The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/54796

Please be advised that this information was generated on 2017-11-25 and may be subject to change.
Selection of Gender-Marked Morphemes in Speech Production

Herbert Schriefers
Nijmegen University

Jörg D. Jescheniak and Ansgar Hantsch
University of Leipzig

N.O. Schiller and A. Caramazza (2003) and A. Costa, D. Kovacic, E. Fedorenko, and A. Caramazza (2003) have argued that the processing of freestanding gender-marked morphemes (e.g., determiners) and bound gender-marked morphemes (e.g., adjective suffixes) during syntactic encoding in speech production follows distinct principles, with only freestanding morphemes being subject to a competitive selection process. In 3 experiments, the authors tested this hypothesis in German, extending a previous study by H. Schriefers, J.D. Jescheniak, and A. Hantsch (2002). The results suggest that freestanding and bound morphemes are basically processed in the same way, although competition appears to be attenuated for bound morphemes relative to free morphemes. The authors discuss theoretical and methodological implications of this pattern.

In the past years, the (grammatical) gender-congruency effect obtained in variants of the picture–word task has attracted much attention, as it is viewed as a tool for exploring syntactic encoding processes in speech production. At present, however, there is some dispute with respect to both the locus of the effect and its scope.

The gender-congruency effect was first described by Schriefers (1993). In this study, speakers of Dutch were instructed to describe colored line drawings of common objects by producing noun phrases consisting of a gender-marked definite determiner, an adjective, and a noun (e.g., de rode tafel [the red table]; het rode huis [the red house]) while hearing distractor words that had to be ignored.1 These distractors had either the same grammatical gender as the noun of the target utterance (gender-congruent condition) or a different grammatical gender (gender-incongruent condition). Naming latencies were longer in the gender-incongruent condition than in the gender-congruent condition. Naming latencies were longer in the gender-incongruent condition than in the gender-congruent condition (see also LaHeij, Mak, Sander, & Willeboordse, 1998; Schiller & Caramazza, 2003; van Berkum, 1997, for replications in Dutch, and Schiller & Caramazza, 2003; Schriefers & Teruel, 2000, for replications in German). A similar interference pattern was obtained when participants produced noun phrases consisting of an adjective with a gender-marked suffix and a noun (e.g., rode tafel [red,red table]; rood huis [red,red house]), but the effect was descriptively smaller than it was for noun phrases with definite determiners. These data suggested that the gender-congruency effect is indicative of lexical competition during syntactic processing, regardless of whether the results of these processes surface as freestanding gender-marked morphemes (e.g., determiners) or bound gender-marked morphemes (e.g., adjective suffixes).

1 We use subscripts to indicate those elements that are marked for gender in the target language: com = common gender (in Dutch); masc = masculine; fem = feminine; neut = neutral.

Schriefers (1993) interpreted the gender-congruency effect as resulting from competition in selecting the abstract gender feature of the target noun (i.e., either common or neuter). In the gender-congruent condition, it is assumed that the target noun and distractor activate the same gender feature. By contrast, in the gender-incongruent condition, it is assumed that they activate different gender features. Therefore, two gender features compete for selection in the latter condition, leading to prolonged naming latencies. Miozzo and Caramazza (1999), however, pointed out that the effect could also arise from lexical competition among determiner forms rather than from competition among abstract syntactic features.

Meanwhile, evidence has accumulated suggesting that competition among form representations indeed plays a role. In a recent study, Schriefers, Jescheniak, and Hantsch (2002) investigated the production of definite determinant noun phrases consisting of a determiner and a noun (e.g., das Haus [the neut house]) with speakers of German. In this study, Schriefers et al. made use of the fact that singular definite determiners in German are gender-marked (der, die, and das, for nouns of masculine, feminine, and neuter gender). By contrast, the plural definite determiner for all three gender classes is die, which corresponds to the singular definite determiner for nouns of feminine gender. Schriefers et al. asked participants to name one or two target objects by producing either a singular or a plural noun phrase consisting of a determiner and a noun. The results showed that it took longer to produce plural noun phrases than it did to produce singular noun phrases for masculine and neuter nouns. It is important to note, however, that no such costs were present for feminine nouns; in fact, for these nouns, a reverse effect (i.e., faster production of plural noun phrases than...
singular noun phrases) was obtained. This pattern was interpreted by Schriefers et al. (2002) as evidence for the singular-as-default hypothesis; when one produces a plural noun phrase, the corresponding singular determiner also becomes activated. If the singular determiner differs from the plural determiner (as is the case for masculine and neuter nouns), this leads to competition between the singular and the plural determiner. By contrast, if singular and plural determiner forms are identical, as is the case for nouns of feminine gender, no such competition in plural noun phrase production is present. Rather, the convergence onto a single form facilitates the response. Finally, when producing a singular noun phrase, only the singular determiner becomes activated. Note that in the case of competition in plural noun phrases with masculine or neuter nouns, this competition cannot concern an abstract gender feature, as the gender of the respective nouns obviously does not change between singular and plural. Thus, in contrast with picture–word studies that allow for an interpretation in terms of competition between abstract gender features or competition between determiner forms, the results of Schriefers et al. (see also Jansen and Caramazza (2003) for parallel results in Dutch) support the idea of competition among determiner forms.

Recently, Schiller and Caramazza (2003) reported a series of picture–word experiments in German and Dutch that is also compatible with the notion of determiner form competition, using the same task as Schriefers (1993). For the production of singular noun phrases consisting of a gender-marked determiner, an adjective, and a noun, the authors replicated the gender-congruency effect. However, for corresponding plural noun phrases, no gender-congruency effect was obtained. Note that competition between abstract gender features should affect singular and plural noun phrases in the same way. By contrast, competition between actual determiners should affect singular noun phrases but not plural noun phrases. This is the case because in Dutch and German, there is only one plural determiner for all gender classes. Thus, as the gender-congruency effect was only obtained for singular noun phrases, Schiller and Caramazza (2003) concluded that competition among different determiner forms is the source of the gender-congruency effect rather than competition among abstract grammatical features.

Schiller and Caramazza (2003) also argued that such competition among morphophonological forms is confined to freestanding gender-marked morphemes like definite determiners and does not apply to bound gender-marked morphemes. This claim is based on the fact that in their study, the gender-congruency effect was only obtained for the production of singular noun phrases consisting of a gender-marked determiner and a noun (for which gender marking is realized as a freestanding morpheme) but not for singular noun phrases consisting of an adjective with a gender-marked suffix and a noun (for which gender marking is realized as a bound morpheme). The same pattern held for German and Dutch. The authors concluded that “the results [. . .] are consistent with the view that effects of gender-congruency reflect competition of free standing phonological forms such as definite determiners but not bound morphemes such as affixes.” (Schiller & Caramazza, 2003, p. 187). Schiller and Caramazza acknowledged the conflict with the original findings by Schriefers (1993) but defer a resolution of these conflicting data patterns to future research.

When evaluating the conclusion by Schiller and Caramazza (2003), one should keep in mind that there exist only two studies contrasting free and bound morphemes within one language (Dutch), one study showing an effect for bound morphemes (Schriefers, 1993), and one study showing no effect for bound morphemes (Schiller & Caramazza, 2003), whereas both studies show an effect for free morphemes. Furthermore, no satisfying account has been offered with respect to the question of why one study found the effect for bound morphemes whereas the other one did not. Hence, before one considers possible differences in the processing of freestanding versus bound gender-marked morphemes, the conflicting pattern needs to be resolved.

How, then, could one account for the conflicting findings? One possible reason has to do with the fact that generