials to avoid nonexistence of unique ML estimates. 
The partially parametric approach is particularly useful when little is 
known about the form of the time dependence. Obviously, in this approach 
too, continually modifying the values of the parameters so as to allow the 
model to adapt itself to local conditions produces problems of 
overparameterization. 
 
4.2.2.5  Unobserved heterogeneity 
 
The framework discussed by Moffitt (1993) assumes that the differences in 
transitions within the population depend only on variation in the observed 
variables used as covariates in the model. However, the assumption that the 
model includes all relevant variables is rarely even approximately true in 
social and political science practice. Therefore, another useful extension of 
the basic model is to include an additional, individual-specific random error 
term, 

i
ε , in the linear predictor of the transition probabilities to account for 

omitted variables, at least insofar as the omitted variables are time-invariant 
for each individual. In this so-called logistic-normal mixture model we 
have logit *

0
( )

it it i
μ β γ ε= +x  and logit * *

1
(1 )

it it i
λ β γ ε− = +x , where 

0
γ  

and 
1

γ  are the coefficients of the random variable 
i
ε  having zero mean and 

unit variance (Collett, 1991). Hence *

it
µ  and ( *

1
it

λ− ) have a logistic-normal 
distribution, e.g., logit * 2

0
( ) ~ ( , )

it it
Nμ β γx . This model has the marginal log 

likelihood 
 

* *

1 1

[ log( ) (1 )log(1 )] ( )
t

nT

it it it it i i

t i

LL y p y p f dε ε

∞

−∞

= =

= + − − ⋅∑∑ ∫ , (9) 

 
where * * * * *

1 1
(1 ) (1 )

it it it it it
p p pμ λ

− −

= − + −  and ( )f ε  the probability density 
function of the standard normal random variable 

i
ε . To integrate this 

likelihood with respect to the distribution of 
i
ε , we approximate the 

integral by the Gauss-Hermite formula for numerical integration, i.e., 
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.

2

1( ) ( )qz
j j j

f z e dz w f z
∞

−∞

−

=
≈ Σ∫ , where 

j
z  are the nodes of the quadrature 

formula and 
j

w  the associated weights. The integrated log likelihood then 
becomes 
 

1

* *2

1 1 1

[ log( ) (1 )log(1 )]
t

n qT
j j

j it it it it

t i j

LL w y p y pπ

−

= = =

= + − −∑ ∑ ∑ , (10) 

 
where * * 1 * * *

1 1
(1 )j j t j t j j

it it i s is isp
τ τ τ

μ μ λ μ
−

= = +
= +Σ Π − − , logit *( )j

it
μ =

0
2

it j
zβ γ+x , 

logit *(1 )j

it
λ− =

*

1
2

it j
zβ γ+x , 

j
w  are the fixed quadrature probabilities, 

and 
j

z  are the nodes at the mass points j of the q quadrature. Their values 
are tabulated in standard tables for specified numbers of quadrature points 
(e.g., Stroud and Secrest 1966). Our application below uses a 20-point 
Gaussian quadrature and 0.5

j
wπ

−  and 2
j

z  as fixed probabilities and mass 
points, respectively. Note that the model employs a single random error 
term, 

i
ε , for both *

it
µ  and *

it
λ . Additional insight into the nature of 

heterogeneity could be provided by more general models that fit two 
independent Gaussian random variables or, preferably, a bivariate normal 
random effect (see Cook and Ng 1997). Also, the model assumes that the 
unmeasured variables for each individual are constant over time. For 
example, among the unmeasured (or not accurately measured) factors 
determining voter preferences, characteristics such as personality traits, 
political knowledge, and features of the local political system are likely to 
differ considerably among voters and to remain reasonably stable over 
time. Nevertheless, controlling for heterogeneity caused by unobserved 
time-invariant variables may be insufficient in empirical applications. 
Further, although relatively little is known about individual-specific 
heterogeneity in Bernoulli models of the kind considered here, our limited 
Monte Carlo experiments indicate that a large quantity of individual 
observations is needed to estimate the random effects accurately (see also 
Heckman 1981).  

Our limited experience also supports the notion that ignoring 
heterogeneity in the current model is unlikely radically to change parameter 
estimates, but it may lead to underestimation of the standard errors and thus 
to misleading tests (Morgan 1992, p. 287). Traditional likelihood-ratio 
testing should not be used to test for the significance of the ancillary 
variance parameter γ  because the difference in deviance for a model 
including the random effect and a (nested) model excluding the random 
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effect (i.e., 2 LL− Δ ) cannot be assumed to have a 2
χ  distribution (Collett 

1991). The hypothesis tested here is that 0γ = . Since variances are by 
definition nonzero, positive quantities, the alternative is one-sided and the 
distribution of the likelihood-ratio test statistic under the null hypothesis is 
generally not known. For this situation Snijders and Bosker (1999, pp. 90–
91) suggested determining the tail probability of 2 LL− Δ  for the 2

χ  
distribution with df equal to the number of additional parameters, and then 
to halve this tail value to obtain the p  value for testing the significance of 
the random effect. Finally, as noted by Moffitt (1993), uncontrolled 
heterogeneity in the transitions generates serial correlation in the model and 
thereby affects the form of the reduced-form expression (2). Hence, the 
presence of such time-dependent structure complicates matters consi-
derably as 

1t
p
−

 influences 
t
p  in a nonlinear way. 

 
 
4.2.3 Related lines of research 
 
4.2.3.1  Shrinking logical bounds 
 
The partition Equation (1) implies the familiar restriction, customarily 
attributed to Duncan and Davis (1953), that 

it
μ =

1
/(1 )

it it
p p

−

− −  

1 1
/(1 )

it it it
p p κ

− −

− , where 1
it it

κ λ= − . This identity is used by King 
(1997) in his ecological inference method to construct a so-called 
tomography plot. The axes of this plot represent the parameters 

it
κ  and 

it
μ , 

and the linear constraint on each individual i  inherent in Equation (1) is 
represented by a tomography line with intercept 

1
/(1 )

it it
p p

−

−  and slope 

1 1
/(1 )

it it
p p

− −

− −  that goes through the point ( ,
it it

κ μ ). The lines have a 
limited range of angles (i.e., all have a negative slope) and they all intersect 
the 45◦ line of 

it it
μ κ=  at ( ,

it it
p p ). Since the estimated probabilities are 

guaranteed to lie in the (0, 1) range, we have ( , )
it it it

L Uµ µ µ∈  and 
( , )

it it it
L Uκ κ κ∈ , where the lower (L ) and upper (U ) bounds of these 

intervals are defined by the min and max operators 
 

1

1 1

max 0, min ,1
1 1

it it it

it it it

it it

p p p
L U

p p
µ µ µ

−

− −

⎛ ⎞ ⎛ ⎞− ⎟ ⎟⎜ ⎜⎟ ⎟= ≤ ≤ =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− −⎝ ⎠ ⎝ ⎠
 (11a) 

 
and  
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1

1 1

(1 )
max 0, min ,1it it it

it it it

it it

p p p
L U

p p
κ κ κ

−

− −

⎛ ⎞ ⎛ ⎞− − ⎟ ⎟⎜ ⎜⎟ ⎟= ≤ ≤ =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 (11b) 

 
(see King 1997). Hence the estimated values of 

it
μ  and 

it
κ  are constrained 

to lie on that part of the tomography line that intersects the feasible region 
defined by the logical boundary points. Since the limits are related (e.g., 

1 1 1
( /1 ) ( /1 )

it it it it it it
L p p p p Uμ κ

− − −

= − − − ), the tomography line corres-
ponds to the main diagonal of the rectangular region defined by the lower 
and upper bounds. Also, because the estimates produced are restricted to lie 
on the diagonal, they satisfy 

it it it it
a bμ κ= − , where 

it
a =  

( )
it it it it

U U L Lμ κ μ κ−

1( )
it it

U Lκ κ
−

−  and 1( )( )
it it it it it
b U L U Lμ μ κ κ

−

= − −  

(see Chambers and Steel 2001).  
The estimation procedure considered here implicitly takes into 

account the bounds and thereby restricts the range of feasible estimates of 

it
μ  and 

it
κ . This is accomplished simply by constraining the individual 

probabilities to lie within the admissible range (0, 1). Clearly, explicit 
assumptions about the relative magnitude of 

it
μ  and 

it
κ  would allow one to 

narrow the bounds beyond the logical limits. For example, in studies of 
U.S. interparty electoral transition it may be assumed, in the spirit of 
Shively (1991), that the probability that a Democrat at 1t −  repeats a vote 
for that party at t  is greater than the probability that a non-Democrat at 

1t −  shifts to the Democrats at t . This assumption translates into the 
restriction that 

it it
κ μ>  (i.e., 0

it
η > ). Such a restriction is difficult to 

justify in general, however, and we would not expect it to be the case for 
every single voter. Because there is also no algebraic requirement in 
Equation (1) that 0

it
η > , we would not recommend using this assumption 

universally. Finally, note that if the entry and 1-exit transitions are equal to 
each other (i.e., 

it it
μ κ= ), identity (1) reduces to 

it it
p μ= . 

 
 
4.2.3.2  Ecological panel inference and two-stage auxiliary instrumental 

variables 
 
The framework considered here is related to both the ecological panel 
inference (EPI) method of Penubarti and Schuessler (1998) and the two-
stage auxiliary instrumental variables (2SAIV) approach of Franklin 
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(1989). The EPI method and the one presented here are the same in that 
both intend to derive micro-level conclusions from repeated cross sections, 
but they are methodologically quite different in their strategy. The former 
uses a cross-sectional data set to construct a limited number of demo-
graphic profiles, which amounts to grouping the individual data according 
to the values of the observed covariates and aggregating within the 
groupings (i.e., summing counts and totals to obtain proportions). If one 
has available two consecutive cross sections, this aggregate information 
can be used to obtain the margins of the 2×2 transition table for each 
profile that — using King’s (1997) method of ecological inference — 
allows one to track changes in the dependent variable of interest. As 
Penubarti and Schuessler (1998) note, the number of possible combinations 
of values of the covariates should not be too large relative to the sample 
size to obtain reasonably reliable aggregates. Hence the method has a 
problem with sparse data, where sparse means that for every pattern of 
covariate values we have only a small number of observations. Also note 
that inferences in EPI are at the level of profiles (based on individuals 
sharing the same values of the observed covariates) rather than at the level 
of individuals. The method allows one to trace demographic profiles over 
time rather than individuals as their profiles might change. In the 
instrumental variable method presented here actual grouping of the cross-
sectional data in observed covariate patterns need not be done. In fact, in 
the extreme case each individual observation may have its own pattern of 
covariates. Hence what is special for the current model is that the variation 
and information in the individual data is fully exploited. Further, while it 
might be possible to extend the EPI approach to more complex situations 
involving multiple surveys, the method is likely to face difficulties if the 
number of cross sections and the number of time-varying covariates 
become large and if we have important nonbackcastable covariates. Our 
procedure is also closely related to the intriguing framework presented by 
Franklin (1989), who proposed a two-stage auxiliary instrumental variables 
(2SAIV) method of estimating across (panel and other) data sets. It differs, 
however, in at least three ways. First, while the two-stage instrumental 
variables method uses auxiliary data to generate predicted values for a 
right-hand-side variable in the equation of interest in a main data set, the 
current model is full information in the sense that all subsequent data sets 
are used in the ML estimation. Second, 2SAIV estimators assume that the 
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(auxiliary and main) data sets derive from the same underlying population. 
In the current model important events and relevant population changes can 
in principle be included in the model as additional covariates. Of course, if 
these events and changes are not in any way related to the variables 
included, there is no reason to adjust the model. Third, the 2SAIV method 
as presented by Franklin (1989) assumes that the relationships between the 
auxiliary measures and the measures of interest are time-invariant. Given a 
sufficient number of cross sections, the procedure presented here offers the 
opportunity to verify and, if needed, to relax the assumption of time 
invariant relationships. 
 
 
4.2.4 Quantities of interest and potential applications 
 
The model presented above may be used for different purposes. One is to 
understand the individual-level relation between covariate effects and 
transitions in a binary response variable, under Markov assumptions. 
Another potential goal is to estimate transition probabilities when 
individual sequence information is not available. The empirical application 
below illustrates how the model can be used to provide information on 
individual electoral transitions and the role of voting-related covariates 
when exact voting sequences are unknown. While our illustration example 
uses bimonthly data, the model is typically designed to estimate transition 
probabilities from repeated cross sections covering long-term periods. An 
example is the analysis of labor force participation decisions of Dutch 
women over the 1986–1995 period by Pelzer et al. (2001)6. Probably the 
most obvious application in political science is the examination of voter 
transitions. However, all kinds of political science research problems 
concerning transitions and involving a binary outcome could benefit from 
the proposed model, provided that one has available good instruments to 
predict the unobserved transitions. It may also be noted that not only is the 
model suitable for examining transitions over historical or calendar time, 
but also it can be used to study changes in developmental time over age, 

                                                 
6 See Felteau et al. (1997) for an application to the marriage and fertility decisions of Canadian 

women using data from the Survey of Consumer Finances of Statistics Canada consisting of 
15 repeated cross sections of the years 1975 to 1993. 
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i.e., to study life cycle history issues (see Moffitt 1990). Our program 
CrossMark may be used to do the computations.7 
 
 
 
4.3 Application 
 
 
4.3.1 Data 
 
The empirical illustration employs election-year panel data on U.S. 
presidential vote intention drawn from the campaign study conducted by 
Patterson (1980) in Erie, PA, and Los Angeles, CA, in 1976. These five-
wave bimonthly panel data were also used by Sigelman (1991) in his panel 
ecological inference study. As indicated above, the purpose of this example 
is to illustrate the model rather than to provide a definitive analysis of the 
data. The panel data were treated as if they were a temporal sequence of 
cross sections of the electorate. That is, no information on the cov(

1
,

t t
y y

−

) 
is available in the data file used for the Markov analysis. The application 
uses panel data because they provide a check of the ability of the Markov 
approach to recover known party-switching transitions. Some caution is 
warranted in interpreting the results, however, as the individual transition 
probability estimates are based on observations that are not independent. 
The binary outcome variable 

it
y  is defined to equal 1 if the voter i  prefers 

the Democratic party or candidate (i.e., Carter) at time period t and 0 
otherwise [i.e., Republican party or candidate (Ford) and others]. 

Table 4.1 provides some summary descriptive statistics. It gives the 
number of observations including panel inflow and outflow, the marginal 
distribution of 

it
y  over time, and the observed entry and exit transition rates 

in the panel. The table shows that, despite substantial bimonthly turnover, 

                                                 
7 The program CrossMark is free software and can be freely used and distributed. The main 

characteristic of the program is the implementation of the Fisher-scoring estimation algorithm. 
The software is programmed in Delphi but distributed as a compiled version running 
independently from Delphi or any software on theWindows platform. CrossMark does all of 
the computations reported here including ML estimation, weighting, fixing probabilities, 
random effect parameter estimation, and (by tricking the program) dynamic panel analysis. 
The software is available at the Political AnalysisWeb site. Those interested in SPSS Matrix or 
Gauss versions of the program (with fewer options) should contact the authors. 
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with values ranging from 0.138 to 0.248, almost half of the respondents 
continue to prefer the Democratic presidential candidate over time. It is 
important to note that across the five waves of data a substantial number of 
sample members attrites from the panel. Because some nonrespondents 
from one wave are recruited back into the sample at subsequent waves, 
both monotone and nonmonotone participation patterns occur. The current 
model is special in that it includes all respondents, i.e., both nonattritors 
and attritors. 

The survey also provides information on sociodemographic 
characteristics and attitudes toward the presidential candidates. The 
analysis presented here uses only variables that would generally be 
available in repeated cross-sectional surveys. As backcastable variables, the 
analysis employs vote choice at the preceding election (i.e., whether the 
respondent voted for either Nixon or Ford in 1972), race, education, age, 
and sex. All of these covariates are assumed to be fixed over the survey’s 
duration. In addition to these time-constant variables, the analysis also 
includes several nonbackcastable covariates. These include (i) whether the 
respondent identifies him/herself as Democrat or not, (ii) responses to the 
statements “It doesn’t make much difference whether a Republican or a 
Democrat is elected President” and “All in all, Gerald Ford has done a 
good job as President,” (iii) measures of (un)favorable feelings toward the 
candidates Ford and Carter, and (iv) opinions about their specific qualities 
[i.e., very (un)trustworthy, excellent/poor leader, and great deal of/almost 
no ability]. The responses to the two statements and the candidate images 
were all registered on 7-point Likert-type scales, running from “strongly 
disagree” to “strongly agree” and “unfavorable” to “favorable.” 
 

Table 4.1  Marginal fraction of Democratic vote intention and observed entry and 
exit transition rates 

 

 

year.month  
t
n  inflow  outflow 

t
y    

1
| 0

t t
y y

−

=      1-
1

| 1
t t
y y

−

=  
 

 

 1976.02 856   0.384 
 04 790 142 208 0.460 0.248 0.178 
 06 792 153 151 0.471 0.170 0.176 
 08 727 90 155 0.465 0.203 0.229 
 10 691 80 116 0.457 0.140 0.138 
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4.3.2 Model estimation 
 
First, a time-stationary Markov model with constant terms only was applied 
to the data. This model produced the parameters 

1
( )

t
β μ

>
=−0.238 and 

*

1
( )

t
β λ

>
=0.034 and a corresponding maximum log-likelihood value of 

LL =−2643.56. These estimates imply constant transition rates of µ=0.44 
and λ=0.51, hence implausibly high values that amply exceed the observed 
rates as reported in Table 4.1. The model was then extended to a 
nonstationary, heterogeneous Markov model by including the backcastable 
covariates reported above. The results are shown in Table 4.2. The 
parameters in the second column show the effects of the backcastable 
variables on the probability of a Democratic vote at t =1 (i.e., 

1i
p ) 

estimated for all cases. As can be seen, the parameters are well determined, 
with a Democratic preference positively affected by being black and a vote 
for McGovern in 1972 and negatively by education and a vote for Nixon at 
the prior election. The third column in Table 4.2 presents the effects of the 
variables on the transitions from non-Democratic (i.e., Republican and 
others) to Democratic. Whereas a previous vote for McGovern is signifi-
cant in encouraging entry into a Democratic preference, the entry decisions 
are negatively affected by education, age, and a 1972 vote for Nixon. The 
last  column  gives  the  effects  on  the  transitions  into  non - Democratic.  We  

Table 4.2 Markov repeated cross section parameter estimates of backcastable  
 variables only for transitions into and out of Democratic vote intention 
 

 

 
1

( )
t
pδ
=

 ( )
t

β μ  *( )
t

β λ−   
 

 

Voted Nixon in 1972 -1.14 (.03)  -1.36 (.04) 
Voted McGovern in 1972  1.30 (.03) 1.58 (.11) -0.56 (.28) 
Black 0.96 (.07)   -2.29 (.38) 
Education -0.29 (.00) -0.23 (.01) 
Age -0.01 (.00) -0.08 (.00) -0.10 (.02) 
Female     0.73 (.21) 
Constant 0.82 (.09)  3.47 (.45) 2.67 (.65) 
 
Number of observations  3856 
Log likelihood -2142.48 
 

 

Note.  Standard errors in parentheses. The β  parameters represent the effect on 
t
μ , *

β  the 
effect on (1 )

t
λ− , and thus *

β−  the effect on 
t
λ . 
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Table 4.3 Markov repeated cross section estimates for backcastable and  
 nonbackcastable variables* 
 

 

 
1

( )
t
pδ
=

 ( )
t

β μ  time *( )
t

β λ−  time 
 

 

Backcastable variables 
 
 Voted Nixon -0.93 (0.23) -0.61 (0.35) 2,4 1.47(0.71) 2,4 
  in 1972 
 Voted McGovern 0.57 (0.21) 0.96 (0.32) 2 
  in 1972 
 Black   1.39 (0.59) 2 
 Education      0.71 (0.19) 2,3,4 
 Constant -1.37 (0.18) -1.09 (0.33) 2,3,4,5 -4.58 (1.06) 2,3,4,5 
 
Nonbackcastable variables 
 
 Self-identification 1.87 (0.19) 2.59 (0.54) 2,3 -3.15 (0.79) 3 
  as Democrat   1.58 (0.70) 5 -2.85 (0.79) 4 
 Indifferent toward 
  Democratic or 
  Republican president -0.19 (0.05)    0.43 (0.12) 2,3,4 
 
 Ford 
  good job as president    -0.39 (0.18) 4,5 0.63 (0.16) 2,3,4 
  favorable feelings -0.28 (0.05) -0.31 (0.10) 2 0.97 (0.21) 5 
     -1.34 (0.38) 4 
  trustworthiness   -1.12 (0.34) 5 1.40 (0.40) 4 
  leadership   -0.39 (0.13) 3 
  ability      1.35 (0.33) 2,5 
 
 Carter 
  favorable feelings     0.38 (0.11) 2,3 -0.69 (0.18) 3,4 
     1.23 (0.31) 4,5 -1.81 (0.35) 5 
  trustworthiness    1.36 (0.16) 4,5 
  leadership      -0.75 (0.31) 4 
  ability      -1.24 (0.53) 2 
  
Constant   -1.28 (0.56) 2,3 3.19 (0.73) 3 
   -1.86 (0.82) 4 2.80 (0.84) 4 
    -1.69 (0.88) 5 
γ    0.71 (0.86) 2,3,4,5 0.12 (1.90) 2,3,4,5 
 
Number of observations    3856 
Log likelihood  -1431.04 
 

 

* Standard errors in parentheses. The columns labeled time indicate the discrete time periods 
pertaining to the parameters.  
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find that the exit rates are negatively affected by a vote for McGovern in 
1972, being black, and age and positively by sex (female). 

Table 4.3 reports the regression estimates of a transition model that 
has all of the variables (including those with unknown history) along with 
the random effects to account for potential overdispersion. Wald and 
likelihood-ratio tests revealed no significant difference between the effects 
of the backcastable variables on the current transitions and their effects on 
the past transitions. The table therefore presents a single parameter for the 
backcastable covariates. Further, because there are reasons to believe that 
the effects of the nonbackcastable covariates may vary over the period 
leading up to the election, several tests with different time-varying 
coefficient models of varying degrees of simplicity were applied to the 
data. The model shown in Table 4.3 best describes the data in terms of 
goodness of fit. The likelihood-ratio statistic may also be computed to 
assess the statistical significance of the improvement in fit that results from 
including the nonbackcastable variables and the random effects. But it is 
clear from the log-likelihood values reported in Tables 4.2 and 4.3 that the 
enlarged model provides a much better fit. The second column in Table 4.3 
again shows the estimated effects on the state probability 

1i
p . Whereas the 

effects of a 1972 vote for McGovern and identification with the Democrats 
turn out to be positive, the effects of a vote for Nixon, favorable feelings 
toward Ford, and indifference toward the future president’s leaning are 
negative. The third and fifth columns provide the effects on the entry and 
exit rates, respectively, with respect to a Democratic vote. The columns 
labeled “Time ” indicate the time periods pertaining to the (time-varying) 
parameters. For example, favorable feelings toward Carter have an effect 
on 

t
µ  of 0.38 at time=2, 3 and an effect of 1.23 at time=4, 5. Most of the 

parameters are again well determined and consistent with those commonly 
reported in the literature. In short, a positive attitude toward the Republican 
(Democratic) candidate Ford (Carter) decreases (increases) the entry rates 
and increases (decreases) the exit rates. The stronger respondents think of 
themselves as being Democrat, the higher (lower) their entry (exit) tran-
sition rates. The two random effect parameters, γ , are insignificant. The 
difference in deviance between the model in question and the model that 
omits the random effects is 2 LL− Δ =0.262, which is obviously not 
significant even if we were to halve the p  value. For the analyses reported 
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below the parameters were therefore estimated anew with the ancillary 
parameters γ  restricted to 0. 
 The tomography lines for one time period are singled out for 
discussion purposes. Figure 4.1 shows for all i  at t = 5 the lines 

5 5 4
( /1 )

i i i
p pµ = − −

4 4 5
( /1 )

i i i
p p κ− , where 

5 5
1

i i
κ λ= − . The 691 lines 

all have a negative slope, and they all intersect the 45◦ line of 
5 5i i

μ κ=  at 

5 5
( , )

i i
p p . The permissible range of the parameters for an individual can be 

obtained by projecting the line onto the horizontal (for 
5i

κ ) and vertical (for 

5i
µ ) axes. Note that while most of the point estimates are below the 45◦ 
line, for a substantial number of cases 

5i
µ  exceeds 

5i
κ . In fact, almost 25% 

of the observations fail to conform to the restriction that 
it it

κ μ> . Hence, 
incorporating the external assumption that party loyalty rates exceed entry 
rates would most likely lead to incorrect conclusions. Visual inspection of 
Figure 4.1 also suggests a strong relationship between 

5i
µ  and 

5i
κ , with 

low(high) entry rates corresponding with high (low) exit rates. Also note 
that most of the predictions tend to approach the basically ideal situation of 

5t =
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either extremely high or extremely low transition probability estimates. The 
estimates themselves clearly exhibit a bimodal distribution. Had the 
instrumental variables been weaker, the two modes would be less well 
separated or even unimodal. 
 
 
4.3.3 Model validation 
 
It may be of interest to report how the parameter estimates compare to the 
estimates we would get using a standard dynamic panel estimator. This 
comparison indicates how much is lost by modeling the panel data as an 
RCS data set. Most closely related to the RCS transition model is a first-
order Markov model for panel data as discussed, for example, by Amemiya 
(1985), Diggle et al. (1994), and Hamerle and Ronning (1995). Their model 
uses a separate logistic regression for 

1
( 1 | 0,1)

it it
P y y

−

= =  and can be 
written logit 

1 1
( 1 | 0,1)

it it it it it
P y y yβ α

− −

= = = +x x , where *α β β= − . 
This equation thus expresses two regressions as a single dynamic logistic 
model that includes as predictors both the previous response 

1it
y

−

 and the 
interaction of 

1it
y

−

 and the covariates 
it

x . Because 
1t

y
−

 is missing for some 
respondents, the estimates of the two models reported in Table 4.4 were 
obtained from an analysis of the respondents with a valid score on both 

t
y  

and 
1t

y
−

. As can be seen, the parameter estimates of the two models are 
rather similar, except for the constant terms. The signs are all identical and 
there are no gross discrepancies in magnitude. Also note that, again except 
for intercepts, the ratio of the parameter estimates to the standard errors is 
very much alike for the two models, implying that they lead to similar test 
statistics. Hence the RCS estimators compare rather favorably with the 
dynamic panel estimators in the sense that a panel analysis of the data 
would not markedly alter the substantive results.  
 To understand how well the RCS Markov model reproduces the 
actual observations in the panel, we may examine its efficacy in various 
ways. One is to assess the fit of the model in terms of prediction errors, 
using the mean squared error (MSE). The error measures are given in Table 
4.5. The MSE tends to zero if 

it
µ (

it
λ ) tends to approach 0 or 1, and the 

lower the error rate, the better the model predicts. Table 4.5 indicates that 
the MSEs are remarkably low and that over time they gradually lean to the 
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Table 4.4 Markov repeated cross section (RCS) and Markov panel parameter estimates*
 

 

 ( )
t

β μ  *( )
t

β λ−  
 

 RCS panel time  RCS panel time 
 

 

Voted Nixon -0.43(0.40) -0.67 (0.26) 2,4 1.83 (0.73) 0.67 (0.29) 2,4 
 in 1972 
Voted McGovern 0.58(0.46) 0.29 (0.35) 2 
 in 1972 
Black 0.77(0.72) 0.26 (0.75) 2 
Education       0.46 (0.15) 0.04 (0.08) 2,3,4 
Self-identification 2.94(0.43) 1.75 (0.21) 2,3 -2.43 (0.71) -1.78 (0.37) 3 
 as Democrat 1.09(0.59) 1.05 (0.50) 5 -2.42 (0.75) -0.75 (0.39) 4 
Indifferent toward        0.38 (0.10) 0.29 (0.05) 2,3,4 
 Democratic or 
 Republican  
 president 
 
Ford 
 good job as   -0.41(0.16) -0.54 (0.13) 4,5 0.43 (0.13) 0.20 (0.07) 2,3,4 
      president 
 favorable -0.26(0.10) -0.20 (0.08) 2 2.91 (0.88) 1.17 (0.23) 5 
      feelings -1.32 (0.29) -1.06 (0.22) 4 
 trustworthiness -0.99(0.26) -0.87 (0.21) 5 1.27 (0.36) 0.41 (0.14) 4 
 leadership  -0.38(0.12) -0.31 (0.10) 3     
 ability      1.33 (0.34) 0.24 (0.11) 2,5 
 
Carter 
 favorable   0.26(0.09) 0.46 (0.08) 2,3 -0.75 (0.18) -0.43 (0.09) 3,4 
      feelings 1.02(0.21) 1.12 (0.18) 4,5 -3.10 (0.86) -1.02 (0.20) 5 
 trustworthiness  1.13(0.26) 0.67 (0.18) 4,5    
 leadership      -0.71 (0.33) -0.48 (0.16) 4 
 ability      -1.41 (0.33) -0.46 (0.12) 2 
 
Constant -2.45(0.64) -3.04 (0.58) 2,3,4,5 -5.92 (1.58) -2.40 (0.68) 2,3,4,5 
 0.35(0.78) -0.06 (0.67) 3 5.07 (1.59) 2.36 (0.87) 3 
 -1.56(1.63) 0.18 (1.24) 4 2.64 (2.31) 2.58 (1.19) 4 
  -2.77(1.79) -0.59 (1.34) 5 
 
Number of observations  2572    
Log likelihood RCS**  -885.97     
Log likelihood panel -798.66 
 

 

* Standard errors in parentheses. The columns labeled time indicate the discrete time periods 
pertaining to the parameters. 

** The log likelihood of the RCS model is obtaining after excluding the contribution of the 856 
observations at 1t =  of -381.44. 
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ideal situation of perfect separation between the 
it
y =  0 and the 

it
y =  1 

groups. Also note that the summary measures suggest that the model does 
somewhat better in terms of predicting entry than it does in predicting exit. 
Another way to examine the performance of the model is to compare the 
actual sample frequency of all possible bimonthly (0,1) voting sequences 
with the estimated expected frequency of each sequence. 8 

Before discussing the findings it is important to note that while the 
model predicts the current probabilities at time point t (i.e., 

it
p , 

it
µ  and 

it
λ ) 

very well, it does not in general reproduce the past probabilities at 1t − , 
2t − , etc., equally well. The reason is that the past probabilities are 

predicted by the backcastable variables only, and they are not very good 
predictors. This obviously hampers the estimation of the expected 
frequencies.We therefore decided to “backcast” the nonbackcastable 
variables a single time period (by assuming them to be constant for two 
consecutive time periods 1t −  and t ) and subsequently computed the 
expected frequencies. Table 4.6 compares the estimated expected and the 
actually observed absolute frequencies of all 62 (0,1) voting sequences. 
The longitudinal voting profiles indicate that both the observed and the 
predicted frequencies are concentrated in the continuous Democratic and  

                                                 
8 The estimated expected frequencies were computed as follows. With T  sample periods, we 

have 
1
2

T t

t=
Σ  different (0,1) sequences (which in the present application equals 62) ranging in 

length from 1 (e.g., ‘0’) to T  (e.g., ‘11111’) . We define the probability of a sequence of 
length t  for observation i  of cross section t  as 

1 1 1
( , ..., ) ( )

i t i it t
p y y P y y y y= = ∩ ∩ =� � � �� … , 

where 
1
, , 0,1

t
y y =� �… . Hence 

1 1 1 1 1 1 1
( ) ( ) (1 )(1 )

i i i i
p y P y y y y pp= = = + − −� � � �� , where 

1i
p  is 

1
( 1)

i
P y = . For 1t > , we have 

1 1 2 00 01 10 11
( ,..., ) ( ) ( )t

i t i
p y y p y p p p p

τ=
= Π + + +� � � � � , where 

00 1
(1 )(1 )(1 )

i
p y y

τ τ τ
μ

−
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Table 4.5 Mean squared errors 
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the continuous non-Democratic vote categories. Hence most voters remain 
loyal to their initial preference and proportionally few change their vote 
intention frequently. What is encouraging is the ability of the model to 
recover sequence membership, even in the presence of recurrent vote 

Table 4.6 Frequencies of observed (Obs) and estimated expected (Exp)  
 (non-)Democratic vote intention sequences 
 

 

Sequence* Obs Exp Δ   Sequence* Obs Exp Δ  
  
 0 
 1 
 00 
 01 
 10 
 11 
 000 
 001 
 010 
 011 
 100 
 101 
 110 
 111 
 0000 
 0001 
 0010 
 0011 
 0100 
 0101 
 0110 
 0111 
 1000 
 1001 
 1010 
 1011 
 1100 
 1101 
 1110 
 1111 
 00000 

 
527 
329 
309 
102 
46 

213 
223 
37 
26 
66 
25 
13 
20 

160 
160 
30 
12 
14 
13 
10 
15 
43 
12 
5 
5 
4 

12 
4 

23 
114 
140 

 
524 
332 
296 
104 
50 

219 
207 
40 
20 
69 
26 
14 
20 

174 
157 
24 
18 
14 
13 
4  

12 
40 
19 
2  
6 
5 

11 
6 

13 
132 
138 

 
 -3 
   3 

 -13 
 2 
 4 

6 
-16 
 3 

 -6 
 3 
 1 
 1 
 0 

 14 
 -3 
 -6 
 6 
 0  
 0  

 -6 
 -3 
 -3 
 7 

 -3 
 1 
 1 

 -1 
 2 

 -10 
 18 
 -2 

 

 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 
11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 

 
 7 
 9 

 14 
   9 
   2 
   2 

   11 
   8 
  5 
  3 
  4 

   10 
   4 
  4 

  33 
  9 
  3 
  1 
   4 
  3 
 2 
  0 
 4 
 9 
 0 
  1 
  3 
   9 

  11 
  9 

  91 

 
9 
3 

13 
13 
2 
3 
8 

10 
1 
0 
2 
7 
3 
5 

29 
18 
2 
1 
1 
5 
1 
2 
2 
6 
1 
0 
3 
7 
3 

12 
114 

 
2 

 -6 
 -1 
 4 
 0 
 1 

 -3 
 2 

 -4 
 -3 
 -2 
 -3 
 -1 
 1 

 -4 
 9 

 -1 
 0  

 -3 
 2 

 -1 
 2 

 -2 
 -3 
 1 

 -1 
 0  

 -2 
 -8 
 3 

 23 
 

 

* A binary digit represents a spell occurring over the sample periods t , where 1 refers to 
Democrat and 0 to non-Democrat. The first spell starts at 1t =  and the sequences end at the 
observation period t . The frequencies were obtained only for respondents with a valid score 
on 

1
y  through 

t
y  in the panel. 
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switching. Table 4.6 indicates quite clearly that for most sequences the 
estimated expected frequency predicted by the RCS transition model 
matches the observed frequency in the panel data well. The only notable 
exceptions are the highly populated consecutive Democratic vote 
categories (i.e., the arrays of 1s). However, even for these sequences the 
model performance is quite good. Hence these findings illustrate that, in 
this application at least, the model is well able to recover the actual 
transitions in the panel. 
 
 
 
4.4 Conclusion 
 
 
The benefits of repeated cross sections for longitudinal analysis of social 
and political phenomena have long been understated. Moreover, they are 
generally regarded as inferior to panel data. It is often thought, for example, 
that it is inherently impossible to estimate micro-level dynamic models 
with independent cross sections. As Moffitt (1990, 1993) and others (e.g., 
Heckman and Robb 1985) have shown, however, this is not correct. 
Obviously, the estimation of dynamic models with cross-sectional samples 
is hampered by the lack of information about lagged variables, but these 
data can nevertheless sometimes be used to identify longitudinal 
estimators. One important advantage to using panel data is that they 
provide a measure of gross individual change for each sample unit. 
However, panel data are often not available and they may also be inferior 
to the available repeated cross sections in terms of sample size, time period 
covered, and representativeness.  
 There has been a considerable expansion in the availability of 
repeated cross-sectional surveys in the past few decades. This accumulation 
not only provides researchers with a growing opportunity to analyze over-
time change, but also raises questions about new analytic methodology for 
exploiting the properties of RCS data for longitudinal study. The Markov 
model for cross-level inference presented here can help us estimate binary 
transitions when it is either impossible or impractical to collect panel 
information on these events. Our example application shows that the model 
captures voters with very different entry and exit transition probabilities. 
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More important, it yields parameters that are fairly consistent with those of 
a dynamic panel model and it produces transition frequency estimates that 
are remarkably consistent with the actual observations in the panel. The 
results thus demonstrate that the proposed model can be used to identify 
transition probabilities accurately solely on the basis of repeated cross 
sections and hence to coax panel conclusions out of nonpanel data. 
 Obviously, generalizing from one particular example is hazardous 
and there are certainly caveats in applying the model. The prerequisite for 
adequate application is to have good instruments for the unobserved 
transitions. In the example reported above the covariates predict the 
transitions very well but the poor predictions of the past probabilities may 
serve as a cautionary tale. Uncritical application of the method with weak 
instrumental variables has the very real danger of leading to incorrect 
inferences. Hence cautious application and careful data analysis seem 
warranted. 
 This warning also implies that the model is not ready for prime-time 
application. The most prominent subject for future work concerns an 
examination of the importance of the quality of the instrumental variables 
by Monte Carlo simulation study. In addition, although the current model 
promises to be useful in different settings, there are some extensions that 
we are currently exploring that may further enhance its applicability. One is 
to use multistate models. Although no essential new theory is involved in 
such an extension, these models may have too many parameters unless 
there are some structural constraints imposed on the transitions. A 
computationally tractable way is to consider three-state models with one 
absorbing or death state implying that once this state is entered it is never 
left (Andersen 1980, p. 304). Further, our approach to imposing restrictions 
on time-varying parameters is to use a fully or partially parametric strategy. 
In some applications these parametric bases may not provide enough 
flexibility. It would therefore seem important to study the minimal 
requirements needed for a varying-coefficient model to yield uniquely 
identified parameters. We can prove that under relatively mild conditions 
there always exists exactly one solution for the parameters, but we can 
verify this only for relatively simple Markov models with constant terms 
only. Unfortunately, no complete set of identification rules has yet been 
found guaranteeing unique solutions in more complex models with 
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continuous covariates. It is worthwhile to pursue this thorny problem 
further. 
Another next step is to use Bayesian methods, similar to King et al. (1999) 
and Rosen et al. (2001), next to ML estimation. A limitation of ML is that 
it is basically a large-sample inferential approach.With small or moderate-
sized data sets, the log likelihood may have a nonnormal shape and 
asymptotic theory may not work well. It is unknown, however, how large 
the sample should be for the standard errors based on the information 
matrix of the current model to yield reliable inferences. One approach to 
study this small sample problem is to analyze the data by Markov chain 
Monte Carlo (MCMC) methods. An initial study of this problem is reported 
by Pelzer and Eisinga (2002). 
 Finally, it has frequently been argued that King’s ecological 
inference solution can fruitfully be adapted to repeated cross sections (e.g., 
King et al. 1999; Davies Withers 2001). Despite the steady development in 
ecological analysis toward more sophisticated statistical modeling, little has 
been done to date on developing models that draw panel inference from 
nonpanel data [Franklin (1989), Sigelman (1991), and Penubarti and 
Schuessler (1998) are notable exceptions]. It is our belief that the approach 
presented here, when properly enhanced, has the potential to make a 
significant contribution to political (and other) inquiry. 
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5 
 
 
 
This chapter1 presents a Markov chain model for the estimation of 
individual-level binary transitions from a time series of independent 
repeated cross-sectional (RCS) samples. Although RCS samples lack direct 
information on individual turnover, it is demonstrated here that it is 
possible with these data to draw meaningful conclusions on individual 
state-to-state transitions. We discuss estimation and inference using 
maximum likelihood, parametric bootstrap, and Markov chain Monte Carlo 
approaches. The model is illustrated by an application to the rise in 
ownership of computers in Dutch households since 1986, using a 13-wave 
annual panel data set2. These data encompass more information than we 
need to estimate the model, and this additional information allows us to 
assess the validity of the parameter estimates. We examine the 
determinants of the transitions from have-not to have (and back again) 
using well-known socioeconomic and demographic covariates of the digital 
divide. Parametric bootstrap and Bayesian simulation are used to evaluate 
the accuracy and the precision of the ML estimates, and the results are also 
compared with those of a first-order dynamic panel model. To mimic 
genuine repeated cross-sectional data, we additionally analyze samples of 
independent observations randomly drawn from the panel. Software imple-
menting the model is available. 
 

                                                 
1  This chapter has been published as Pelzer, B., R. Eisinga, and P.H. Franses. 2004. Ecological 

Panel Inference from Repeated Cross Sections. In Ecological Inference. New Methodological 
Strategies, eds, G. King, O. Rosen, and  M.A. Tanner. Cambridge MA: Cambridge University 
Press, pp. 188-205. 

2  The data for the Socio-Economic Panel used in this paper were collected by Statistics 
Netherlands and were made available by the Scientific Statistical Agency of the Netherlands 
Organization for Scientific Research. Our program CrossMark implements all the simulations 
and estimations reported here. It is programmed in Delphi but distributed as a standalone 
program running under Windows. The program (including documentation) is free software 
and available from the first author (b.pelzer@maw.ru.nl). 

 Ecological Panel Inference from 
 Repeated Cross Sections 
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5.1 Introduction 
 
 
It has sometimes been argued that King's ecological inference model can be 
adapted and fruitfully applied to independent repeated cross-sectional 
(RCS) samples (see, e.g., Penubarti and Schuessler 1998, King, Rosen and 
Tanner 1999). To date, however, surprisingly little research has been 
devoted to the development of cross-level inference models that draw panel 
conclusions from nonpanel data.3 Moreover, the existing approaches to 
ecological panel inference are implicitly or explicitly grouping methods, 
which suffer from small-sample-size restrictions. The individual obser-
vations are typically grouped into a limited number of observed covariate 
patterns, based on time-invariant characteristics (e.g., sex, race). For each 
covariate pattern, the margins of a transition table are obtained by 
aggregating within the groupings, and this aggregate information is subse-
quently used to track changes in the dependent variable of interest. 
Obviously, such grouping methods are likely to face difficulties (such as 
sparse-data problems) if the number of covariates and/or the number of 
repeated cross sections become large. 
 In this chapter we consider a transition inference model for RCS data 
with a more dynamic and more flexible structure. In the model proposed 
here, the micro observations need not be divided into (fixed) groups to 
obtain sample aggregates. In fact, the variation in the individual covariates 
is utilized as part of the estimation procedure. The model therefore takes 
full advantage of the individual survey data and provides full information 
on the effects of covariates entering the model. 
 There are several reasons for investigating dynamic models for RCS 
data. One is the lack of genuine panel data. Panel designs are, rightfully, 
highly regarded for the opportunity they offer to measure transitions of 
state or value from repeated observations on the same sample units. For 
many research issues, however, adequate panel data are rather hard to come 
by or simply unavailable. Another major reason is that panel data are 

                                                 
3  Studies that are related to this topic include Franklin (1989), Moffitt (1990 1993), Sigelman 

(1991), Mebane and Wand (1997), Penubarti and Schuessler (1998). The model presented by 
Quinn (2004) is also of relevance. The framework discussed here has, in its basic form, been 
proposed by Moffitt (1990 1993). Pelzer, Eisinga, and Franses (2002) discuss the 
(dis)similarities between this model and the ecological panel inference (EPI) method of 
Penubarti and Schuessler (1998) and the two-stage auxiliary instrumental variables (2SAIV) 
approach of Franklin (1989). 
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potentially subject to nonsampling biases. An important such bias is sample 
attrition that results from the progressive loss of (often selective groups of) 
respondents willing to participate in the data collection. While nonresponse 
is also a limitation for cross-sectional surveys, it is a more serious problem 
for panel data because nonresponse often accumulates over time. A related 
limitation is that it is often difficult to ensure that changes in the target 
population are reflected in the panel. While panels are typically designed to 
be representative of the population at the beginning of the study, the panel 
ages over time, and few panels are, in addition to providing longitudinal 
data, also designed to permanently provide fully representative information 
of the population by continuous renewal of the sample. 
 A large number of cross-sectional surveys conducted by public and 
private organizations are repeated at regular time intervals. These repeated 
cross-sectional surveys do not suffer from panel mortality and reflect 
changes in the universe that cannot be taken into account by a panel study. 
Estimating individual transitions from such data has an air of performing an 
impossible task, of obtaining information from nowhere. Indeed, it is often 
argued that panel data are absolutely needed to study individual-level 
change (e.g., Kish 1987, p. 167). While individual change is obviously only 
visible in panel data, we will show that this argument is not correct and that 
data from successive, separately drawn samples can be used to validly 
estimate transitions using a model that is no more magical than the use of 
'plug-in' estimates and bridging assumptions in other areas of statistical 
modeling. 
 The outline of this chapter is as follows. Section 5.2 presents a 
Markov transition model for repeated cross sections designed to deal 
specifically with binary responses. The model has its origins in the work of 
Moffitt (1990 1993). We briefly review its main features and discuss 
maximum likelihood (ML), parametric bootstrap and Markov chain Monte 
Carlo (MCMC) approaches to estimation and inference. Section 5.3 
considers an application of the model to the rise in computer penetration 
rates in Dutch households from 1986 to 1998, using annual panel data from 
the Socio-Economic Panel (SEP) survey of Statistics Netherlands. We 
examine the determinants of the transitions from 'have-not' to 'have' (and 
back again) using well-known socioeconomic and demographic covariates 
of the digital divide. Parametric bootstrap and Bayesian simulation are used 
to evaluate the accuracy and the precision of the RCS Markov ML 
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estimates, and the results are also compared with those of a first-order 
dynamic panel model. To mimic genuine RCS data, we additionally 
analyze samples of independent observations randomly drawn from the 
panel. The summary in Section 5.4 concludes the chapter. 
 
 
 
5.2 Estimating transitions from RCS data 
 
 
5.2.1 Binary transition model 
 
Obviously, the estimation of dynamic models with repeated cross-sectional 
data is hampered by the lack of information about lagged variables. Let 

it
y denote the observed response for the binary random variable y  of unit i  
at time period t . The crucial characteristic of RCS data is that 

it
y  is 

observed, but 
1it

y
−

 is not. Consequently, no estimate of the serial 
covariance of successive 

it
y  is available in RCS data. This does not imply 

that dynamic models cannot be estimated with repeated cross sections. 
However, it does imply that estimation of the unobserved transitions is 
possible only by putting certain constraints on the transitions for unit i  
and/or time period t . 
 Consider a 2×2 transition table in which the internal cell values sum 
to unity across rows. If we define 

1
( )

it it
p P y

=

= , 
1

( 1 | 0)
it it it

P y yµ
−

= = = , 
and 

1
( 0 | 1)

it it it
P y yλ

−

= = =  then we have the well-known accounting 
equation 
 

1 1
( ) (1 ) (1 )

it it it it it it
E y p p pμ λ

− −

= = − + − . (1) 

 
This identity is recognized as the equivalent of Equation 0.4 presented in 
King, Rosen and Tanner (2004). It is the critical equation that needs to be 
solved in estimating dynamic models with repeated cross sections, as it 
relates the marginal probabilities (

it
p  and 

1it
p

−

) to the entry (
it

µ ) and exit 
(

it
λ ) transition probabilities. A more concise form for the same equation is 

1it it it it
p pμ η

−

= + , so that 1
it it it
η λ μ= − − . It is also sometimes 

convenient to define 
1

1 ( 1 | 1)
it it it it

P y yκ λ
−

= − = = = . If we recursively 
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substitute for 
it
p  in Equation (1) and derive its reduced form in terms of 

past 
it

µ  and 
it

λ , then we get 
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t t t
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−

= = + =
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∑ ∏ ∏ . (2) 

 
This is the model equation that will be used in this chapter. It is obviously 
not uniquely solvable with RCS data without identifying constraints. 
Several types of restrictions may be used in this context. 
 One is to impose some direct restraint on the patterns of the 
unobserved 

it
µ  and 

it
λ . For example, the parameters in Equation (2) are 

clearly identifiable with RCS data if we take the transition probabilities to 
be homogeneous with respect to both units i  and time periods t . With the 
assumption that 

it
µ µ=  and 

it
λ λ=  for all i  and t , the long-run value of 

it
p  in Equation (2) reduces to /( )

it
p μ μ λ= +  (see, e.g., Ross 1993, pp. 

152-153). Models with this type of homogeneity have been studied exten-
sively in the statistical literature, and they have been applied in various 
economic, social, and political science studies (see Pelzer, Eisinga and 
Franses 2002, for additional references). 
 The model proposed here uses a different type of restriction. This 
restriction may be imposed if the cross-sectional data include covariates 

it
x  

that are measurable in the past (by 'backcasting'), and if the current and 
lagged 

it
x  affect 

it
µ  and 

it
λ . In that case, the covariates 

1 1
, , ,

it it i−

x x x…  can 
be employed to obtain current and backward predictions of the entry 
(

1 1
, , ,

it it i
µ µ µ

−

… ) and exit (
1 2

, , ,
it it i

λ λ λ
−

… ) transition probabilities, by 
specifying 
 
 ( )

it it
Fμ β= x       and     1 ( )

it it
Fλ β= −

*

x . (3) 

 
In these equations β  and *β  are two different sets of k -dimensional 
parameters associated with two potentially different sets of (time-invariant 
or time-varying) k -dimensional covariates 

it
x , and F  is the ─ in this paper 

logistic ─ link function. Estimates of the model parameters are obtained by 
substituting Equation (3) into (2). 
 The critical identifying restriction used here is that the regression 
parameters are taken to be constant over time, but this constancy 
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assumption may easily be relaxed if we have a sufficient number of 
repeated cross sections. We may use a semiparametric approach that 
assumes the parameters to be constant within but different across discrete 
time periods, or we can model the parameters as a function of time using 
polynomials or splines. For example, in our empirical illustration below, 
we introduce time variation into the model by allowing the baseline entry 
rates (i.e., the constant parameter) to become a first-degree polynomial in 
time. This is accomplished simply by including the variable time in the 
model. It is important to note that the underlying Markov chain is not 
assumed to be homogeneous in the model proposed here, implying that the 
entry and exit transition probabilities may vary across both units i  and time 
periods t . Also note that to obtain 

it
p , we actually integrate (sum) over all 

possible unobserved state-to-state transition paths for each individual unit 
i , starting at 1t =  and ending at the cross-sectional observation period t . 
This implies that the probabilities are estimated as a function of all the 
available cross-sectional samples, rather than simply the observations from 
the current time period. 
 Other, perhaps more implicit assumptions underlying the application 
of the model are that 

0
0

i
p = , that all the covariates 

it
x  included in the 

model should have known values in the past, and that the estimation of the 
entry and exit transitions depend exclusively on variations in the covariates 
observed. With respect to the first assumption, it should be noted that 

1i
p  is 

the first observed outcome and 
0i

p  the value of the state prior to the first 
outcome. It is generally difficult to incorporate the prior state into the 
model, and we could invoke the restriction that 

1
0

i
p = , the consequence 

of which would be that 
1 1i i

p µ= . However, because in many applications 
the latter assumption is untenable, we prefer to use a separate logistic 
function for the cross section at 1t = , i.e., 

1
( 1) ( )

i it
P y F δ= = x . The δ -

parameters are estimated simultaneously with the entry and exit parameters 
of interest at 2,...,t T= , and they are estimated as a function of all cross-
sectional data, rather than simply the observations at 1t = . 
 If some of the covariates are 'nonbackcastable' (i.e., if their past 
history is unknown), the model may be modified by estimating two 
different sets of parameters for both 

it
µ  and 

it
λ : one for the current 

transition probability estimates and a separate one for the preceding 
estimates. If we denote the time-dependent covariate with unknown past 
history by 

it
v  and the associated parameter vector representing the effect 
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on 
it

µ  by ζ , then we have logit **( )
it it it

μ β ζ= +x v  for cross section t , 
and logit( )

it it
μ β= x  for the cross sections 1, , 1t −… . This specification 

allows one to express the current transition probability estimates as a 
logistic function of both backcastable and nonbackcastable variables. A 
similar model may be specified for 

it
λ . It should be noted here that in our 

application below we assume that **β β= . 
 If the assumption that all relevant variables are included in the model 
is not a realistic one, it may be useful to include an individual-specific 
random error term 

i
ε  in the linear predictor of the transition probabilities to 

account for omitted variables, at least insofar as these variables are time-
invariant for each individual. In this logistic-normal mixture model we 
have logit

0
( )

it it i
μ β γ ε= +x  and logit *

1
(1 )

it it i
λ β γ ε− = +x , where 

0
γ  

and 
1

γ  are coefficients of the random variable 
i
ε  having zero mean and 

unit variance. To estimate the parameters, the (marginal) likelihood of this 
model may be integrated with respect to the distribution of 

i
ε  using the 

Gauss-Hermite quadrature approximation. While likelihood inference about 
the parameters is possible, it is worth noting that accurate estimation of 

0
γ  

and 
1

γ  from the data themselves is difficult, unless the number of obser-
vations is large. As unobserved heterogeneity is not examined in the empi-
rical application below, we will not elaborate on this topic here. Pelzer, 
Eisinga, and Franses (2002) provide further details. 
 Finally, it may be useful to outline the commonalities and differences 
between the ecological analysis of aggregate data and the Markov model 
for repeated cross-sectional data proposed here. As noted by Sigelman 
(1991) and Penubarti and Schuessler (1998), drawing panel inferences at 
the micro-level from repeated cross sections constitutes an ecological 
inference problem. To demonstrate this point, consider the following 
partially observed transition table for a population in which there is an 
absence of both recruitment (immigration or birth) and losses (emigration 
or death): 
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In this closed population the marginal distributions are known and fixed, 
and the ecological inference problem arises because the aggregate measures 
of change are observed, but the interior cells are not. The two margins 
provide (at least some) information on the cells, and the accounting identity 
ensures that the Duncan and Davis (1953) bounds (also termed Fréchet 
bounds in the statistical literature) will obtain. If we have available a 
sufficiently large number of transition tables for consecutive time points, an 
ecological inference model such as presented by Quinn (2004) may be 
applied to the data. 
 The situation is somewhat different if the data are drawn from a time 
series of independent samples of the population of interest. In that case, the 
marginal values are estimates of the true population parameters and thus 
themselves subject to error (Cho 1998). And this implies that the bounds 
too will be known only up to sampling error. If the sample sizes are large, 
one may be willing to take the margins as fixed and error-free and use the 
samples to obtain the marginal proportions of the transition table, as 
presented in the left panel below. 
 
 
 
 
 
 
 
 
 If the data are limited to 

it
y , we could apply the inference model 

proposed here, using a Markov model with constant terms only. If we 
additionally observe covariates, we could also aggregate the micro data into 
covariate patterns, as in Penubarti and Schuessler (1998), to obtain the 
marginal distributions of the transition table for each pattern and thus 
ranges of feasible entries that are consistent with the margins. King's EI 
could then be used to exploit the information provided by the bounds 
(using covariate patterns as equivalents to precincts in the analysis of 
voting). The number of patterns obviously should not be too large relative 
to the sample size, to obtain reasonably reliable aggregates. Hence the 
method is likely to suffer from small-sample-size restrictions. 
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Also note that in using this grouping method, inferences are at the level of 
individuals sharing the same values of the observed covariates, that is, at 
the level of the covariate patterns, rather than at the level of individuals. 
This allows one to trace fixed groups over time rather than individuals, 
whose covariate values might change. Thus, the method is applicable only 
if we have a sufficient number of observations for every covariate value 
and if, in addition, the covariates are time-invariant (so that the sample 
population can be divided into groups with fixed membership). It faces 
difficulties in cases of time-varying or nonbackcastable covariates, and 
these difficulties increase if the number of repeated cross sections becomes 
large. 
 The empirical application discussed in Section 5.3 may be used to 
illustrate the issue. The covariates used in that example include education, 
age, number of household members, income, and time. The number of 
covariate patterns observed is 10,510, and the average number of obser-
vations per pattern is 2.5. Even if we were to categorize the variable age 
into three different age categories, as is done in the estimation procedure, 
the number of covariate patterns would still be large (1,053) and, 
accordingly, the number of observations per group low (about 25 on 
average). That is, the group sizes in this example are simply too small for 
us to ignore the presence of sampling error. And this implies that the data at 
hand cannot be used to fruitfully compare the performance of our model 
with the EI grouping method. That is a very interesting and important topic, 
but one left for future research with other data. 
 As indicated, what is special for the current model is that the 
information available in the repeated cross sections is fully exploited. In the 
model proposed here, there is no grouping of the data, and in the extreme 
case each individual unit may have its own covariate pattern. This means, 
as illustrated in the right panel above, that in our procedure only one of the 
margins (

it
y ) is available for inference, and the other one (

1it
y

−

) is not. And 
this in turn implies that in our model the repeated cross sections themselves 
cannot provide any deterministic, informative restrictions on the entries. 
Consequently, the inference problem in the model proposed here is greater 
(in the sense of a larger number of unknowns) than in the applications 
where the margins are (assumed to be) known. The approach proposed here 
is to completely express the marginal probabilities 

it
p  in terms of 

it
µ  and 

it
κ , recursively, so that estimating the latter automatically renders the for-
mer. Also, Equation (1) may be rearranged into 

it
µ =  

1
/(1 )

it it
p p

−

− − 
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1 1
/(1 )

it it it
p p κ

− −

− , where 1
it it

κ λ= − . This expression resembles the 
equation that King (1997) termed 'tomography line'. Since the estimated 
marginal probabilities 

it
p  and 

1it
p

−

 are guaranteed to lie in the (0,1) range, 
bounds are enforced on the maximum likelihood estimators of 

it
µ  and 

it
κ . 

These upper and lower limits are not informative as in the Duncan and 
Davis (1953) methods of bounds, however, but rather logical limits implied 
by the model. 
 
 
5.2.2 Estimation and simulation 
 
5.2.2.1  Maximum likelihood estimation 
 
The method of maximum likelihood may be used to estimate the para-
meters in Equation (3) ─ plugged into (2) ─ along with their (co)variances. 
For a sample of n  statistically independent observations ─ where each 
observation is treated as a single draw from a Bernoulli distribution ─ with 
success probability 

it
p , the model (2) has the log likelihood function 

 

 [ ]
1 1 1 1

log( ) (1 )log(1 )
t t

n nT T

it it it it it

t i t i

y p y p

= = = =

= = + − −∑∑ ∑∑�� �� , 

 
where T  is the number of cross sections and 

t
n  the number of units of the 

cross-sectional sample at time period t . Maximization of this function has 
to be performed iteratively and requires the derivatives of the log likelihood 
with respect to the (vector of) parameters, θ , say. If we suppress subscript 
i  to ease notation, the first order derivatives with respect to θ  are 
 

 
(1 )

t t t t

t t

y p p

p p

∂ ∂

∂θ ∂θ

−

= ⋅

−
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, 
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 1

1

t t t t

t t

p p
p

∂ μ ∂ ∂η
η

∂θ θ ∂θ ∂θ
−

−

∂
= + +

∂
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If θ  is used to estimate 
t

µ , then / (1 )
t t t t

μ θ μ μ∂ ∂ = −x  and 
/ /

t t
∂η θ μ θ∂ = −∂ ∂ . If it is used for 

t
λ , then / 0

t
μ θ∂ ∂ =  and 

/ (1 )
t t t t

∂η ∂θ λ λ= −x . The values for /
t
p∂ θ∂  can be obtained by 

recursive substitution, setting 
0

0p =  and 
0
/ 0p θ∂ ∂ = , and starting from 

1
/p θ∂ ∂ =  

1
/μ θ∂ ∂ =  

1 1 1
(1 )µ µ−x . The second derivatives are 

 

 
2 2 2

2 2

( )
. .

' (1 ) ' (1 ) '
t t t t t t t t

t t t t

y p p p y p p

p p p p

∂ ∂ ∂

∂θ θ ∂θ ∂θ θ θ

− − ∂
= − ⋅ +

∂ − − ∂ ∂

��
, 

 
where 
 

 
2 2 2

1 1 1

1
. . .(1 ) .

' ' ' ' '
t t t t t t t

t t

p p p p
p

∂ ∂ ∂ η μ μ
η

∂θ θ ∂θ θ ∂θ θ θ θ θ θ
− − −

−

∂ ∂ ∂ ∂
= + + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
, 

 
with 2 ' '/ (1 ) (1 2 )

t t t t t t
∂ μ ∂θ θ μ μ μ∂ = − −x x . Again, if we set 

2

0
/ 'p θ θ∂ ∂ ∂ =  

0
/p θ∂ ∂ =  

0
/ 'p θ∂ ∂ =  0 , the values for 2 / '

t
p θ θ∂ ∂ ∂  

can be obtained recursively, starting from 2 2

1 1
/ ' / 'p θ θ μ θ θ∂ ∂ ∂ = ∂ ∂ ∂ . 

 The parameter estimates may be obtained by Newton's method, which 
uses the Hessian matrix of the actual second derivatives. To speed up 
computation, we may avoid calculating the exact Hessian by approximating 
it instead by the expected second derivatives, and use Fisher's method of 
scoring. Here we will follow the latter approach. In addition to providing 
parameter estimates, the Fisher optimization algorithm produces as a by-
product an estimate of the asymptotic variance-covariance matrix of the 
model parameters, given by the inverse of the estimated information matrix 
evaluated at the converged values of the estimates. Each element of the 
inverse of the information matrix is a minimum variance bound for the 
corresponding parameter, and the positive square roots of the diagonal 
elements of this matrix (i.e., the standard errors of the estimated 
coefficients) may be used for significance tests and to construct confidence 
intervals. 
 According to asymptotic theory, ML estimators become progressively 
more unbiased and more normally distributed, and achieve the minimum 
possible variance more closely, as the sample size increases (see, e.g., King 
1989). However, these asymptotic assumptions may be violated in our 
complex Markov chain model. Moreover, the estimators in our model have 
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essentially unknown properties for small to moderate sample sizes, and we 
cannot present any guidelines as to when a sample is sufficiently large for 
the asymptotic properties to be closely approximated. It is therefore 
important to investigate the behavior of the estimators of the parameters in 
Equation (2) by examining their finite-sampling distribution. The bootstrap 
and MCMC simulations provide useful tools in this situation. 
 
5.2.2.2  Parametric bootstrap simulation 
 
The bootstrap uses Monte Carlo simulation to empirically approximate the 
probability distribution of the parameter estimates and other statistics, 
rather than relying on assumptions about its shape, that may only be 
asymptotically correct. The technique used here is the model-based 
parametric bootstrap (Davison and Hinkley 1997). For the parametric 
bootstrap, resamples are taken from the original data via a fitted parametric 
model to create replicate data sets, from which the variability of the 
quantities of interest can be assessed. In the repeated simulations, it is 
assumed that both the form of the deterministic component of the model 
and the nature of the stochastic component are known. Bootstrap samples 
are generated using the same fixed covariates as in the original sample and 
a set of predetermined values for the parameters, allowing only the 
stochastic component to change randomly from sample to sample. By this 
means, many bootstrap samples are generated, each of which provides a set 
of estimates of the parameters that may then be examined for their bias, 
variance, and other distributional properties and used for bootstrap 
confidence intervals and hypothesis testing. The parametric bootstrap re-
sampling procedure is implemented here according to the following 
algorithm: 
 

1. Estimate the unknown parameter θ  according to the model (2), 
using the original sample x{ , }, 1, , , 1, ,

it it t
y i n t T= =… … , with 

the estimate denoted as ˆθ , and obtain the fitted values ˆ
it
p  of the 

probability that the binary dependent variable 1
it
y = . 

2.  For each x
it

 in the original sample x{ , }
it it
y , generate a value of 

the bootstrap dependent variable *

it
y  by random sampling from a 

Bernoulli distribution with success probability given by ˆ
it
p .  

3.  Use the bootstrap sample x *{ , }
it it
y  to fit the parameter estimate *

θ . 
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4.  Repeat Steps 2 and 3 R  times, yielding the bootstrap replications 
denoted as * *

1
ˆ ˆ, ,

R
θ θ… . The empirical distribution of these 

replications is used to approximate the finite sample distribution 
of ˆθ . 

 
In this study we look at the density of the values of *

ˆθ  under resampling of 
the fitted model to examine bias and variance and to see if it is multi-
modal, skewed, or otherwise nonnormal. To obtain an accurate empirical 
approximation, we use R =5,000 replications of the original data set. While 
the bootstrap estimates of bias and variance under the fitted model are 
important in their own right, parametric resampling may also be useful in 
testing problems when standard approximations do not apply or when the 
accuracy of the approximation is suspect. The key to applying the bootstrap 
for hypothesis testing is to transform the data so that the null hypothesis is 
true in the bootstrap population. That is, we simulate data under the null 
hypothesis so that bootstrap resampling resembles sampling from a 
population for which the null hypothesis holds (Hall and Wilson 1991). 
The bootstrap hypothesis test compares the observed value in the original 
sample with the R  values * *

1
ˆ ˆ, ,

R
θ θ… , which are obtained from samples 

independently generated under the null model that satisfies 
0

H . The 
bootstrap P -value may then be obtained by * ˆ( )p θ =  *

0
ˆ ˆ( | )P Hθ θ≥ =  

1 *

1

ˆ( )
R

i
R I θ θ
−

=

≥∑  , where the indicator (.)I  equals one if the inequality is 
satisfied and zero if not (Davison and Hinkley 1997). We reject the null 
hypothesis if the selected significance level exceeds * ˆ( )p θ . 
 
5.2.2.3  Markov chain Monte Carlo simulation 
 
Another powerful tool next to MLE and parametric bootstrap is Bayesian 
simulation, which is easily implemented using Markov chain Monte Carlo 
(MCMC) methods. Bayesian data analysis is not concerned with finding 
the parameter values for which the likelihood reaches the global maximum. 
It is primarily concerned with generating samples from the posterior 
distribution of the parameters given the data and a prior density, and this 
distribution may be asymmetric and/or multimodal. Other advantages of 
the Bayesian approach include the possible incorporation of any available 
prior information and the ability to make inferences on arbitrary functions 
of the parameters or predictions concerning specific individual units in the 
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sample (see Pelzer and Eisinga 2002). A popular method for MCMC 
simulation is Metropolis sampling (Tanner 1996). The Metropolis sampler 
obtains a chain of draws from the posterior multivariate distribution 
( | )yπ θ  of the parameter θ . In sampling from the unknown target 

distribution, the algorithm uses a known auxiliary density A─ e.g., a 
(multivariate) uniform or normal distribution ─ to select candidate 
parameters c

θ . The Metropolis algorithm proceeds as follows: 
 

1. Choose a starting value for the parameter (e.g., the ML estimates). 
2. Randomly draw parameter c

θ  from A , a symmetric proposal 
distribution with mean equal to the previous draw θ  and an 
arbitrary variance. 

3. If ( | ) ( | )c

y yπ θ π θ≥ , add the candidate c

θ  to the chain of draws. 
If ( | ) ( | )c

y yπ θ π θ< , calculate the ratio ( | )/ ( | )c

r y yπ θ π θ= , 
and add c

θ  with probability r  to the chain of draws. 
4. If candidate c

θ  is not added to the accepted draws in Step 3, add θ  
so that two successive elements of the chain have the same 
parameter value θ . Else proceed with the next step. 

5. Repeat Steps 2-4 K  times, yielding a sample from the posterior 
distribution of θ . 

 
In the Markov chain sampling used here, we assumed a priori that we are 
ignorant of the values of the parameters (i.e., have a vague prior belief). 
This implies that ( | )yπ θ  equals the likelihood of θ . Once stationarity has 
been achieved, a value from a chain of draws from the Metropolis 
algorithm is supposed to have the same distribution as the target density. 
We ran the Metropolis algorithm K =100,000 times, excluding an initial 
burn-in of 10,000 samples, and subsequently obtained the mean, standard 
deviation, and limits of the 95% credibility interval of θ . 
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5.3 Application 
 
 
5.3.1 PC penetration in Dutch households 
 
The major concern of this section is how the RCS Markov model performs 
in practice. The empirical application is concerned with modeling the rise 
in computer penetration rates in Dutch households in the 1986─1998 
period using data from the Socio-Economic Panel (SEP) collected by 
Statistics Netherlands. The reason for using this 13-wave annual household 
panel study is that it offers the opportunity to check the estimation results 
against the panel findings. However, it is important to note that in the RCS 
Markov analysis below the panel data are treated as if they were 
observations of a temporal sequence of 13 independent cross-sectional 
samples. That is, no use is made of information about lagged values of 

it
y .  

 The binary dependent variable 
it
y  is defined to equal one if the 

household owns a personal computer and zero if not. Table 5.1 reports the 
proportions of Dutch households with a PC in the 1986─1998 along with 
the observed entry and exit transition rates. As can be seen, there is a 
marked upward time trend in PC ownership, from 12% in 1986 to 57% in 

Table 5.1 Proportions of PC ownership in Dutch households over time, 2,028 cases 
 

 

 Year 
t
y    

1
0

t t
y y

−

=  
1

(1 ) 1
t t
y y

−

− =  
 

 

 1986 .12 
 1987 .15 .05 .10 
 1988 .20 .08 .12 
 1989 .24 .08 .13 
 1990 .28 .08 .08 
 1991 .31 .09 .09 
 1992 .36 .11 .09 
 1993 .38 .10 .13 
 1994 .41 .10 .09 
 1995 .44 .13 .11 
 1996 .48 .13 .07 
 1997 .51 .14 .09 
 1998 .57 .19 .07 
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1998. While the entry rates (i.e., 
1

| 0
t t
y y

−

= ) also show an increase over 
time, the exit rates (i.e., 

1
1 | 1

t t
y y

−

− = ) reveal erratic change. 
 It is clear from previous studies which structural determinants explain 
systematic variation in the presence of a PC in homes. The most important 
covariates – in the Netherlands as elsewhere – are educational attainment, 
age, the size of the household, and household income (see, e.g., OECD 
2001). These variables are included in the SEP household study, but they 
would generally also be available in a repeated cross-sectional survey. The 
time-varying variable age of head of household (hereafter age) is cate-
gorized into three different age categories (18-34, 35-54, and 55+ years). 
The time-varying variable number of household members is constructed 
from cross-sectional information about the number and the ages of the 
children in the household and the presence of a spouse. It is assumed that a 
family with children has two adults. The variable highest completed 
education of head of household (hereafter education) is taken to be fixed 
over time. In addition to these backcastable variables, the analysis also 
includes the temporary, nonbackcastable covariate household income. The 
variable used here is the standardized (i.e., corrected for size and type of 
household) disposable household income, categorized into quintiles. 
 
 
5.3.2 RCS Markov model 
 
5.3.2.1  Maximum likelihood 
 
The first model fitted was a time-stationary Markov chain with constant 
terms only. This model produces the parameters -2.543( )

t
β μ =  and 

-3.310*( )
t

β λ =  and a log-likelihood value of -15,895.214LL = . These 
estimates imply constant transition probabilities .073μ =  and .035,λ =  
and hence predicted rates that underestimate the observed sample 
frequencies reported in Table 5.1. The model was subsequently modified to 
a nonstationary, heterogeneous Markov model by adding the covariates 
reported above. In analyzing the data with this model, it became apparent 
that the covariates have a substantial effect on the transition from have-not 
to have, but that they contribute little to the explanation of the reverse 
transition. We therefore decided to model the exit transitions using a 
constant term only. Further, it turned out that the inclusion of a linear time 
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trend in the prediction of obtaining a computer appreciably improves the 
fit. We therefore included the variable time in the model. This inclusion 
implies, as indicated in Section 5.2.1, that we drop the assumption of a 
time-constant intercept and allow the baseline entry rates to increase 
linearly over time. The results are reported in the second column of Table 
5.2. 
 The top part of the table gives the estimated effects on the marginal 
probabilities 

1i
p . The table indicates that both education and the number of 

household members positively affect the presence of a PC in homes. While 
there is no significant difference in PC ownership between the 18-34 year 
age group and others aged 35-54, ownership is significantly more 
widespread among the younger age group than among those aged 55 and 
over. The middle part of Table 5.2 presents the effects on the transition 
from have-not to have with respect to PC ownership. The results show that 
educational attainment of head of household, household size, household 
income, and time have a positive effect on obtaining a computer. This 
finding confirms the conclusion of cross-sectional studies that computer 
ownership has spread most rapidly among affluent, well-educated families 
with children (OECD 2001). The coefficients of the age terms again imply 
similar entry rates among younger and middle age groups. The older age 
group has considerably lower access rates. The parameter estimate of the 
constant term for 

it
λ  is shown in the bottom part of the table. An intercept 

of -2.292 implies a time-constant exit transition probability of .092λ =  
(i.e., .908κ = ), which perfectly matches the observed mean frequency of 
.092. 
 
5.3.2.2  Parametric bootstrap 
 
As indicated, the benefit of parametric simulation is that the bootstrap 
estimates give empirical evidence that likelihood theory can be trusted, 
while providing alternative methods for calculating measures of uncertainty 
if this theory is unreliable. To examine the sampling distribution of the 
parameter estimates, we generated 5,000R =  bootstrap samples according 
to the algorithm given in Section 5.2.2.2. Table 5.2 provides for each 
parameter the mean and the sample standard deviation of the bootstrap 
estimates.  In  some applications of  likelihood  methods  the  variability  of  
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Table 5.2 ML, parametric bootstrap and MCMC estimates of RCS Markov model and 
ML estimates of first-order panel model, observations 26,364 

 

 
 

          RCS Markov  
  MLa Bootstrapb MCMCb Panel MLa 

 
 

1
δ

t=
(p )  

 constant -3.713 (.202) -3.718 (.205) -3.754 (.232) -3.606 (.276) 
    [4.137 -3.318] [-4.225  -3.327] 
  education   .382 (.054) .381 (.055) .393 (.056) .364 (.072) 
     [.271  .489]  [.288  .504] 
  age 35-54  -.058 (.119) -.057 (.121) -.037 (.120) .092 (.170) 
     [-.294  .181] [-.284  .197]  
  age 55 and over  -.852 (.162) -.859 (.165) -.842 (.178)  -.782 (.252) 
     [-1.201  -.551] [-1.207  -.513] 
  no. of household  .331 (.042) .332 (.043)  .327 (.038) .310 (.061) 
     members    [.248  .417]  [.249  .397] 
 
 

2,…,13
β μ

t=
( )  

 constant  -6.336 (.121) -6.344 (.124)  -6.339 (.130) -5.116 (.138) 
     [-6.586 -6.110]  [-6.605  -6.105] 
  education  .368 (.023) .369 (.023) .365 (.026) .245 (.029) 
     [.323  .413] [.310  .414] 
  age 35-54  .137 (.049) .137 (.050) .129 (.049) -.098 (.067) 
    [.042  .238] [.037  .224] 
  age 55 and over  -1.364 (.066) -1.365 (.065)  -1.362 (.067) -1.270 (.089) 
    [-1.494 -1.240]  [-1.499  -1.226] 
  no. of household    .421 (.018) .422 (.018) .425 (.020)  .375 (.023) 
     members    [.387  .457]  [.389  .470] 
  income  .438 (.015) .438 (.015) .438 (.016)  .230 (.022) 
     [.408  .468] [.403  .467] 
  time .218 (.009) .218 (.009)  .219 (.010) .171 (.008) 
     [.201  .236] [.198   .240] 
 
 

( )
2,…,13

∗

β λ
t=

 

  constant -2.292 (.132) -2.300 (.133)  -2.307 (.198) -2.284 (.039) 
     [-2.576 -2.058]  [-2.779  -1.938] 
��  -12,895.106  -7,766.304 

 
 

 
 

a Standard errors in parentheses.  
b The mean is reported as the point estimate, the standard deviation in parentheses, and the 

95th percentile interval in brackets. The parametric bootstrap results are based on R=5,000 
bootstrap samples from the original data, and the MCMC findings on K=100,000 Metropolis 
sampler posterior estimates. 
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likelihood quantities may be grossly over- or underestimated. As the table 
shows, however, the misestimation is small enough to be unimportant here. 
The bootstrap mean values are close to the ML estimates, and the sample 
standard deviations are similar to the likelihood-based standard errors. The 
bootstrap estimates of bias and other distributional properties are given in 
Table 5.3. 
 The ML estimates of the model parameters appear to be only slightly 
biased, the largest absolute bias being .0086. When the estimated bias is 
expressed as a percentage of the parameter estimate (not reported in Table 
5.3), the largest differences between standard theory and the bootstrap 
results are found for the parameter 

1
( )

i
pδ  of the age 35-54 dummy, for 

which the percentage bias is 1.85%. All other parameters have percentage 

Table 5.3  Parametric bootstrap estimates, based on R = 5,000 bootstrap samples 
 

 

   Excess Jarque- 
                                            Bias 210×   Bias÷ sd    rmse Skewness kurtosis Bera 
 

 

1
( )

t
pδ
=

  

constant -.493 -.024 .205 -.098* .094 9.812* 
education   -.089 -.016 .055 -.008 .061 .796 
age 35-54  .107 .009 .121 .032 -.026 1.008 
age 55 and over -.729 -.044 .165 -.179* .104 28.954* 
no. of household members  .128 .030 .043 .028 -.078 1.985 
 

2, ,13( )
t

β μ
= …

 

constant -.862 -.070 .124 -.033 -.012 .931 
education  .066 .029 .023 -.050 -.037 2.405 
age 35-54  .040 .008 .050 .070 -.067 5.225 
age 55 and over  -.059 -.009 .065 -.052 .000 2.285 
no. of household members   .084 .047 .018 .010 -.025 .224 
income  .065 .043 .015 -.032 .044 1.260 
time  .022 .025 .009 .008 -.104 2.338 
 

*

2, ,13( )
t

β λ
= …

 

constant -.789 -.059  .133  -.293* .296* 89.691* 
 

 

Note. The bootstrap estimate of bias bootstrap ML( )θ θ= −  is multiplied by 100, and 
2 2 5rmse sd bias .

( )= + . The standard errors of skewness and excess kurtosis are .035 
and .069, respectively. The Jarque-Bera (1980) test statistic for normality has an 
asymptotic 

2

2
χ  distribution; the 5% critical value is 5.991. 

* significant at the .05 level. 
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biases less than 1%. The parameters also tend to have a small bias 
compared to the magnitude of their standard deviation. A frequently 
applied rule of thumb is that a good estimator should be biased by less than 
25% of its standard deviation (Efron and Tibshirani 1993). As can be seen 
in Table 5.3, the ratios of estimated bias to standard deviation are all much 
smaller than .25. Small values are also found for the root mean square 
error, which takes into account both standard deviation and bias. The 
bootstrap sample variance may be compared to the estimated ML variance 
using a chi-square test to examine whether the sample variance from the 
bootstrap is significantly larger than the variance from ML (Ratkowsky 
1983). For none of the parameters is the bootstrap variance significantly in 
excess of the ML variance. The largest value was again found for the 

1
( )

i
pδ  parameter of the age 35-54 dummy. The statistic 
2 2 2ˆ ˆ( 1)( / )bootstrap MLNχ σ σ= −  is distributed as chi-square with 4,999 degrees 

of freedom (df), a transform of which may be closely approximated by the 
standard normal distribution, yielding, for this dummy variable, z =

2
2χ  

− df = 1.8572 1− . 
 Table 5.3 also reports skewness, the excess kurtosis, and the Jarque-
Bera (1980) statistic, which may be used to test whether the estimators are 
normally distributed. The null hypothesis of normality is only rejected for 
the constant and the age 55+ parameter of 

1
( )

i
pδ , and for the constant term 

parameter of *( )β λ . The distribution of the latter is somewhat peaked, and 
all three estimates have an extended tail to the left. The normal 
approximation is least accurate for the *( )β λ  constant. However, even for 
this estimate the deviation from normality is negligible. The same goes for 
the distribution of κ  * 1[ (1 exp( )) ]( )β λ

−

= + , shown in Figure 5.1a. The 
histogram shows no visible departure of the κ  estimates from those 
expected for a normally distributed random variable. 
 
5.3.2.3   Markov Chain Monte Carlo 
 
The Metropolis sampler posterior estimates for each parameter are reported 
in Table 5.2. The findings are based on 100,000K = samples, excluding 
10,000 samples for initial settling. Inspection of the posterior means reveals 
that there are no gross discrepancies in magnitude with the ML estimates. 
The MCMC standard deviations and the ML standard errors are also 
similar to one another. The same goes for the 95th percentile intervals of 
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the parametric bootstrap estimates and the Bayesian credibility intervals. 
Thus Bayesian and frequentist methods for obtaining estimates produce 
roughly similar results. 
 In sum, according to both parametric bootstrap and MCMC 
simulations, the maximum likelihood estimators in this application are 
almost unbiased, with a variance close to the minimum variance bound, and 
a distribution close to normal. This implies that the ML point estimates of 
the parameters are accurate and that the inverse of the Fisher information 
matrix may be used as a good estimate of the covariance matrix of the 
parameter estimates. 
 
 
5.3.3 Dynamic panel model 
 
It is compelling to compare the RCS Markov ML estimates with the 
corresponding parameter estimates of a dynamic panel model that allows 
for first-order dependence. Most directly related to the RCS Markov model 
is a panel model that specifies a separate logistic regression for 

1
( 1 | 0,1)

it it
P y y

−

= = , and includes 
1it

y
−

 as an additional predictor. This 

Figure 5.1 Histogram of ML estimates of  κ (a) for 5,000 bootstrap samples from the 
original full data, with normal curve superimposed, and (b) for 5,000 
cross-sectional samples of 2,028 observations, one observation per 
household. 

 
 (a) (b) 
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model can conveniently be written in a single equation as 
logit

1 1
( 1 | 0,1)

it it it it it
P y y yβ α

− −

= = = +x x , where *α β β= −  (see 
Amemiya 1985, Diggle, Liang and Zeger 1994, Beck, Epstein, Jackman, 
and O'Halloran 2001).  
 The results of applying this logistic model to the binary panel data are 
shown in the right most columns of Table 5.2. A comparison of the RCS 
Markov and panel estimates indicates that most of the findings are 
insensitive to choice of model. The point estimates of all parameters, 
except perhaps the coefficients for age 35-54 and those for income, are 
rather similar, and the standard errors also correspond. 
 Note that the standard errors of the entry parameters are somewhat 
smaller for the RCS Markov model than for the panel data analysis. This 
may seem to be counterintuitive, as it would appear to show that more 
efficient estimates are produced when lagged 

it
y -values are unknown than 

when they are known. It should be noted, however, that the two models 
differ in the number of observations per parameter. The RCS Markov 
model uses 24,336 observations (excluding the observations at 1t = ) to 
estimate seven ( )

t
β μ  and one * ( )β λ  parameter, hence 3,042 observations 

per parameter. In the panel model we have 16,431 observations to estimate 
seven ( )

t
β μ  ─ i.e., 2,347 observations per parameter ─ and 7,905 

observations to estimate * ( )β λ . This explains, at least intuitively, the 
somewhat smaller (larger) standard errors of the entry (exit) parameters in 
the RCS Markov model. The differences are modest, however, and 
inferences about the parameters do not change appreciably with the choice 
of model. Moreover, the two models predict equal transition probabilities 

it
µ  and 

it
λ  for all individual cases (not reported), and the accuracy of the 

two models as judged by a ROC curve analysis is almost identical (the area 
under the ROC curve for the (

1
| 0

t t
y y

−

= ) observations is .763 for the 
RCS Markov model and .768 for the panel model).  
 Only with respect to the likelihood is the RCS Markov model clearly 
inferior to the panel model. However, the two models differ in the 
computation of 

it
p  and thus also of the likelihood. In binary panel data, the 

marginal probability 
it
p  is either 

it
µ  or 1

it
λ− , conditional on 

1it
y

−

, and the 
likelihood contribution can be written as 

it
=�  1 1(1 )(1 )it it it ity y y y

it it
μ λ− −

−

−  
1 1(1 )(1 ) (1 )(1 ) it it it ity y y y

it it
μ λ− −

− − −

− . In the RCS Markov model, however, the 
marginal probability 

it
p  is always a weighted sum of two probabilities 

─ 
it

µ  and 
it

λ  ─ weighted by 
it
p , and the likelihood is given by 

it
=�  
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1 1
[ (1 ) (1 ) ] ity

it it it it
p pμ λ
− −

− + −
1

1 1
[(1 )(1 ) ] it

y

it it it itp pμ λ
−

− −

− − + . This implies that 
even if panel and RCS data produce identical transition probabilities 

it
µ  

and 
it

λ , the two likelihood functions may differ because of 
1it

p
−

. The 
likelihood values are identical only if 

1it
p

−

 is equal to 
1it

y
−

; that is, if the 
lagged covariates perfectly predict the previous response. 
 
 
5.3.4 Samples of independent observations 
 
As indicated, in the RCS Markov model the panel data are treated as 
independent cross sections, implying that there is no information on 
autocov 

1
( , )

it it
y y

−

 available in the data file used for analysis. Nevertheless, 
the best way to make sure that the results are not artifacts is to analyze 
independent observations. To do so, we randomly draw (without replace-
ment) samples of 2,028 different households from the (2,028×13=) 26,364 
panel observations, where each sample consists of 13 separate sets ─ one 
for each time period ─ of 156 households. Hence each household is 
selected only once in the 'cross-sectional' sample. The total number of 
possible 'cross-sectional' samples in our application is approximately 2,242

10  
( 12

0s=
≈ Π  2,028 156{( )!s− ×  /  156 2,028 156 156[ ! ( )!] }s− − × ). We ran-

domly drew 5,000 samples and analyzed each data set separately, using 
maximum likelihood estimation. 
 Table 5.4 reports the average values of the parameters across the 
samples along with the standard deviation divided by 13 . A comparison 
of the Tables 5.2 and 5.4 suggests that for almost all parameters the mean 
values are close to the MLE obtained for the original full sample size. The 
only noticeable difference is in the constant term parameter of ( )β λ

∗ . This 
mismatch can be explained by referring to the distribution for κ , shown in 
Figure 5.1b. For several 'extreme', small samples the true maximum of the 
likelihood function is attained when κ  takes the boundary value of 1κ = . 
This implies that the true MLE of *( )β λ  is minus infinity and the Fisher 
optimization algorithm thus fails to converge. 
 Since the re-sample size is much smaller than the original sample size, 
it is not surprising that there is a large drop in efficiency relative to the 
estimates from the original full sample. However, dividing the standard 
deviations by 26,364 2,028 13/ =  scales them back to the standard 
errors of the parameters in the original sample. As can be seen, the standard 



 142 

deviations in Table 5.4 agree well with the ML standard errors reported in 
Table 5.2, the exception again being the constant parameter of *( )β λ . 
 
 
5.3.5 Parametric bootstrap test 
 
Under parametric bootstrap, hypothesis testing is remarkably easy. We 
simply need to fit the hypothesized null model, generate bootstrap 
replications under the assumptions of this model, and calculate the measure 
we wish to test, both for the real data and for the R  sets of bootstrap data. 
If the value from the real data is among the 5% of the most extreme values 
in the combined set of 1R +  values, the hypothesis is rejected at the .05 
level of significance. For illustrative purposes, we selected a single sample 
from the 'cross sections' of size 2,028, with ML estimates close to those 
reported in Table 5.2. The estimated value for κ  in this sample was .916. 
Now consider testing the hypothesis 

0
: .999H κ ≥  against the one-sided 

alternative 
1
: .999H κ <  (

0
: 1H κ =  would be a theoretically implausible 

hypothesis to test for all cases). In R =4,999 bootstrap resamples from 
0

H , 
we found 51 values less then or equal to .916, so the p∗ -value is 51/5,000 = 
.0102. This finding leads us to reject the null hypothesis for this particular 
sample. 

Table 5.4 Mean and standard deviation 13( )÷  of the RCS Markov ML estimates for 
5,000 samples of 2,028 observations, one for each household 

 

 

                                                  
1

( )
t
pδ
=

                    2, ,13( )
t

β μ
= …

               *

2, ,13( )
t

β λ
= …

a 

 
constant  -3.845 (.199)  -6.426 (.120) -2.389 (.260) 
education   .403 (.046)  .366 (.027) 
age 35-54   -.045 (.118)  .147 (.045) 
age 55 and over   -.785 (.160)  -1.423 (.063) 
no. of household members    .343 (.032)  .431 (.018)    
income    .447 (.015) 
time     .223 (.010) 
 

 

Note. Each sample is drawn without replacement and consists of 13 sets - one for each time 
period - of size 156. The standard deviation, divided by 13 , is reported in parentheses. 

a Excluding 440 samples with *( )
t

β λ ≤  -8 (i.e., κ  > .9996). 
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5.4 Summary 
 
 
Repeated cross-sectional surveys have become an important data source for 
research over the past decades. The accumulation of these surveys offers 
researchers from various disciplines a growing opportunity to analyze 
longitudinal change. Dynamic models for the analysis of repeated cross 
sections are, however, relatively rare, and one may even argue that there is 
an increasing lag between the availability of data and models to analyze 
them. 
 The results presented here illustrate the usefulness of exploiting 
repeated cross-sectional surveys to identify and to estimate 0-1 transition 
probabilities, which are generally thought to be nonestimable from RCS 
data. The bootstrap and MCMC findings for the PC ownership example 
suggest that the maximum likelihood RCS Markov model produces reliable 
estimates in large samples. It also turns out that, in our empirical 
application at least, the RCS Markov model performs almost as well as a 
first-order dynamic panel model. To rule out artificial results, samples of 
independent observations from the panel data were also analyzed, with 
similar results to those for the full sample. 
 This paper has made some necessary first steps in exploring a largely 
unknown area, and many relevant topics could not be covered here. For 
example, in some contexts (e.g., the empirical illustration discussed here) it 
is pretty clear from previous studies or theory which covariates are likely to 
be important and how they are related, at least qualitatively, to the 
dependent variable of interest. In other cases, especially in complex data 
from an unfamiliar field, covariate selection may be far from obvious. An 
important part of the analysis is then a preliminary analysis to search for a 
suitable model. This involves not just inspecting the adequacy of the initial 
model, but doing so in a way that will suggest an improvement of the 
model and bring to light possibly unsuspected features of the data. 
 A difficult problem in model specification is that it is not always 
possible from the data themselves to obtain a clear indication of how to 
improve the model (and how important it is to do so). It may also happen 
that different models fit the data roughly equally well and that any choice 
between them has to be made on grounds external to the data. 
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Further, it is obvious that estimating the 'nonestimable' is possible only by 
making assumptions. The validity of the assumptions, however, cannot be 
assessed from the data under study. Consequently, findings are always 
conditional on the appropriateness of the assumed model, which in a 
fundamental sense is not testable. An appropriate statistical framework then 
is to consider how sensitive the results are to model assumptions. An 
important subject for future work is therefore to develop sensitivity 
analysis tools (such as influence diagnostics) and to study the stability of 
the results under different model specifications and small modifications or 
perturbations of the data. 
 Topics to be studied by further Monte Carlo work are the 
distributional properties of the estimators in different model specifications 
and the sensitivity of inference procedures to varying sample sizes. In 
addition to parametric bootstrap, nonparametric resampling could be used 
to examine the robustness of specification. Nonparametric simulation 
requires generating artificial data without assuming that the original data 
have some particular parametric distribution. Finally, although the impetus 
behind developing the methodology presented here came from the intend to 
dynamically model RCS data, it would be of interest to apply the model to 
panel data with missing observations for 

1t
y
−

. The Markov chain model 
could then be used, in conjunction with a first-order panel model for 
observations with nonmissing 

1t
y
−

, to obtain model-based imputations for 
the missing data. 
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6 
 
 
 
This chapter1 discusses some simple practical advantages of Markov chain 
Monte Carlo (MCMC) methods in estimating entry and exit transition 
probabilities from repeated independent surveys. Simulated data are used to 
illustrate the usefulness of MCMC methods when the likelihood function 
has multiple local maxima. Actual data on the evaluation of an HIV 
prevention-intervention program among drug users are used to demonstrate 
the advantage of using prior information to enhance parameter identifica-
tion. The latter example also demonstrates an important strength of the 
MCMC approach, namely the ability to make inferences on arbitrary 
functions of model parameters. 
 
 

                                                 
1  This chapter has been published as Pelzer, B. and R. Eisinga. 2002. "Bayesian Estimation of 

Transition Probabilities from Repeated Cross Sections," Statistica Neerlandica, 56: 23-33. 

 Bayesian Estimation of Transition 
 Probabilities from Repeated Cross Sections 
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6.1 Introduction 
 
 
Paap (2002) has shown that MCMC methods are not just a new set of 
techniques that exploit modern computing technology. Rather, they allow 
researchers to work with statistical models (and data) previously considered 
intractable. These include models with dynamics in latent variables, 
hierarchical, mixture, item-response and nonresponse models and 
combinations of these model types (see Congdon 2001). While the main 
advantage is estimation in complex models, Bayesian simulation has also 
some less sweeping but useful aspects. This short communication is 
concerned with the problem of estimating binary transition probabilities 
from independent repeated cross-sectional (RCS) data and aims to 
demonstrate some practical advantages of Bayesian statistics based on the 
following issues.  
 Any model that can be estimated by maximum likelihood can 
obviously also be estimated by Bayesian simulation. However, when the 
likelihood function is asymmetric or has multiple local maxima, evaluating 
the likelihood only around the global maximum, as in ordinary maximum 
likelihood estimation (MLE), may produce inaccurate information about 
the distributions of the parameters. Bayesian simulation has an advantage 
in these circumstances because it is not concerned with finding the 
parameter values for which the likelihood reaches the global maximum. It 
is primarily concerned with generating samples from the posterior 
distribution of the parameters given both the data and a prior density and 
this distribution may be asymmetric and multimodal. Simulated data will 
be used to illustrate this. Also, identification may be less of a problem in 
Bayesian analysis compared with classic approaches such as MLE. While 
unidentified parameters cannot be estimated in MLE, in the Bayesian 
approach it is possible to use an ‘informative’ prior that can provide 
identification. Our example below is concerned with a simple type of 
Bayesian data combination, in which the posterior determined from a small 
sized panel data set is used as the prior for a subsequent analysis of 
repeated cross-sectional data to yield a set of identified parameters. Finally, 
MCMC offers the opportunity to make inferences on arbitrary functions of 
model parameters. We will use this ability to derive samples from the 
posterior distribution of entry and exit transition probabilities in RCS data.  
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6.2 Estimating binary transitions from RCS data  
 
 
We will first briefly present the model we use to estimate transition 
probabilities from repeated cross sections. Consider a two-state Markov 
matrix of transition rates in which the cell probabilities sum to unity across 
rows. For this 2 2×  table, we define the following three terms, were 

it
Y  

denotes the value of the binary random variable Y  for observation i  at 
time point t : ( 1 )

it it
p P Y= = , (

1
1 | 0)

it it it
P Y Yµ

−

= = = , and 
(

1
0 | 1)

it it it
P Y Yλ

−

= = = . These probabilities give rise to the equation 

1 1 1
(1 ) (1 )

it it it it it it it it
p p p pμ λ μ η

− − −

= − + − = + , where 1
it it it
η λ μ= − − . 

If we let the initial probability 
0

0
i
p =  (or t → ∞ ), it is straightforward to 

show that the reduced form for 
it
p  is  

 

 
1

1 1

tt

it it i is

s

p
τ

τ τ

μ μ η

−

= = +

= +
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∏ .  

 
To estimate this equation with repeated independent cross-sectional data, 
current and backcasted values of time-invariant and time-varying 
covariates 

it
X  (i.e., 

1 1
, , ,

it it i
X X X

−

… ) are employed to generate backward 
predictions of the transition probabilities ( and

1 1 1 2
, , , , , ,

it it i it it i
μ μ μ λ λ λ

− −

… … ) 
and thereby of the marginal probabilities (

1 1
, , ,

it it i
p p p

−

… ). The transition 
probabilities themselves are specified as ( )

it it
F Xμ β=  and 

*1 ( )
it it

F Xλ β= − , where F  is the logistic link function and β  and *β  
are two potentially different sets of parameters associated with two 
potentially different sets of covariates 

it
X . To incorporate “non-

backcastable” variables (i.e., time-dependent covariates for which past 
histories are unknown) into the model, two different sets of parameters are 
estimated for both 

it
µ  and 

it
λ : one for the current transition probability 

estimates and a separate one for the preceding estimates. If we define 
it

Z  as 
a vector of nonbackcastable variables and ζ  as the associated parameter 
vector representing the effect on 

it
µ , we can write 

logit **( )
it it it

X Zμ β ζ= +  for cross section t , and logit( )
it it

Xμ β=  for 
the cross sections 1, , 1t −… . In our applications below we assume that 

**

.β β=  Also, we define the first observed outcome of the process, 
P

1
( 1)

i
Y = , to equal the state probability 

1i
p  (rather then the transition 

probability 
1i

µ ) and assume that the 
1i

Y 's are random variables with a 
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probability distribution Prob
1

( 1) ( )
i it

Y F X δ= = , where F  is the logistic 
function and δ  a set of parameters to be estimated. ML estimates of β , *β  
and δ  can be obtained by maximizing the log likelihood LL =  

1 1 1 1

t t
T n T n

t i it t i= = = =

Σ Σ = Σ Σ��  [ log( ) (1 ) log(1 )]
it it it it

y p y p+ − −  with respect 
to the parameters, where 

t
n  is the number of observations of cross section 

t  and T  is the number of cross sections. Fisher’s method-of-scoring may 
be used for maximum likelihood estimation. If we suppress the subscript i  
and define 

0
0p = , the first order partial derivatives of ��  with respect to 

the parameters β  and *β  are  
 

 1

1
(1 )

(1 )
t t t t t

t t

t t t

p y p p
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p p p
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η

∂β ∂ ∂β ∂β ∂β
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−

⎛ ⎞− ⎟⎜= ⋅ = ⋅ + − ⎟⎜ ⎟⎟⎜− ⎝ ⎠
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and 

 1

1* * * *(1 )
t t t t t

t t

t t t

p y p p
p

p p p

∂ ∂ ∂ ∂ ∂λ
η

∂β ∂ ∂β ∂β ∂β
−

−
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�� ��
, 

 
where / (1 )

t t t t
xμ β μ μ∂ ∂ = −  and */ (1 )

t t t t
xλ β λ λ∂ ∂ = − − . Further 

details about the model are provided by Moffitt (1993) and Pelzer, Eisinga 
and Franses (2001, 2002). In the examples below, the ML estimates were 
used as starting values of the Markov chain to reduce the period required 
for burning-in the sampler. 
 
 
 
6.3 Multimodal likelihood function and Bayesian 

simulation 
 
 
The likelihood function can have multiple local maxima with some 
distributions and models and assuring oneself that a local maximum is 
indeed the global maximum can be computationally difficult or intensive. 
Also, if the likelihood function is not well behaved around its maximum, 
standard errors produced by MLE can lead to unreliable inferences. 
Markov chain algorithms for sampling from the posterior offer a more 
complete picture of the uncertainty in the estimation of the unknown 
parameters. We will illustrate this with a simulated data set. For this 
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simulation, we generated data for 5T =  cross sections with 2,500
t

n =  
observations each, using to the following equations and parameter values:  
 
 

1 1i i
p μ=    for  1t =        

 
1 1

(1 ) (1 )
it i it i it
p p pμ λ

− −

= − + −    for  2, ,5t = …    
  
 logit

1 1 2
( )

i i
Xμ β β= +     

1
.69β =−  

2
.25β =  

 logit
3 4

( )
i i

Xμ β β= +  
3

1.09β =−   
4

.25β =  
 logit * *

1 2
( )

i i
Xλ β β=− −  *

1
0β =   *

2
.75β = . 

 
The 

i
X  values were drawn from the standard normal distribution and 

subsequently rounded to the nearest integer. The values ranged from -4 to 
+4, with about 38% of the observations having zero values. Note that the 

i
X  values were fixed over time. Also note that the transition probabilities 

i
μ  and 

i
λ  were taken to be time-constant. The 

it
Y  values were sampled 

from a Bernoulli ( )
it
p  distribution, 1, ,5t = … .  

 The intercept values 
1 3
,β β  and *

1
β  were selected so that for 

observations with zero 
i

X  values the marginal probabilities equal 

1
/( )

i it i i i
p p μ μ λ= = + , which is .334. This steady state condition is 
reflected in the marginal distribution of the simulated 

it
Y , the proportions 

of 1
it

Y =  being .34, .35, .36, .37, and .34 for the respective cross sections. 
In a steady state condition, different sets of parameter estimates for β  and 

*β  may yield an (almost) identical maximum likelihood, especially if the 
covariate 

i
X  has weak effects. If 

i
X  has no effect at all, we may as well 

remove it from the model. However, for a model with intercept parameters 
only, infinitely many estimates satisfy 

1
/( )

i it i i i
p p μ μ λ= = +  and thus 

produce an identical maximum likelihood. The covariate 
i

X  reduces the 
infinitely many ML estimates to a single one, but there still may be many 
sets of point estimates that yield nearly similar maximum likelihood. 
MCMC techniques, which seek to characterize the posterior distribution of 
the regression parameters, can be usefully applied here. 
 The Metropolis algorithm is often used to generate samples from the 
posteriors (Tanner 1996). As is well known, this scheme is potentially 
inefficient when confronted with posteriors with multiple peaks, especially 
if they are well separated. Multimodal target distributions (especially if the 
starting values trap us near one of the modes) lead to a poorly mixing chain 
that stays in small regions of the parameter space for long periods of time. 
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The result is that a very large number of random draws is needed to locate 
the modes. An algorithm that is more efficient in these circumstances is 
parallel tempering (Liu 2001). Parallel tempering uses a number of chains 
to traverse the full parameter space, each chain being updated M  times by 
the Metropolis algorithm. After M  updates, a swap of the states of two 
randomly chosen adjacent chains is proposed and this swap is accepted 
with a particular probability. This swapping mechanism enables parallel 
chains to explore the entire parameter space, jumping over "narrow" 
bridges with low likelihood, from one modal area to an other one. To 
promote a visit of all the modes, the Markov chains can be "heated" to 
different "temperatures": a "hot" chain is, when going through the M  
Metropolis updates, more willing to accept parameter proposals with a low 
likelihood than a "cold" chain. Heating chains is especially effective when 
the modes are well separated. If the modes are close, heating the chains 
may be superfluous.  
 We started the analysis with ML estimation, using Fisher-scoring and 
the true parameter values as starting values. The resulting parameter 
estimates were 

1
ˆ .70β =− , 

2

ˆ .27β = , 
3

ˆ 1.04β =− , 
4

ˆ .28β = , *

1
ˆ .05β =− , 

*

2
ˆ .77β = , and the corresponding log likelihood was –7729.72. These 

estimates are close to the true values used in simulating the data. We 
subsequently performed a number of MCMC analyses using different 
heating schemes. The trace plots of and * *

3 4 1 2
, ,β β β β  all showed two 

Figure 6.1 Trace of 
4

β  (for visual clarity, every 100th sample from the chain is  
 displayed)
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sample bands, indicating that the posterior distributions are bimodal. 
However, the unheated chain appeared to mix poorly. The "hotter" the 
heated chains, the poorer the mixing of the unheated chain. We therefore 
decided to use multiple unheated chains in our simulation. The final 
analysis employed 20 unheated chains with uninformative priors. Five 
million samples were run, discarding 50,000 samples for initial settling. 
Figure 6.1 plots 

4
β  against sample iteration number (the other parameters 

are not displayed as their traces are very similar).  
 The figure displays two well separated sample bands. The upper mode 
is located near a value of approximately .90 and the lower mode is close to 
.25, i.e., the true value of 

4
β . The posterior probability distributions of the 

i
µ  and 

i
λ  parameters are shown in Figure 6.2. As can be seen, the 

3
β

4
β

1
β

∗

2
β

∗
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distributions are all bimodal. Also note that for all the parameters, the true 
values are located near the modes with the lowest density. To verify 
additionally that the likelihood has two different modes, ML estimation 
was performed using the modes with the highest density as starting values. 
The resulting parameter estimates were 

1

ˆ .69β =− , 
2

ˆ .27β = , 

3

ˆ 2.30β =− , 
4

ˆ .92β = , *

1
ˆ 1.50β = , *

2
ˆ .02β =− . These estimates 

correspond with the high-density modes in Figure 6.2. The log likelihood 
obtained was -7728.47; hence slightly smaller then the log likelihood of the 
previous analysis.  
 These results indicate that models and data with multimodal posteriors 
may easily cause the unwary ML user to get misleading results. A properly 
implemented MCMC method will produce the entire parameter distribution 
and thus reveal asymmetric or multimodal posteriors. In addition, under 
ML estimation we would compute the mode of the likelihood function and 
use the local curvature to construct confidence intervals. Consider how odd 
it would be to use this procedure here. Since standard confidence intervals 
step on to some fixed distance from the mean and assume a normal 
parameter density, they completely ignore potentially multimodal or 
asymmetric features of the distribution. An advantage of Bayesian 
simulation is that it aims to recover the posterior density without the 
assumption of normality. 
 
 
 
6.4 Bayesian data combination 
 
 
Likelihood-based estimation can be troublesome when the parameters are 
barely identified or unidentified. In practice, however, additional 
knowledge may exist about the parameters. This information can, when 
incorporated in a Bayesian analysis as an informative prior, help to produce 
uniquely defined estimates. In the example below previously estimated 
model parameters computed from a different data set are combined with 
new observations to yield an updated set of identified parameters.  
 Table 6.1 is based on data presented by Hawkins and Han (2000) 
taken from an evaluation study of a HIV prevention-intervention program 
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Table 6.1 Repeated cross section and partial-transition data*  
 

 

   
 Repeated cross section data  (n=1,337) 
 

 u  = 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 
 Area = 0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1 
 Sex = 0 0 0 0 1 1 1 1  0 0 0 0 1 1 1 1 
 Talk = 0 0 1 1 0 0 1 1  0 0 1 1 0 0 1 1 

 time(t) Likely = 0 1 0 1 0 1 0 1  0 1 0 1 0 1 0 1 
 1  11 28 12 18 5 29 6 15  7 46 9 29 5 18 4 13 
 2  14 28 15 32 7 29 11 29  8 54 12 23 6 40 6 19 
 3  7 31 3 20 2 34 4 9  5 40 6 35 1 31 1 12 
 4  10 38 6 23 7 35 5 14  2 33 6 24 0 32 7 22 
 5  9 36 7 22 2 36 4 11  2 34 4 16 3 36 0 22 

 Partial-transition data  (n=215) 

 
 time   u  =  1 1 1 1 2 2 2 2  1 1 1 1 2 2 2 2 
 (t, t+1)  u

∗  = 1 2 3 4 1 2 3 4  1 2 3 4 1 2 3 4 
 1, 2  1 0 1 1 1 2 0 0  2 1 0 0 0 11 0 0 
 2, 3  1 1 0 0 0 1 0 0  0 0 0 0 1 10 0 2 
 3, 4  0 0 0 0 0 4 0 2  0 1 0 0 0 4 0 4 
 4, 5  0 1 0 0 1 5 2 3  0 1 0 0 0 3 0 1 
                   
  u  = 3 3 3 3 4 4 4 4   3 3 3 3 4 4 4 4 
  u

∗  = 1 2 3 4 1 2 3 4  1 2 3 4 1 2 3 4 
 1, 2  1 0 0 0 0 2 1 3  0 0 1 0 0 2 0 1 
 2, 3  0 0 0 1 0 0 0 2  0 2 0 0 0 1 1 4 
 3, 4  0 0 0 0 0 1 0 5  0 1 0 0 0 3 0 3 
 4, 5  0 0 1 0 1 3 0 0  0 0 0 0 0 2 1 2 
                   
  u  = 5 5 5 5 6 6 6 6  5 5 5 5 6 6 6 6 
  u

∗  = 5 6 7 8 5 6 7 8  5 6 7 8 5 6 7 8 
 1, 2  1 0 0 0 0 3 0 0  0 0 0 0 2 6 1 1 
 2, 3  0 1 0 0 1 6 0 0  0 1 0 0 0 9 0 0 
 3, 4  0 1 0 0 0 4 0 1  0 0 0 0 0 7 0 1 
 4, 5  0 1 0 0 1 6 1 2  0 0 0 0 0 10 0 1 
                   
  u  = 7 7 7 7 8 8 8 8  7 7 7 7 8 8 8 8 
  u

∗  = 5 6 7 8 5 6 7 8  5 6 7 8 5 6 7 8 
 1, 2  0 0 1 1 0 2 0 2  0 0 0 0 0 1 0 1 
 2, 3  1 0 1 0 0 1 1 3  0 0 0 0 0 3 0 1 
 3, 4  0 0 0 1 0 1 1 3  0 0 0 0 0 1 0 1 
 4, 5  0 0 1 1 0 1 0 1  0 0 0 1 0 1 0 1 
 

 

Source:  Reprinted with permission of the International Biometric Society from Hawkins and 
Han (2000).  

* The index u  is used to present the partial-transition data economically. 
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among drug injectors attempting to modify high-risk behaviors such as 
sharing unbleached needles to inject drugs. The study consisted of repeated 
independent surveys conducted at five consecutive time-points in two geo-
graphical areas, i.e., an intervention area that underwent various interven-
tion efforts and a comparison area that underwent no intervention. The 
variable of interest was knowledge of the risk of the transmission of HIV 
through sharing unclean needles, as measured by responses to the question 
“how likely is it that you will get AIDS if you share, but don’t clean with 
bleach, drug needles?” The responses of the 1,337 drug users were one of 
two categories of LIKELY (0=not likely, 1=very likely). Explanatory 
variables include the time-constant covariates AREA (0=comparison, 
1=intervention) and SEX (0=male, 1=female) and the time-varying 
covariate TALK (0=no, 1=yes). The latter variable records responses to the 
question “In the last 2 months, has anyone talked to you about AIDS, HIV, 
or cleaning needles with bleach?”. In addition to the independent cross-
sectional data, shown in the top part of Table 6.1, the study also collected 
partial-transition data (for pairs of consecutive waves) from a small sample 
of 215 drug users. The partial-transition data obtained by haphazard 
recaptures are shown in the bottom part of Table 6.1.  
 The repeated cross-sectional data alone can be used to estimate 
relatively simple transition models such as those with both time-constant 
intercepts and time-constant covariate effects. But models that drop this 
assumption are likely to produce problems of overparametrization. That is, 
it seems impossible to estimate more complex models without the partial-
transition data. Several methods can be used to combine the two types of 
data. The procedure pursued here is based on the idea that the partial-
transition data set provides useful auxiliary information about the behavior 
of the parameters in the repeated cross-sectional context. We therefore first 
analysed the partial-transition data separately using the Metropolis sampler 
with a non-informative prior for the regression parameters. The non-
informative prior was approximated by a normal distribution with zero 
mean and variance 6

10 . The means and the variance-covariance matrix of 
the estimated model parameters were thereupon transferred into the 
analysis of the repeated cross-sectional data. That is, they were used to 
construct a multivariate normal prior. Without this prior the problem would  
be overparameterized and the parameters would be unidentifiable. The 
regression parameters at 1t =  were assumed to follow independent normal 
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distributions with zero mean and variance 6
10  (i.e., diffuse or non-

informative priors). In the Markov chain sampling, we run the Metropolis 
algorithm 100,000 times excluding an initial burn-in of 5,000 samples. The 
posterior estimates are shown in Table 6.2. 
 One notes from this table that the entry decisions are affected by SEX. 
That is, the transition probabilities from the “unlikely” to the “very likely” 
response are higher among females than they are among males. Both 
AREA and TALK affect the probability of staying in the “very likely” 
category (i.e., the (1 )

t
λ−  transition). Hence these probabilities are higher 

in the intervention area and among those reporting TALK=”yes”. 
 Of course, other methods could be used to analyse these data. One is 
to simply pool the two data sets and to analyse the combined data using 
either maximum likelihood or Bayesian analysis with uninformative priors. 
When the same model is specified under these approaches, estimates from 

Table 6.2 Metropolis sampler posterior estimates* 
 

 

 )( 1=tpδ  t  ( )
t

β μ  t  *

(1 )
t

β λ−  
 

 

Area .504 (.287) 2-5  .661 (.734) 2-5 .667 (.337) 
 [-.052, 1.071]  [-.669, 2.195]  [.025, 1.350] 
 
Sex .186 (.302) 2-5 1.430 (.633) 2-5 -.082 (.333) 
 [-.390,  .798]  [.206,  2.696]  [-.777,  .555] 
 
Talk .490 (.300) 2-5 -.449 (.693) 2-5 1.133 (.329) 
 [-.089, 1.085]  [-1.929,  .811]  [.505, 1.799] 
 
Constant .690 (.272) 2 -.686 (.794) 2 1.046 (.425) 
 [.148, 1.222]  [-2.279,  .846]  [.257, 1.919] 
 
   3-5 1.123 (.682) 3 1.436 (.449) 
    [-.097, 2.571]  [.621, 2.378] 
 
      4 .975 (.363) 
       [.299, 1.727] 
  
      5 1.190 (.367) 
       [.499, 1.937] 
 

 

* The mean of the last 100,000 samples is reported as the point estimate. The standard deviation 
is reported in parenthesis and the limits of the 95% credibility interval in brackets 
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the ML and Bayesian procedures are close (even with these relatively small 
samples) and they would converge asymptotically. However, sometimes 
external constraints prohibit explicit data pooling. In many instances 
previous observations will not be available and even if they were, 
estimating the whole data might be so time-consuming that shortcut 
procedures using only the new data, and the estimates of the old as priors, 
would be appealing. Also, in many research problems data acquisition and 
data evaluation proceed in stages. Bayesian updating - the transfer of 
previously estimated model parameters to a new context - can reduce the 
need for a large data collection in the next stage. 
 A final issue we would like to address is that MCMC can be employed 
to obtain inference reaching beyond point estimates and approximate 
standard errors. A particular strength of the Markov chain Monte Carlo 
approach is the ability to make inferences on arbitrary functions of model 
parameters. Moreover, anything we wish to know about this function can 
be discovered up to any degree of accuracy via random sampling from the 
density distribution. We may, for example, obtain a sample from the 
posterior distribution of the mean entry and exit transition probabilities. 
 The top part of Figure 6.3 shows the mean posterior (1 )

t
λ−  transition 

probabilities for the two study areas. The distributions illustrate the 
beneficial effect of the intervention program on (1

t
λ− ). The two densities 

presented in the bottom part of Figure 6.3 display the mean 
t

µ  for males 
and females in the experimental area. These figures indicate considerable 
gender differences and they also show that the distribution for females is 
asymmetric. 
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6.5 Conclusion 
 
 
We have presented two simple examples to illustrate the strengths of 
modern tools for Bayesian simulation. A straightforward advantage of the 
MCMC approach is that it provides estimates when traditional maximum 
likelihood struggles. Bayesian simulation recovers the posterior precisely, 
without any need to rely on assumptions about the shape of the likelihood 
function. This feature may help one to arrive at a deeper understanding of 
the problem of interest. 

Figure 6.3 Posterior distributions of average transition probabilities in comparison and
intervention area (normal curve superimposed)
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7 
 
 

 

The foregoing chapters considered a finite state, discrete time, first order 
Markov model, particularly designed for the analysis of individual-level 
cross-sectional data observed at a number of consecutive time points. The 
basic model is due to Moffitt (1990, 1993), who showed that dynamic 
models do not necessarily need dynamic data which record individual 
transitions. Although in cross-sectional data, each individual is observed at 
only one point in time, the proposed Markov model is formulated in terms 
of individual transition probabilities for all time points involved. 

It was shown that the repeated cross sections (RCS) Markov model 
resembles the dynamic panel model (Amemiya 1985, Diggle, Liang and 
Zeger 1994) which uses individual panel data to estimate individual 
transition probabilities over time. The model also resembles the aggregate 
proportions models (Lee, Judge and Zellner 1970, King, Rosen and Tanner 
2004) in that it lacks the actual observations of the quantities of interest, 
being the numbers of individuals that make each possible transition at each 
time point. In the introductory Chapter 1 an overview was given of some 
important developments in the field of statistical Markov models for 
individual panel and aggregated proportions data. 

We described the RCS Markov model structure, the core of which is 
formed by the first order Markov accounting identity, which for binary ϒ  
is given by 

, , 1 , , 1 ,
(1 ) (1 )

i t i t i t i t i t
p p pλ μ

− −

= − + − . The identity relates the 
probability 

,i t
p  for case i  to be in state 1 of ϒ  at time point t  to the 

probability 
, 1i t

p
−

 to have been in state 1 at 1t − , the entry probability 
,i t

µ  
and the exit probability 

,i t
λ . It was shown how time-constant and time-

varying predictor variables can be used in logit link functions over 
,1i

p , ,i t
µ  

and 
,i t

λ  to yield transition probabilities that can vary between individual 
cases and within cases over time. The log-likelihood of the parameters of 
these predictors was also shown, along with it's first and second order 
derivatives. We briefly explained the Fisher scoring algorithm used to 
obtain ML estimates of the model parameters. 

  
 Summary and Preview 
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Several important extensions were added to Moffitt's basic model. These 
include accounting for time-dependency of the parameters, dealing with 
unobserved heterogeneity, using nonbackcastable (or limitedly 
backcastable) predictor variables and using separate parameters for the first 
cross section. Further, we showed how to deal with the problem of 
respondents being too young at the time point(s) of the first cross section(s) 
and how to model inflow of young birth-cohorts in the Markov process. 

Next to the more traditional ML approach, the model was examined in 
a Bayesian framework. We showed how an MCMC procedure like 
Metropolis sampling offers the possibility to enquire into the (small) 
sample properties of the parameter estimates of a given model. 
Alternatively, parametric bootstrapping was used to this end. Further, two 
different data types, individual panel data and cross-sectional data, were 
combined in a Bayesian analysis, to yield more well defined posterior 
parameter distributions. 

In each chapter the model was illustrated with an example application. 
Two of these used repeated cross sections, three used individual panel data 
and one example used both data types. The panel data examples allowed us 
to compare the panel transitions and model estimates with the outcomes of 
the RCS model. In general we found that the RCS model results fitted well 
to the observed panel transitions and panel model results. Based on the 
outcomes of all six applications, we conclude that the RCS Markov model 
can be a useful tool for dynamically modelling longitudinal cross-sectional 
data. However, more work on this model is needed. Below we mention a 
number of topics that we will be focusing on in our future work. 
 
Identification rules 
 
We already discussed the relevance of putting constraints on the model 
parameters. The need for parameter constraints is caused by the fact that in 
the RCS model, the predicted state 1 probabilities 

t
p  for 1t >  are affected 

twice by the same predictor, i.e., through the entry and exit probability, 
while there is only a single ϒ  proportion or value observed. When models 
become complex it is not always easy to find out whether the constraints 
employed are sufficient or not. If not, the model is overspecified, resulting 
in an infinitely large number of equally well fitting solutions for the 
parameters. To avoid such situations rules are needed on which one can 
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rely to make sure that the parameter restrictions used are strong enough to 
guarantee a unique ML solution. 

A necessary condition for the existence of unique parameter estimates 
that applies to all kinds of statistical models, is that the number of 
parameters should not exceed the total number of observational units. For 
the RCS Markov model discussed here, with separate parameters for the 
first observed time point, this rule can more precisely be formulated as: the 
number of parameters used for the initial probability 

1
p  should not exceed 

the number of predictor patterns (combinations of values of predictors) 
observed at 1t = ; the number of parameters used for the entry and exit 
probabilities together should not exceed the total number of predictor 
patterns summed over 2...t T= , with T  being the number of cross 
sections observed. It should be noted that, for a time-varying predictor, 
different histories may exist in the data. Each such history is maximally 
made up of t  values, i.e., 1t −  backcast values and one observed value, 
with t  being the time point at which the case is observed. For such 
predictor, each history counts as a separate predictor 'value' which is 
combined in the data with the values of other predictors. However, this rule 
is merely a very rough 'sine qua non' condition that will often be satisfied 
when applying the RCS model. Obviously, more detailed rules are required 
if, for complex models, one wants to be sure that a unique ML solution for 
the parameters exists. 
 
Multimodality 
 
Even if a unique ML solution for the model parameter exists, it is not 
always simple to find that particular solution, because the log-likelihood 
function may be multimodal. Depending on the starting values chosen for 
the parameters, the Fisher scoring algorithm used to find the maximum 
value of the log-likelihood function, may get stuck in a local maximum 
instead of the global one. On the other hand, it may also happen that the 
global maximum is actually found but it appears to be uninterpretable from 
a theoretical point of view, while there exists a local maximum that is very 
good interpretable but not found by the algorithm. Therefore, trying 
different starting values for the model parameters is a way to avoid ending 
up 'on the wrong hilltop'. 
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Instead of Fisher's scoring method, other algorithms may be better suited to 
deal with a multimodal log-likelihood surface. So-called 'stochastic 
algorithms' start from the idea that many good solutions may exist, that are 
close to each other in the parameter space. During the search process, such 
algorithm can be stopped at any point in time to provide the best solution 
up that time point. In general, these algorithms are more likely to yield the 
different modes of a function than the more classical gradient methods like 
Fisher scoring. Another class of algorithms is formed by the 'evolutionary 
algorithms'. These typically maintain a population of potential solutions 
instead of a single one. A brief explanation of the most important stochastic 
and evolutionary algorithms is given by Omran (2005).  
 
Information loss 
 
Due to not observing the actual transitions in the case of repeated cross-
sectional data as opposed to individual panel data, one may be inclined to 
think that the RCS Markov model estimates are less informative than the 
ones obtained from a model using individual panel data. For the example 
data of Table 7.1 this is true. 
 
 
Table 7.1  Data observed at three time points 
 
 
 
 
 
 
 

 
Table 7.1 shows the marginal distributions (80,20), (40,60) and (30,70) of 

1
ϒ , 

2
ϒ  and 

3
ϒ . These would be the only data available in repeated cross 

sections. In panel data, the inner cell frequencies would also be observed. 
Table 7.2 shows the results of two models applied to the data in Table 7.1, 
the RCS Markov and the dynamic panel model, assuming time invariant 
entry and exit probabilities μ  and λ , respectively. Both models yield the 
same point estimates but with different standard errors for the logits. 
 
 

2
ϒ  

 0 1  

0 36 44 80 

 
 

 

1
ϒ  1 4 16 20 

  40 60  
 

3
ϒ  

 0 1  

0 18 22 40 

 
 

 

2
ϒ  1 12 48 60 

  30  70  
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Table 7.2  RCS and Panel model estimates and standard errors 
 

model µ̂  ˆλ  logit µ̂  logit ˆλ  se(logit µ̂ ) se(logit ˆλ ) 

RCS Markov .55 .20 .201 -1.386 .340 .737 
Dynamic panel .55 .20 .201 -1.386 .183 .280 

 
 

The standard errors for the RCS model are largest and hence, there is 
information loss when using the cross-sectional data (the margins of Table 
7.1) instead of the panel data (the inner cell frequencies). However, in other 
situations there can be information gain, at least for some of the parameters 
used. We already noted this somewhat counterintuitive result in chapter 5 
when discussing the PC ownership example. For these data the entry 
parameters had smaller standard errors for the RCS model than for the 
panel data model. The question then arises as to how the information 
differences between the two models can be explained. Note that, if the only 
data available are repeated cross sections, one cannot compare the standard 
errors of the RCS model with those of the panel model and ask where the 
differences come from. However, what can be asked instead is: "How large 
would the information loss (or gain) of the RCS model be, compared to the 
information of the panel model, if there would have been panel data for the 
same time period?". 
 An important difference between the RCS and the panel model is 
that, for the RCS model, Fisher's information matrix contains off-diagonal 
cells related to the correlations between entry and exit parameters. For the 
panel model, these cells and correlations are zero, since the entry and exit 
probabilities are estimated independently from one another. In general, for 
the RCS model it holds that the stronger these entry/exit correlations, the 
more inflated the variances of the corresponding parameter estimates and 
the greater the information loss of the RCS model, compared to the panel 
model. For the data in Table 7.1, the correlation between the two logit 
estimates using the RCS model is rather strong (-.81); for the PC ownership 
data of Chapter 5 the highest correlation of the six entry parameters with 
the single exit parameter was -.37. The precision of each separate entry 
parameter does not suffer much from such weak correlation. On the other 
hand, the exit parameter is, albeit weakly, correlated with six entry 
parameters and this accumulates to less precision for the exit parameter. 



 166 

An approach to the issue of information loss is offered by Steel, Beh and 
Chambers (2004). These authors deal with a similar problem: the 
information loss in an ecological inference study in which only the 
aggregated marginal frequencies of a set of contingency tables are observed 
but the individual cell frequencies are not. They show how, in general, 
Fisher's information for a model that uses aggregated data is related to the 
expected information for a model using the underlying individual data; 
here, 'expected' is to be understood as: expected over all possible 
occurrences of the individual data that would fit to the observed aggregated 
data. (For example, for the observed aggregated marginal (40, 60) at 2t =  
in Table 7.1, the expectation is over all possible 2x2 panel tables of 

1
ϒ  by 

2
ϒ  with cell frequencies such that the column totals are 40 and 60.) By 
taking the expectation over all individual panel data that could possibly 
have occurred, given the aggregated cross-sectional data, an average 
information loss of the RCS model compared to the panel model can be 
obtained. 
 
Overdispersion due to unobserved heterogeneity 
 
Due to unknown or unobserved influences affecting the outcome of ϒ  
there may be more variation in ϒ  that can possibly be reproduced by the 
known and observed influences that are incorporated in the model 
equations as predictors. To deal with such overdispersion in the data, many 
strategies have been proposed; see for example Collett (1981) for an 
explanation of the phenomenon and a discussion of some approaches to 
deal with it. One of the methods shown by Collett was pursued in Chapter 
4, where a normal random effect was added to the logit equations of both 
entry and exit probabilities to represent the joint effect of all omitted 
predictor variables. This way of dealing with heterogeneity can even be 
applied to ungrouped binary data, with each case having it's own unique 
predictor pattern. Instead of the likelihood, the expected (or marginal) 
likelihood is maximized, expected over all normally distributed values that 
the omitted predictors can possibly take. 

Another method of dealing with overdispersion is one in which a 
hierarchical model specification is adopted. The method can only be 
applied to grouped binary data in which groups of individual cases are 
observed, with each group having a unique predictor pattern. On the 
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highest level, each group's probability 
j

p  to be in state j  of ϒ  is taken to 
be drawn from some theoretical distribution, typically a beta or Dirichlet 
distribution. On the lowest level, the number of group members in a 
particular ϒ  state is taken to be drawn from a binomial or multinomial 
distribution. For dichotomous ϒ , this two-level sampling procedure results 
in a beta-binomial distribution for the number of group members in both 
states. For polychotomous ϒ  the resulting joint distribution of the numbers 
of group members in all ϒ  states is Dirichlet-multinomial. See Brown and 
Payne (1986) and King, Rosen and Tanner (1999) for examples of such 
hierarchical approaches in the field of ecological inference research. For 
the two state RCS model, the binomial likelihood can easily be replaced by 
the beta-binomial one. Estimating such model is computationally less 
intensive than the random effect approach proposed in Chapter 4, where 
integration over the normally distributed random effect can draw heavily 
on computer time. Also, for the random effect model, at least two random 
effect parameters, one for entry and one for exit, have to be estimated, 
while for the beta binomial model a single parameter related to the variance 
of the beta distribution can be used. Further, the random effect model 
assumes that for each predictor pattern the same amount of unobserved 
variance is generated by the omitted variables; the beta binomial model is 
more flexible in that it allows the existence of different variances for the 
marginal state 1 probabilities

it
p  and offers the possibility to let these 

variances depend on predictor variables used. Prentice (1986) showed how 
this can be accomplished for a simple binary regression model. 
 
Multi-state models 
 
Throughout this text, we elaborated on the two-state RCS Markov model 
only. The extension to three or more states is relatively straightforward. 
However, with more states involved the number of independent transition 
probabilities grows rapidly. For k  states there are ( 1)k k −  independent 
transition probabilities, meaning an almost quadratic increase of the 
number of probabilities and corresponding parameters to be estimated. 
Obviously, to obtain an acceptable precision for the many parameters one 
could be faced with, the total number of cases of all cross sections should 
keep up with the number of parameters. Also, the need for an optimization 
algorithm that is able to cope with multimodal log-likelihood functions 
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becomes even more urgent since, in general, we expect more modes as 
more effects of the same predictor affect each separate marginal 
probability. Considering these issues, the first logical step is to examine the 
possibilities of applying three-state ϒ  models to actual data.  
 
 Second order Markov 
 
As with multi-state ϒ  variables, the extension to higher order Markov 
models is relatively straightforward and also increases the total number of 
parameters to be estimated. For binary ϒ , a second-order model has four 
independent transitions as opposed to two for a first-order model. Hence, 
the number of parameters to be estimated will in general be twice as large. 
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Appendix 
 
 
 
The program CrossMark is designed to estimate transition probabilities 
using data from repeated cross sections. Given a dichotomous Y variable, 
CrossMark estimates the effects of predictor variables X on the entry and 
exit probabilities using a Markov model.  
 
CrossMark is available for Windows 95, 98, 2000 an XP. The program 
needs not be installed: simply place file CrossMark.exe in a directory of 
your choice and double-click on this file (in Windows Explorer) to start 
CrossMark. The Main Menu then appears on the screen. This menu looks 
like the one in Figure 1, except that all fields are still empty. 
 
 
 

1  Standard analysis 
 
 
We shall describe how a standard analysis with CrossMark proceeds using 
a fictitious example on vote intention. To highlight all the options of the 
program, we use bold face characters for buttons that must be clicked and 
fields or menu's that have to be filled in. 
 
Suppose the data to be analyzed are from 5 cross-sections, gathered in 
consecutive years, i.e., from 1996 to 2000. The dependent variable is the 
'intention to vote for political party A' (code 1 = 'vote for', 0 = 'not vote for') 
and the independent variable is the respondent’s age (ranging from 18 to 70 
years). The file containing the data is named 'c:\crossmark\vote.dat'. This 
filename has to be entered on the Main Menu in the field Data file (t-x-n-
f1). The data file can be inspected by clicking the Edit button, which opens 
the data file in WordPad. The total number of cross-sections (5) has to be 

 CrossMark 2.0.0 
 User Manual 
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entered in the field Number of cross-sections. The abbreviation 't-x-n-f1' 
behind 'Data file' stands for t=time index, x=X  or predictor variables, 
n=number of cases and f1=number of cases in category Y =1, 
respectively, and reflects the order in which the data must appear in the 
data file. The first three lines of the example data of each cross-section are 
shown below: 
 

1   1 18      1  18 19 20 21 22       9     2 
1   1 19      1  19 20 21 22 23       5     0 
1   1 20      1  20 21 22 23 24       3     0 
2   1 18      1  18 19 20 21 22       4     1 
2   1 19      1  19 20 21 22 23      13     5 
2   1 20      1  20 21 22 23 24       8     0 
3   1 18      1  18 19 20 21 22       4     2 
3   1 19      1  19 20 21 22 23       5     1 
3   1 20      1  20 21 22 23 24       8     3 
4   1 18      1  18 19 20 21 22       4     2 

 Figure 1   Main Menu 
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4   1 19      1  19 20 21 22 23      12    11 
4   1 20      1  20 21 22 23 24       8     5 
5   1 18      1  18 19 20 21 22       7     5 
5   1 19      1  19 20 21 22 23       4     1 
5   1 20      1  20 21 22 23 24       2     1 

 
The first data column is the time index t. As there are five cross-sections 
the time index has to have the values 1, 2, 3, 4, and 5 denoting the years 
1996, 1997, 1998, 1999, 2000, respectively. CrossMark expects the data to 
be ordered in time, with the data of the first cross section located at the top 
of the file, those of the second cross-section following underneath and so 
on until the data of the last cross-section which must be located at the end 
of the file. 
 
The next 8 data columns of the data file in this example, i..e., column 2 
through 9, contain the values of the predictor variables X . There are 4 
predictor variables here: 
 
1. An intercept, having the value 1 for each case. It is located in column 2 

of the data file. In the sequel we will refer to it as ‘intercept 1’. 
2. The respondents age in 1996, located in column 3. For the respondents 

of the cross sections 1997 and following, the age in 1996 has been 
computed by ‘backcasting’ their age to the year 1996. We shall explain 
below why we use ‘age in 1996’ as a separate predictor, which we call 
‘age 1996’. 

3. A second intercept in column 4, which is called ‘intercept 2’. 
4. The respondents age in each of the five years, located in columns 5 

through 9. These five age values together constitute a single predictor 
variable, the values of which change over time. We call this predictor 
'age'. 

 
We will return to the characteristics of the 4 predictors and the way they 
affect the transition probabilities in more detail below. The last two 
columns, 10 and 11, of the data file concern the total number of cases and 
the number of cases in Y  category 1, respectively. For example, the first 
record of the cross section at t =5, i.e., the record 
 
5   1 18      1  18 19 20 21 22       7     5 
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specifies that there are 7 cases in this cross section who were 18 years old 
in 1996, 19 years old in 1997 etc., and that 5 of them are in Y  category 1 
(at t =5) while the other 2 are in category 0. If each row in the datafile 
would contain data for just a single case, then the last but one column (here 
column 10) would be 1 for all cases while the last column would be either 1 
or 0. There is no need to aggregate over t , X  and Y . However, 
aggregating the data, as is done in this example, can speed up the 
estimation process considerably. 
 
We now return to the predictor variables .X  The predictors numbered 1, 2 
and 3 above are constant over time, while predictor 4 takes a different 
value in each of the five years. Time constant predictors occupy a single 
column in the data file, while time varying predictors occupy as many 
columns as there are cross-sections, i.e. five in the example. The names and 
types (constant or varying) of the predictors have to be specified in the 
submenu Predictor names and types, which shows up after clicking the 
X-names button of the Main Menu and is shown in Figure 2. The left field 
of the submenu Predictor names and types contains the predictor’s name 
and the right field the predictor’s type. For a time constant predictor enter 
the character c, and for a time varying predictor enter v. Having done so, 
click OK to return to the Main Menu. 
 
To understand why we use two intercepts and two age predictors (instead 
of just one intercept and one age predictor, which would be possible too) 

  Figure 2  Predictor names and types 
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we take a closer look at the model equations for 
1
p , 

2
p , 

3
p , 

4
p  and 

5
p  or, 

in words, the probabilities to vote for political party A in each of the five 
years. In general, the basic equations CrossMark uses are, with five cross-
sections: 
 

1 1

2 1 2 1 2

3 2 3 2 3

4 3 4 3 4

5 4 5 4 5

(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

p

p p p

p p p

p p p

p p p

μ

λ μ

λ μ

λ μ

λ μ

=

= − + −

= − + −

= − + −

= − + −

 

 
In the example, the transition probabilities μ  and λ  depend on the 
respondents ages as follows:  
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logit( logit

logit( logit(
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Age Age
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μ β β

μ β β λ β β

μ β β λ β β

μ β β λ β β

μ β β λ

= +

= + − = +

= + − = +

= + − = +

= + − =
* *

1 2 2000
Ageβ β+

 

 
Age1996 refers to the respondent’s age in 1996, Age1997 to the age in 1997, 
etcetera. The symbol λ  indicates the exit probability: 

3
λ  is the probability 

not to vote for party A in 1998 given a ‘vote for A’ in 1997. For the 
complement of λ , or the probability to stay in state 1Y = , the term 
‘1-exit’ probability is used in the sequel. The symbol μ  indicates the entry 
probability: 

3
µ  is the probability to vote for A in 1998 given a ‘not vote for 

A’ in 1997.  
 
Speaking of 

1 1
pµ =  as an entry probability can be problematic. Generally 

spoken, 
1
p  is the probability to be in state 1Y =  at 1t =  and this need not 

to be the same as the probability to be in state 1Y =  given that the 
previous state was 0Y = . Only if one knows that each respondent's 
previous state was 0Y = , one may truly consider 

1
p  an entry probability. 

This would e.g. be the case if political party A did not exist before 1996. In 
many applications, of course, the 1Y =  state does exist prior to 1t =  and 
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respondents could have been in that state. In such situations, one may 
prefer to model 

1
p  as a state probability, rather than an entry probability. 

This is accomplished by estimating different sets of parameters for 
1

μ  and 
for 

2
µ  and following, as is done in the model above, where the parameters 

1
β  and 

2
β  only apply to 

1
μ . 

 
In CrossMark the model equations can be specified in the Design mu and 
Design lambda fields of the Main Menu. In Design mu we indicate which 
predictor variable acts upon which entry probability μ . For the example 
this is done as follows: 
 
 1  1 1  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 

 
The first column is the time index t  and the other four columns correspond 
to the four predictor variables in the model. The second column 
corresponds to 'intercept 1', and the value 1 for 1t =  indicates that 
‘intercept 1’ has an effect on 

1
μ ; the 0 scores in the second column for 

2, 3, 4t =  and 5  indicate that ‘intercept 1’ does not have an effect on 
2

µ , 

3
µ , 

4
µ and 

5
µ . The rightmost column is related to the time varying 

predictor ‘age’; the 0 value for 1t =  indicates that 'age' does not occur in 
the equation for 

1
μ  while the 1 values for 2, 3, 4t =  and 5  indicate that 

'age' does occur in the equations for 
2

µ , 
3

µ , 
4

µ and 
5

µ . 
 
In general, the Design mu matrix must have as many rows as there are 
cross-sections. Each row starts with the time index t  and is followed by a 1 
or 0 value for each predictor variable indicating whether (1) or not (0) the 
predictor acts upon entry probability 

t
μ . In the same way a Design lambda 

matrix has to be specified indicating which predictor acts upon which exit 
probability λ . For the present example the lambda matrix is specified as: 
 
 1  0 0  0 0 
 2  0 0  1 1 
 3  0 0  1 1 
 4  0 0  1 1 
 5  0 0  1 1 
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Note that the first row of the Design lambda matrix contains the value 1 
for the time index 1t =  and else only 0 values to indicate that none of the 
four predictor variables has an effect on 

1
λ . This is just to specify that 

1
λ  

does not play a part in the model equations. 
 
We proceed by clicking the Estimation button of the Main menu to invoke 
the Estimation Menu as shown in Figure 3. The upper two fields in this 
Estimation Menu specify the starting values for the iterative Fisher 
scoring scheme. The default values are 0 for all β  and *β  parameters of the 
entry and 1-exit probabilities respectively. Good starting values, i.e., values 
close to the final ML estimates, speed up the estimation process. Starting 
values far removed from the final estimates slow down this process or may 
cause the estimates to be caught in a local maximum or not to reach 
convergence at all. When convergence has been reached, it is advisable to 
choose other starting values and let CrossMark run again to check whether 
the same parameter estimates are found. If this turns out to be the case, one 
can be more confident that the estimates are indeed the true global ML 
estimates instead of estimates associated with a local maximum. 
 

 Figure 3   Estimation Menu 
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When analyzing complex models, in the sense of having many predictors, 
starting values become more of an issue. The final estimates of a previous, 
relatively simple model can be used as starting values for a new model 
having additional predictors. To this end the button read starting values 
can be helpful. After clicking, the final estimates of the previous model are 
filled in as starting values in both fields. The starting values for the 
additional predictors in the second model are defined to be zero and 
automatically added to the list. If a predictor that was present in the 
previous model does not appear in the second, the user has to remove the 
relevant starting values from both lines. 
 
If, for some reason, one would like to fix the parameters of one or more 
predictors to certain predefined values instead of having them estimated by 
CrossMark, one can be proceed as follows. In the field named Fixed entry 
parameters enter a value 0 or 1 for each predictor parameter that has to be 
estimated (enter 0) or not (enter 1). Be sure to enter a value 0 or 1 for all 
predictors and to use the same order for the predictors as was used in the 
menu Predictor names and types. For predictors that have a value 0 
specified, CrossMark will estimate a parameter starting from the starting 
value. For predictors that have a value 1 specified, CrossMark will not 
estimate a parameter but substitutes the given starting value as the 
parameter value to be used for this predictor's effect on the entry 
probability. In CrossMark's output, fixed parameters are denoted by the 
character 'f' and have a Wald Significance and Std. error of 1.0. In the same 
manner, one can fix parameters for the 1-exit probability. 
 
The Step size field in the Estimation Window refers to the step size ε  of 
the Fisher scoring algorithm employed for iteratively updating the 
parameter estimates. The algorithm is given by 

1

1

ˆ ˆ ˆ ( / )
k k k k

I LLθ θ ε δ δ θ
−

+
= + , where ˆ

k
θ  and 

1

ˆ

k
θ
+

 are the parameter 
estimates at the iterations k  and 1k + , 1

ˆ

k
I
−  is the inverse of the Fisher 

information matrix evaluated at ˆ

k
θ θ= , and ( / )

k
LLδ δ θ  are the 

derivatives of the log likelihood with respect to the parameters, evaluated at 
ˆ

k
θ θ= . By default, the value of the step size ε  is 0.5. If the log likelihood 
function has a single mode, the optimal value for the step size would be 1. 
It is not unusual, however, for the log likelihood function to have multiple 
modes in which case a step size of 1 could easily cause the algorithm to 
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jump over the parameter region with the highest mode. For this reason, a 
default step size of 0.5 is chosen. A much smaller step size value may slow 
down the algorithm too much. There is no rule of thumb given here as to 
the choice of the most efficient step size value. 
 
The Step size shrinkage (s ) also deals with the problem of the step size 
being too large. If the log likelihood based on 

1

ˆ

k
θ
+

 is lower than the one 
based on ˆ

k
θ , the current step size has apparently been too large. In that case 

CrossMark produces the message "Not converging, back to parameter 
estimates of previous iteration" and takes as the new step size the product 
s ε⋅ . If this smaller step size also leads to 

1

ˆ

k
θ
+

 estimates with a lower log 
likelihood than the one based on ˆ

k
θ , the step size s s ε⋅ ⋅  is tried. In short, 

the step size is multiplied by s  as many times as needed to produce an 
increase in log likelihood. 
 
The iterative estimation process ends if either the percentage change in log 
likelihood is less than the Minimal % LogLikelihood Change specified, 
which by default is 0.000001%, or the Maximum number of iterations 
has been reached, which by default is 1000. Also by default, CrossMark 
only shows the parameter estimates of the final iteration and not those of 
previous iterations. To force CrossMark showing the estimates of each 
iteration, check the Show iteration history option. 
 
By default CrossMark applies caseweights resulting in the same weighted 
number of cases for each cross section. The sum of all caseweights is equal 
to the total number of cases in all cross sections. To prevent this weighting 
procedure uncheck the option Weight cross sections equally. 
 
CrossMark produces an output file, the name of which can be specified in 
the field Outputfile for t-mu-lambda-p-fre. By default it is labeled 
'tmulapfre' and placed in the directory where the 'crossmark.exe' resides. 
The output file contains one line for each case in the data file. For case i , 
this line has the following information from left to right: 
 
- the time index of the cross-section case i  belongs to,  
- the predicted values of 

1i
µ  to 

iT
µ ,  

- the predicted values of 
1i

λ  to 
iT

λ , 
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- the predicted values of 
1i

p  to 
iT
p ,  

- the frequency of case i , equal to the frequency specified in the rightmost 
column of the data file. 

 
Predicted μ , λ  and p  values that do not apply to a particular case (e.g., 

3
µ  

for a case of cross-section 2, or 
1

λ  for all cases) are assigned the ‘missing 
value’ 9. 
 
By default, in CrossMark's output no (co)variances of parameter estimates 
are shown. They will be, if the option Show covariances of parameters is 
checked before running the model. 
 
The options for Unobserved heterogeneity and Metropolis sampling will 
be discussed below in separate sections. 
 
After clicking the OK button of the Estimation Menu the Main Menu 
reappears. To save all the specifications entered, click the Save button and 
specify a file name, e.g. 'vote.crm' which then appears in the top line of the 
Main Menu. Using the Save as button enables saving the job under a 
different name. The most recently saved job can be opened by clicking on 
the button Last job while older jobs may be opened with Other job.  
 
To start the analysis the data have to be read first. This is done by clicking 
on Read data. When finished reading, CrossMark presents the total 
number of cases as well as the number of cases for each cross-section in the 
rightmost window of the Main Menu. After reading the data, the estimation 
can be carried out by clicking on Go. The initial log likelihood, based on 
the starting values of the parameters, appears on the screen after a few 
moments, as does the log likelihood of each subsequent iteration. When the 
last iteration is finished, a 'Ready' message is delivered. The estimation 
may take some time, especially when many cases and/or predictor variables 
are involved. In the mean time the user may want to look at intermediate 
results by clicking the Show Out button or pressing Ctrl+Tab on the 
keyboard. The Output window then appears, with the parameter estimates 
of each iteration scrolling over the screen, accompanied by the log 
likelihood and, possibly, messages concerning corrective actions 
undertaken by the estimation algorithm. Pressing Ctrl+Tab again (or 
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clicking the cross X in the upper right corner of the screen) closes the 
Output window.  
 
Back in the Main Menu the estimation process - if still running - can be 
stopped by using the Stop button. This may be useful if e.g. the log 
likelihood does not change substantially anymore. Another reason to stop 
the iterations is that the algorithm does not converge, which may happen if 
the model contains too many (i.e., not uniquely identified) parameters. 
 
To leave CrossMark click Exit or the cross X in the upper right corner of 
the screen.  
 
 

2  Nonbackcastable variables 
 
It may be that the respondent's value on a predictor variable at time t  is 
known, but the values at 1t − , 2t −  and so on are not. Take e.g. the 
variable ‘monthly income’. Given the income of a respondent of cross-
section t , usually little, if anything, is know about his or her income at 
earlier points in time. To put it another way: the variable income cannot be 
'backcasted'. Such a nonbackcastable variable can be used as a predictor for 
the entry and exit probability only at the time the respondent was observed 
but not at preceding points in time. We will show using a simple example 
how such variables can be handled in CrossMark. 
 
Suppose that we have three cross-sections and the nonbackcastable 
predictor we would like to use is named Inc , representing the monthly 
personal income of a respondent at the time of observation. Also, we have 
the backcastable predictor age specified as ( )Age t , where the t  between 
brackets denotes that there are three age vectors, one for each of the three 
points in time. For simplicity, we omit the intercept in the equations for μ  
below. For any respondent of the second and subsequent cross-sections, the 
following two equations apply to logit ( )

t
µ , depending on whether t  relates 

to the time the respondent is actually observed or to a preceding point in 
time: 
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observed: 1 3logit( ) = ( ) + Inc  
t

Age tμ β β⋅ ⋅  (1) 
preceding: logit( ) = ( )

2t
Age tμ β ⋅  (2) 

 
In equation (1) we can use Inc  as a predictor, whereas in equation (2) this 
is not possible. Of course the Age  effects 

1
β  and 

2
β  need not necessarily 

be the same. In order to estimate 
1

β , 
2

β  and 
3

β  with CrossMark a single 
equation for logit( )

t
μ  must be specified that applies to all points in time. 

To achieve this we construct three ancillary time varying predictors, which 
we shall call _ ( )Age obs t , _ ( )Age pre t  and _ ( )Inc obs t  to be discussed 
below. The construction of these predictors must precede the analysis with 
CrossMark and the user must add the predictors to the data file and treat 
them like any normal predictor variable: their names and types (v) have to 
be entered (using the X-names button in the Main Menu) and also, three 
columns, one for each predictor, have to be added to the Design mu and 
Design lambda matrices. 
 
The predictor _ ( )Age obs t  has to be constructed such that 

_ ( ) ( )Age obs t Age t=  for cases observed at time point t  and 
_ ( ) 0Age obs t =  for all other cases. For predictor _ ( )Age pre t  it must hold 

that _ ( ) ( )Age pre t Age t=  for cases observed after time point t  and 
_ ( ) 0Age pre t =  for all other cases.  

 
For 6 randomly chosen cases, two of each cross-section, the values of 

( )Age t , _ ( )Age obs t  and _ ( )Age pre t  might be those shown in the upper 
part of Table 1. Note that, put next to one another, the three _ ( )Age obs t  
vectors form a block-diagonal matrix and the _ ( )Age pre t  vectors a 'sub-
block diagonal' one. For Inc  and _ ( )Inc obs t  the values of the 6 cases 
might be the ones in the lower part of Table 1, with now the _ ( )Inc obs t  
vectors forming a block-diagonal matrix. Instead of the two separate 
equations (1) and (2), we can write a single equation, holding for time 
observed as well as preceding points in time: 
 
 _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  (3) 

 
Why (1) and (2) are equivalent to (3) becomes clear when equation (3) is 
worked out for the observed and preceding time points separately: 
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observed: _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  

 5 64
= ( ) 0Age t Incβ β β⋅ + ⋅ + ⋅  

 
64

( )Age t Incβ β= ⋅ + ⋅  (3a) 

 

preceding:  _ _ _

5 64
logit( ) ( ) + ( ) + ( )t Age obs t Age pre t Inc obs tμ β β β= ⋅ ⋅ ⋅  

 5 64
0 + ( ) + 0Age tβ β β= ⋅ ⋅ ⋅  

 
5

( )Age tβ= ⋅  (3b) 

 
Thus, equations (3a) and (3b) appear to be equivalent to (1) and (2), 
respectively. Since CrossMark uses a single equation for μ  we employ the 
generic equation (3). Parameter 

4
β  can be interpreted as 

1
β , i.e., the effect 

of age controlled for income, at observation time; 
5

β  is interpreted like 
2

β  
as the effect of age at preceding points in time not controlled for income; 

6
β  has the same interpretation as 

3
β , i.e., the effect of income controlled 

for age at the time of observation. 
 

Table 1   Ancillary predictors for Age 
 

 

 ( )Age t  

_ ( )Age obs t  

_ ( )Age pre t  

 (1) (2) (3) (1) (2) (3) (1) (2) (3) 
 
 1t =  19  0  0 19  0  0  0  0  0 
  45  0  0 45  0  0  0  0  0 
 2t =  37 38  0  0 38  0 37  0  0 
 21 22  0  0 22  0 21  0  0 
 3t =  42 43 77  0   0 44 42 43  0 
 66 67 68  0  0 68 66 67  0 
 
 

 Inc  _ ( )Inc obs t  

  (1)     (2)      (3) 

 1t =  1500 1500    0    0 

       7300 7300    0    0 

 2t =  3500    0 3500    0 

        9400    0 9400    0 

 3t =  1200    0        0 1200 

      2200    0        0 2200 
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Instead of (3) way may also use another generic equation in CrossMark: 
 
 _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅  (4) 

 
Working out (4) for observation time and preceding timepoints results in: 
 
observed: _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅   

 
7 8 9

( ) + ( )  Age t Age t Incβ β β= ⋅ ⋅ + ⋅  
 

7 8 9
( ) ( )  Age t Incβ β β= + ⋅ + ⋅  (4a) 

 
preceding: _ _

7 8 9
logit( ) ( ) + ( )  ( )t Age t Age obs t Inc obs tμ β β β= ⋅ ⋅ + ⋅  

 
7 8 9

logit( ) ( ) + 0  0t Age tμ β β β= ⋅ ⋅ + ⋅  
 

7
logit( ) ( )t Age tμ β= ⋅   (4b) 

 
As can be seen (4a) is equivalent to (3a) and (1), while (4b) is equivalent to 
(3b) and (2). Therefore, both equation (3) and (4) can be used to model 
logit( )

t
µ . They differ only in parameterization. The sum 

7 8
β β+  has the 

same interpretation as 
4

β  (or 
1

β ); 
7

β  is interpreted in the same way as 
5

β  
(or 

2
β ). Finally, the interpretation of 

9
β is similar to the one of 

5
β  (or 

3
β ). 

A minor advantage of using (4) instead of (3), is that (4) needs on 
construction of the _ ( )Age pre t  vectors. 
 
 
2.1  Testing the null-hypothesis H

0 1 2
:β β=   

 
Looking at the equations (1) and (2) the question arises as to the equality of 
the two Age  effects 

1
β  and 

2
β . When applying equation (4) the above null 

hypothesis translates into H
0 7 8 7
: β β β+ =  or, more simply, to 

0H
8

: 0β = . This test is automatically performed by CrossMark and the 
significance level of the related Wald statistic is reported in the Output 
window. When, on the other hand, equation (3) is applied, the above 
hypothesis translates into H

0 4 5
: 0β β− = . Given the hypothesis is true, 

the sample outcome of the statistic 2

4 5 4 5

ˆ ˆ ˆ ˆ( ) / var( )β β β β− − , with 

4 5

ˆ ˆvar( )β β−  being the estimated sample variance of 
4 5

ˆ ˆβ β− , follows a 
2

χ  distribution with 1 degree of freedom. The value of 
4 5

ˆ ˆβ β−  can of 
course be derived from the ML estimates produced by CrossMark in the 
final iteration. To derive 

4 5

ˆ ˆvar( )β β−  the formula 
4 5

ˆ ˆvar( )β β− =  

4

ˆvar( )β +
5 4 5

ˆ ˆ ˆvar( ) 2 cov( , )β β β−  can be applied with 
4

ˆvar( )β , 
5

ˆvar( )β  
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and 
4 5

ˆ ˆcov( , )β β  representing the estimated variances of 
4

ˆβ  and 
5

ˆβ  and 
their estimated covariance respectively. These variances and covariance are 
given by CrossMark by checking the option Show covariances of 
parameters in the Estimation Menu. 
 
If the test outcome leads to not rejecting the null hypothesis, the ancillary 
variables for the predictor in question are no longer needed and the original 
predictor, ( )Age t  in the example, can be used, possibly along with 
ancillary variables of other predictors for which the hypothesis does not 
hold. 
 
The equations above did not include an intercept, for simplicity. Of course, 
in most applications an intercept will be present and we will have to decide 
which type of intercept vector(s) to employ. If we have no nonbackcastable 
predictors, the intercept is simply a single vector containing the value 1 for 
all cases of all cross-sections. If, however, nonbackcastable predictors are 
utilized, we may want to estimate one intercept for time observed and 
another one for preceding time, just as was done for ( )Age t  in equations 
(1) and (2). In that case we would have to construct two ancillary (time 
varying) intercept predictors, according to the scheme in Table 2. 
 
 

Table 2  Ancillary intercept predictors 
 

 

Intercept  _ ( )Intercept obs t   

_ ( )Intercept pre t  
                      (1)  (2)  (3)      (1)  (2)  (3) 
 
 1t =  1            1    0    0        0    0    0 
       1            1    0    0        0    0    0 
 2t =       1            0    1    0        1    0    0 
           1            0    1    0        1    0    0 
 3t =      1 0    0    1        1    1    0 
           1 0    0    1        1    1    0 
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3  Fixed µ  and λ  values 
 
CrossMark has the option of entering fixed µ  and/or fixed λ  values for 
some (or all) cases on some (or all) points in time. We start with discussing 
three situations in which this option can be utilized to adjust the basic 
equations for the state probabilities p . We also explain how the option has 
to be specified in CrossMark. 
 
In some applications, the values for µ  and/or λ  may be considered fixed 
and hence need not be estimated. This would e.g. be the case when the 
(backcasted) age of a respondent is 17 or younger in a study on voting 
behavior, given that the voting age is 18. Suppose, in the example given 
earlier, a respondent is 18 years old at the time that the third cross-section 
was observed (i.e., on 3t = ). For this respondent we would like 

1
p  and 

2
p  

to be zero; also, since 
3

p  is an entry probability (the respondent could not 
have voted for party A at 2t = ) we would like 

3
p  to equal the entry 

probability 
3

µ . To implement these restrictions in the model equations, we 
fix 

1 2
0µ µ= =  for this respondent, which implies the following adjusted 

equations for 
1
p  to 

5
p : 

 

 

1 1

2 1 2 1 2 2

3 2 3 2 3 3 3 3

4 3 4 3 4

5 4 5 4 5

0

(1 ) (1 ) 0(1 ) 1 0 0

(1 ) (1 ) 0(1 ) 1

(1 ) (1 )

(1 ) (1 )

p

p p p

p p p

p p p

p p p

μ

λ μ λ

λ μ λ μ μ

λ μ

λ μ

= =

= − + − = − + ⋅ =

= − + − = − + ⋅ =

= − + −

= − + −

 

 
The equations for 

4
p  and 

5
p  have the usual Markov form, while those for 

1
p , 

2
p  and 

3
p  are adjusted in the sense specified above. We shall explain 

below how the fixed 0values for the µ  probabilities in question for 
respondents younger than 18 have to be entered in CrossMark.  
 
A second example of adjusting the basic equations for p  is the following. 
Suppose all predictor variables we would like to use are constant over time, 
but only for a short time period. To be more specific, we assume that the 
predictor values for a case observed at time t  also apply to 1t −  and 2t − , 
but not further back in time. Therefore, we let the Markov chain for each 
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case start two time points preceding to the one the case was observed, 
instead of starting at time point 1t =  as we would have done, had the 
predictors been perfectly stable. This implies that the first state probability 
estimated for the cases of the cross-section at 5t =  will be 

3
p . For the 

cases of the cross-section at 4t = , 
2

p  will be the first estimated state 
probability, and for those of the cross-section at 3t = , 2t =  and 1t = , 

1
p  will be the first estimated state probability. This is different from the 
more general situation where, for all cases of all cross-sections, 

1
p  is the 

first estimated state probability. Remember that for 
1
p  we used a logistic 

equation, 
1 1
p µ= , with specific β  parameters, different from the ones of 

2
µ  through 

5
µ . Here, we would like the same to hold for 

2
p  and 

3
p , as far 

as the cases of the cross-sections at 4t =  and 5t =  respectively are 
involved. To achieve this, we shall again use the equation 

1 1
p µ=  to 

estimate 
1
p  as the first estimated state probability for all cases of all cross-

sections and then (i) let 
2

p  have the same value as 
1
p  for the cases of the 

cross-section at 4t =  and (ii) let 
3

p  have the same value as 
1
p  for the 

cases of the cross-section at 5t = . By doing so, we estimate three first 
state probabilities, 

1
p , 

2
p  and 

3
p , using the logistic equations 

1 1
p µ= , 

2 1
p µ=  and 

3 1
p µ= . At the same time 

2
p  and 

3
p  are also estimated by a 

Markov equation for the cases of the cross-sections at 3t =  and 4t =  
respectively. 

To specify the model we exploit fixed µ  and λ  values. Let us take a 
look at a case of the cross-section at 5t =  for which we want to estimate 

3
p  using the equation 

3 1
p µ= . We let 

2 3
0λ λ= =  and 

2 3
0µ µ= = , 

which results in: 
 

1 1

2 1 2 1 2 1 1 1

3 2 3 2 3 1 1 1

4 3 4 3 4

5 4 5 4 5

(1 ) (1 ) (1 0) (1 ) 0

(1 ) (1 ) (1 0) (1 ) 0

(1 ) (1 )

(1 ) (1 )

p

p p p

p p p

p p p

p p p

μ

λ μ μ μ μ

λ μ μ μ μ

λ μ

λ μ

=

= − + − = − + − ⋅ =

= − + − = − + − ⋅ =

= − + −

= − + −

 

 
As can be seen, the equations for 

5
p  and 

4
p  are the usual Markov 

equations, while for 
3

p  we have 
3 1

p µ= . For cases of cross-section at 
t =4 we proceed in a similar way by fixing 

2
0λ =  and 

2
0µ =  which 

leads to 
2 1

p µ= . For the cases of the cross-sections at 3, 2t t= =  and 
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1t = , we automatically have 
1 1
p µ= , so for these cases we do not need to 

fix any µ  or λ . 
 
The last example of using fixed µ  and λ  values concerns the analysis of 
discrete panel data. Consider a situation in which we have at our disposal a 
five wave panel data set without any inflow or outflow. The Markov model 
for discrete panel data reads as 
 

1 1
(1 ) (1 )

t t t t t
p y yλ μ

− −

= − + − ,      2, ,5t = … , 
 
while for cross-sections, it reads as 
 

1 1
(1 ) (1 )

t t t t t
p p pλ μ

− −

= − + − ,      2, ,5t = … , 
 
the difference being the use of 

1t
y
−

 in the case of panel data and 
1t

p
−

 when 
using cross-sectional data. As stated earlier, CrossMark uses the second 
equation since it was designed for the analysis of cross-sectional data. 
However, the program can simply be tricked to analyze panel data as well 
and thus to apply the first equation. 

To do so, we first have to construct the data file in the way 
CrossMark expects it to be, i.e., according to the t-y-x-fre format. Each 
'cross-section' in this data file corresponds to a particular wave of the panel 
data. The data for the first wave have to be placed at the top of the data file, 
followed by the data for the second wave, the third wave and so on. The 
order in which the respondents appear within the data for each wave is 
irrelevant and need not be the same for each wave.  

Second, we need to define 
1 1t t

p y
− −

=  for 2, ,5t = …  or, to put it 
simply, 

t t
p y=  for 1, ,4t = … . To do so we use fixed μ  and fixed λ  

values. To make sure that 
1 1
p y= , we simply let 

1 1
yμ = , resulting in 

1 1 1
p yμ= = . For 

2
p  through 

4
p  we proceed as follows. If for a certain 

case 0
t
y =  ( 2, ,4t = … ), we let 1

t
λ =  and 0

t
µ = , which results in 

1 1 1 1
(1 ) (1 ) (1 1) (1 ) 0 0

t t t t t t t
p p p p pλ μ

− − − −

= − + − = − + − = ; thus 
0

t t
p y= = , as was meant to be the case. If, on the other hand, 1

t
y = , we 

let 0
t

λ =  and 1
t

μ = , so that 
1 1
(1 0) (1 ) 1

t t t
p p p

− −

= − + − = ; thus 
1

t t
p y= = .  

The third and final point concerns the fact that in models for panel 
data the likelihood is commonly computed for the data of 2t ≥ , while in 
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CrossMark, the likelihood for 1t =  is used as well. To delete the 
likelihood contribution of the cases for 1t =  in CrossMark, we assign a 
very small frequency to the cases of the first wave (i.e., 0.0000000001) in 
the (t-y-x-fre) data file. We can also delete all cases of the first wave from 
the data file except one case, and assign the small frequency value to this 
single case. This single remaining case for 1t =  may have any values on 
the Y  and X  variables since it only acts as a dummy case, having 
(virtually) no influence on the parameter estimates. 
 
 
3.1  Specifying fixed µ  and λ  values in CrossMark 
 
The fields File with fixed mu-values and File with fixed lambda-values 
in the Main Menu can be used to enter the names of the data files 
containing fixed μ  and λ  values for some or all cases of some or all cross-
sections. The ‘file with fixed mu-values’ must contain one line for each 
case to which fixed μ  values are assigned. Each line starts with the 
sequence number the case has in the (t-y-x-fre) data file and is followed by 
as many values 0, 1 or 9 as there are cross-sections. In the first example 
given above, where the age of a respondent (say the 316th respondent in 
the data file) was 18 years at the time point of the third cross-section, the 
line to enter in the ‘file with fixed-mu values’ for this respondent is the first 
of the two following lines: 
 
316  0  0  9 9 9 
925  0  0  0 0 9 

 
Value 316 in the first line refers to the sequence number of the respondent; 
the two 0 values that follow are assigned to 

1
μ  and 

2
µ  and the three 9 

values indicate that 
3

µ , 
4

µ  and 
5

µ  are not fixed, but have to be estimated. 
The second line refers to another respondent with sequence number 925 in 
the data file, who was 18 years old at 5t = . In this example a ‘file with 
fixed lambda values' need not be specified, since only values of μ  are 
fixed. 
 
The ‘file with fixed lambda-values’ must contain one line for each case to 
which fixed λ  values are assigned. Each line starts with the sequence 
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number of the case in the data file and is followed by as many values 0, 1 
or 9 as there are cross-sections minus 1, since these values relate to 

2
λ  

through 
T

λ , T  being the total number of cross-sections. The third example 
given above concerned the analysis of five-wave panel data without inflow 
and outflow. If we assume there are 500 respondents then the data file 
consists of 2500 lines, 500 lines for each wave. Suppose a particular 
respondent has the Y pattern 01100 for 1, ,5t = … . If the sequence number 
of the respondent in the first wave is 29, then the other four sequence 
numbers are 529, 1029, 1529 and 2029. In the 'file with fixed mu-values' 
and the 'File with fixed lambda-values' we have to enter the lines given in 
the box below. 
 
File with fixed mu-values File with fixed lambda-values   Wave 
seqnr 

1
μ  

2
µ  

3
µ  

4
µ  

5
µ  seqnr 

2
λ  

3
λ  

4
λ  

5
λ  

 
  529 0 9 9 9 9         2 
 1029 9 1 9 9 9 1029 0 9 9 9    3 
 1529 9 9 1 9 9 1529 9 0 9 9    4 
 2029 9 9 9 0 9 2029 9 9 1 9    5 

 
 
As can be seen, for the data of wave t  we specify a fixed 

1t
μ
−

 value in the 
'file with fixed mu-values' equal to value of 

1t
Y

−

; e.g. for wave 3 we 
specify 

2 2
1yµ = = . The fixed 

1t
λ
−

 value that has to be specified in the 
'File with fixed lambda-values' for the data of wave t  is equal to the 
complement of 

1t
Y

−

.  
 
 

4  Unobserved heterogeneity 
 
CrossMark offers the possibility to account for the influence of unobserved 
variables on the entry and exit probabilities. In doing so the assumption is 
made that the overall contribution of these variables to the logits of the 
transition probabilities is constant for the time period considered. The logit 
equations for μ  and 1 λ−  including the contributions of unobserved 
variabels can be written as follows: 
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logit 

logit 

1

*

2

( )

(1 ) ,

t

t

x

x

μ β δ

λ β δ

= +

− = +
 

 
where x  is a row vector with the values of the observed (potentially 
backcasted) predictors, β  and *β  are the column vectors with the 
parameters associated with x , and finally 

1
δ  and 

2
δ  represent the total 

contribution of the unobserved variables. The values of 
1
δ  and 

2
δ  for all 

respondents (or cases) are considered to be drawn from a normal 
distribution with zero mean and variances 2

1
γ  en 2

2
γ . The above equations 

therefore can also be written as: 
 

logit 

logit 

1

*

2

( )

(1 ) ,

t

t

x z

x z

μ β γ

λ β γ

= +

− = +
 

 
with (0,1)z N∼  being the standardized contribution of the unobserved 
variables and 

1
γ  and 

2
γ  the parameters associated with the ‘predictor’ z . 

Since the z  values for all cases are unknown the parameters β , *β , 
1̂

γ  en 

2̂
γ  cannot be estimated. However, given a set of parameter values and the 
value of z , it is of course easy to determine the log likelihood contribution 
��  of that case. Also, for a given set of parameter values, the expected (or 
marginal) log likelihood contribution ( )E ��  of a case can be determined, 
where the expectation is taken over all possible values of z  taken from 
(0,1)N . For a case of e.g. the cross-section at 2t =  it holds that: 

 

1 2 1 2
( ) [ (1 ) (1 ) ] ( )E p p f z dzλ μ

∞

−∞

= − + −∫��  if 
2

1y = ,  and 

1 2 1 2
( ) [ (1 )(1 ) ] ( )E p p f z dzμ λ

∞

−∞

= − − +∫��  if 
2

0y =  

 
Here, 

2
µ  and 

2
λ  are defined as above (i.e., including z ), 

1
p  is defined as 

usual (i.e., 
1 1
p µ= ) without z  (in CrossMark, controlling for unobserved 

variables is only possibly for the transitions probabilities at 2t ≥ .), and 
( )f z  is the height of the standard normal pdf at z . The integrals cannot be 

derived analytically, but are approximated by CrossMark using Gaussian 
quadrature with 20 mass points. Utilizing the ( )E ��  values of all cases of 
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all cross-sections it is possible to estimate those values ˆβ , ˆ *β , 
1

γ̂  en 
2

γ̂  
that, averaged over all values that z  can take, have the highest expected (or 
marginal) log likelihood. The criterion to maximize in this estimation is the 
sum of the ( )E ��  values of all cases of all cross-sections. The resulting 
estimates ˆβ  en ˆ *β  can be interpreted as the effects of the predictors x , 
corrected for the average influence of the unobserved variables. Using the 
above equations and estimation procedure has consequences for the 
standard errors of ˆβ  and ˆ *β , which can be quite different from the ones 
estimated without taking into account unobserved heterogeneity. The 
values of 

1
γ̂  and 

2
γ̂  are the estimates of the standard errors of 

1
δ  and 

2
δ  

respectively, i.e., of the contributions of the unobserved variables to the 
logits of the entry and exit transition probabilities.  
 
 
4.1  Testing the hypothesis 

0 1 2
: 0H γ γ= =  

 
To test this hypothesis we may use a test-procedure described by Snijders 
and Bosker (1999). We first calculate the value of loglikelihood2A = − ⋅  
for the model including 

1
zγ  and 

2
zγ . Then we compute 

loglikelihood2B =− ⋅  for the model without 
1
zγ  and 

2
zγ  and obtain the 

difference D B A= − . Finally we test the difference D  to be significant 
using a 2

χ  distribution with 2 degrees of freedom, but halve the right tail 
probability associated with the value of D . 
 
The standard estimation procedure in CrossMark does not take into account 
the possible influence of unobserved heterogeneity. If we wish to perform 
an analysis as described above, including the 

1
zγ  and 

2
zγ  terms in the 

equations for the transition probabilities, we have to go the Estimation 
Menu and click on the option called Extra Bernoulli variance. After 
running the model we will find the estimates 

1
γ̂  en 

2
γ̂  in the Output 

window.  
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5  Metropolis sampling 
 
 
In the Estimation window an MCMC procedure can be performed that 
uses pure Meropolis sampling. To do so, check the option Metropolis 
sampling and specify a filename after Outputfile posterior parameter 
values for the file that the sampled parameter-points are written to. We 
only implemented this option in a very basic sense. There is e.g. no prior 
distribution that can be specified for the parameters: the implicit prior used 
for all parameters is the uniform distribution. After Length of chain 
specify the number of samples that has to be drawn from the posterior 
distributions of all parameters. Note that no burn-in period can be provided 
and, hence, the length of the chain must be large enough to also contain the 
desired burn-in period.  
 
After pushing button OK CrossMark first performs the usual maximum 
likelihood (ML) estimation process. Once this is finished, the metropolis 
sampler is started. Consequently, metropolis sampling begins by default at 
the ML point. To start metropolis sampling from any other parameter-
point, specify the parameter values for this point as the starting values to be 
used and also set the maximum number of iterations to 0. 
 
It is possible to let CrossMark, for each sampled parameter-point, calculate 
the mean values of 

it
p , 

it
µ  and 

it
λ  over all cases i  for each timepoint t . To 

this end, a filename must be entered after Outputfile posterior mean p, 
mu, lambda. 
 
The value to be entered on the Estimation window in the sentence 
 
Covariance matrix of the jumping distribution equals  ...   

times estimated covariance matrix of parameters 
 
refers to what is discussed by Gelman, Stern and Rubin in 'Bayesian data 
analysis', 1995, on page 334 at the bottom where c = 2.4/sqrt(d). Value 2.4 
for c is the default CrossMark uses if you don't specify another value in the 
above sentence. After the metropolis sampler is finished, inspection of the 
chain of sampled parameter-points (in the file specified after Output 
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posterior parameter values) is always recommended, to make sure that the 
chain has changed fast enough. If the same parameter-points are resampled 
many times, a smaller value for c is probably more appropriate. 
 
The parameter values that are sampled by the metropolis algorithm, are 
written out (to the file specified after Outputfile posterior parameter 
values) in the following format: sequence number (1,2,3,4,..., 100000, or 
more, depending on the length of the chain that was entered) followed by 
the values of the parameters of all predictors on the entry probabilities, 
followed by those on the 1-exit probabilities, followed finally by the 
loglikelihood value associated with these parameter values. 
 
To evaluate the output files with posterior parameter values and/or means 
of 

it
p , 

it
µ  and 

it
λ , other statistical software must be used. CrossMark itself 

does not perform any chain-evaluation, produces no histogram's of 
posterior parameter estimates and/or means, nor calculates means or 
standard deviations of the samples that were taken from the posterior 
distributions. 
 
 
 

6  Parametric bootstrap 
 
 
The Simulate button on the Main Menu opens the Simulate window 
where a parametric bootstrapping procedure can be performed. This 
window is shown in Figure 4. In the first step of the parametric bootstrap 
procedure  a number of Y  datasets are simulated, based on the observed X  
values in the data file and a set of true parameter values that must be 
specified after True values entry parameters and True values 1-exit 
parameters. The number Y  datasets that have to be simulated is specified 
after Number of simulations. A name is generated automatically (but can 
be modified) for the output file that will contain the simulated Y data. After 
clicking the button Sim. data the simulation process starts, during which 
the Y  data are generated and written to the file specified. Once the 
simulation has been finished, the next step can be started, during which the 
parameters will be estimated for samples that were simulated in the 
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previous step. Estimation is started by pushing button Go. The estimated 
parameter values for all simulated Y  datasets are written to the file 
specified after Output file parameter estimates in the following format: 
the sample number, the parameter values of all predictors for the entry 
probability, the parameter values of all predictors for the 1-exit probability, 
and, finally, the value of the loglikelihood. The file specified after Output 
file for results contains the final results, for all simulated Y  datasets, 
similar to the ones that are generally shown in the Output window. As with 
the metropolis sampler, here again one will have to evaluate the estimated 
parameters with other statistical software. The two buttons Show parms 
and Show results show the corresponding files in Wordpad. 
 

Figure 4  Simulate window 
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Dit boek behandelt een discrete tijd, 1e orde Markov model. Het model 
onderscheidt zich van andere Markov modellen door het feit dat het 
toegesneden is op de analyse van individuele cross-sectionele gegevens, 
verzameld op een aantal opeenvolgende tijdstippen. Uitgangspunt voor het 
model vormt het gegeven dat voor het toepassen van dynamische c.q. 
transitie modellen het geen conditio sine qua non is om te beschikken over 
dynamische data, zoals repeated measures of  individuele panel data. 
Hoewel bij herhaalde cross secties ieder individu slechst éénmaal wordt 
geobserveerd, handelt het gepresenteerde model over de kans dat een 
individu door de tijd heen verandert van de éne naar de andere toestand van 
een afhankelijke variabele. 
 De kern van het Markov model voor herhaalde cross secties (RCS) 
bestaat uit de zogeheten '1e orde Markov vergelijking' die voor een binaire 
variabele ϒ  als volgt luidt: , , 1 , , 1 ,(1 ) (1 )

i t i t i t i t i t
p p pλ μ

− −

= − + − . De 
vergelijking relateert de statuskans 

,i t
p  dat case i  op tijdstip t  in staat 1 

van ϒ  is aan de kans 
, 1i t

p
−

 om op het vorige tijdstip 1t −  eveneens in staat 
1 te zijn geweest, en voorts aan de beide transitiekansen 

,i t
λ  en 

,i t
µ . Deze 

transitiekansen zijn conditionele kansen: 
,i t

λ  drukt de kans uit dat case i  
zich op tijdstip t  in staat 0 bevindt, gegeven dat case i  zich op het vorige 
tijdstip in staat 1 bevond; 

,i t
µ  geeft de kans weer dat case i  zich op tijdstip 

t  in staat 1 bevindt, gegeven dat case i  zich op het vorige tijdstip in staat 0 
bevond.  

Het RCS Markov model hanteert predictoren X  om heterogeniteit in 
statuskansen en transitiekansen toe te staan. Daarbij wordt de logit functie 
toegepast om de kansen 

,1i
p  (zijnde de kans om op het éérste tijdstip van de 

onderzochte periode in toestand 1 van ϒ  te zijn) 
,i t

λ  en 
,i t

µ  te koppelen 
aan de waarden van de predictoren X . Wanneer de waarde van een 
predictor voor case i  door de tijd verandert, resulteert er een Markov 
model waarvan de transitiekansen niet alleen tussen cases maar ook binnen 
cases door de tijd heen kunnen veranderen. 

 Samenvatting 
 Summary in Dutch 
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In de hoofdstukken 1 tot en met 6 worden de mogelijkheden van het RCS 
Markov model gedemonstreerd aan de hand van toepassingen op concrete 
onderzoeksgegevens. In deze toepassingen wordt, behalve van cross-
sectionele data, ook gebruik gemaakt van individuele panel data die echter 
worden behandeld als betrof het cross-sectionele data. Dat maakt het 
mogelijk om de op basis van het model verwachte transities te vergelijken 
met de geobserveerde transities in de panel data. Nu volgt een 
samenvatting van de afzonderlijke hoofstukken. 

Hoofdstuk 1 geeft een introductie in relevante begrippen en 
bespreekt een aantal Markov modellen die de afgelopen 50 jaar binnen de 
sociale wetenschappen zijn ontwikkeld en toegepast. Het RCS model wordt 
o.a. gecontrasteerd met het dynamische panel model dat individuele panel 
data hanteert om transitie kansen door de tijd te schatten. Ook wordt een 
vergelijking gemaakt met modellen voor geaggregeerde proporties. 
Daarmee kunnen, gegeven louter de relatieve ϒ  frequenties op meerdere 
tijdstippen van een aantal macro-eenheden (regio's, gemeenten, 
kiesdistricten), de niet geobserveerde transities van de micro-eenheden 
worden geschat. Het RCS model wordt geïntroduceerd in een variant 
zonder en een mèt gebruikmaking van predictoren. Tenslotte volgt een 
toepassing op cross-sectionele data van vijf surveys 'Sociale en Culturele 
Ontwikkelingen in Nederland' (SOCON) uitgevoerd in 1979, 1985, 1990, 
1995 and 2000. De afhankelijke variabele betreft de houding van 
Nederlanders ten opzichte van abortus. 

In hoofdstuk 2 wordt toegelicht hoe met behulp van het maximum 
likelihood (ML) criterium de effectparameters van de predictoren X  op de 
kansen 

,1i
p  , 

,i t
λ  en 

,i t
µ  geschat kunnen worden. Het daartoe gehanteerde 

Fisher scoring algorithme leidt niet alleen tot puntschattingen van de 
betreffende parameters maar ook tot schattingen van de standaardfouten. 
De assumptie dat parameters voor elk tijdstip dezelfde waarde hebben kan 
worden afgezwakt door parameterwaarden te laten variëren als een 
polynome functie van de tijd. Het hoofdstuk sluit af met een toepassing op 
cross secties betreffende arbeidsparticipatie van vrouwen in Nederland en 
het voormalige West-Duitsland gedurende de periode 1987-1996 in 
Nederland en 1989-1994 in West-Duitsland. 
 In hoofdstuk 3 gaat de toepassing eveneens over arbeidsparticipatie 
van vrouwen, en wel van Nederlandse vrouwen gedurende de periode 
1986-1995. De gebruikte data zijn individuele panel data. De panel 
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transities worden vergeleken met de voorspelde transities op basis van het 
RCS Markov model. 
 Hoofdstuk 4 beschrijft enkele uitbreidingen van het basismodel. De 
eerste uitbreiding betreft het opnemen van tijd-variërende predictoren 
waarvan de waarden bekend zijn voor slechts een beperkt aantal tijdstippen 
voorafgaande aan de observatie. Dit type predictoren, zoals het inkomen 
van een respondent, konden in het door Moffitt gepresenteerde basismodel 
niet worden opgenomen, hetgeen een ernstige beperking vormde. De 
tweede uitbreiding betreft een modelvariant die rekening houdt met de 
aanwezigheid van niet geobserveerde heterogeniteit in de data. Het gevolg 
daarvan kan zijn dat de ware verdeling van de afhankelijke variabele niet 
de binomiale is waarop de ML schatting van de modelparameters is 
gebaseerd. Voorts wordt in dit hoofdstuk het RCS model vergeleken met 
zogeheten Ecologische Inferentie methodes. De getoonde toepassing is 
gebaseerd op individuele panel data en handelt over stemintentie in de 
aanloop naar de presidentsverkiezingen van 1976 in de Verenigde Staten. 
De uitkomsten van een dynamisch panel model worden vergeleken met die 
van het RCS model. 
 Hoofdstuk 5 gaat in op de kwaliteit van de ML schattingen van het 
RCS Markov model. De parameterschattingen en standaardfouten van een 
toepassing van het model op panel data worden vergeleken met de 
overeenkomstige grootheden resulterende uit een Markov Chain Monte 
Carlo procedure, een parametric bootstrapping procedure en 'cross-
sectional subsampling'. Bij deze laatste procedure worden, voor elk tijdstip, 
uit de panel data at random respondenten geselecteerd en wel zodanig, dat 
voor elk tijdstip andere respondenten worden geselecteerd. Zo ontstaat een 
set van evenzovele onafhankelijke cross secties als er panel tijdstippen zijn. 
Het RCS Markov model wordt toegepast op 5000 aldus verkregen sets van 
cross secties. De toepassing in dit hoofdstuk heeft betrekking op de 
ontwikkeling van het personal-computer bezit in Nederlandse huishoudens 
over de periode 1986-1998. 
 Hoofdstuk 6 laat aan de hand van een simpel data voorbeeld zien dat 
de likelihood functie van het RCS Markov model niet altijd ééntoppig is. 
Met behulp van een Bayesiaanse benadering worden de twee modi van de 
posterior verdeling van de parameters gevisualiseerd. Voorts wordt 
gedemonstreerd hoe, in een Bayesiaanse analyse, individuele panel data en 
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cross sectionele data gecombineerd kunnen worden om de onbekende 
transitiekansen te schatten. 
 Hoofdstuk 7 geeft naast een samenvatting tevens een vooruitblik op 
toekomstig werk. Dat laatste betreft onder meer het ontwikkelen van 
identificatie-regels aan de hand waarvan men vooraf kan uitmaken of een 
bepaald model wellicht overgespecificeerd is en daarom niet tot unieke 
parameterschattingen zal leiden. Voorts is onderzoek nodig naar 
alternatieve computer algorithmen die meer toegesneden zijn op 
multimodale likelihood functies dan het tot nu toe gebruikte Fisher scoring 
algorithme. Een zaak die eveneens aandacht verdient betreft de vraag naar 
de hoeveelheid informatieverlies (of winst) van het werken met herhaalde 
cross secties in vergelijking met individuele panel data. Een verder 
aandachtspunt betreft de ontwikkeling van een alternatieve methode, dan 
die welke beschreven werd in hoofdstuk 4, om niet geobserveerde 
heterogeniteit te modelleren. Tenslotte is onderzoek nodig naar twee voor 
de hand liggende model uitbreidingen: ϒ  variabelen met drie (of meer) 
statussen en een 2e orde Markov model. 

De Appendix bevat een handleiding van het standalone computer-
programma CrossMark waarin het RCS Markov model is geïmplemen-
teerd. 
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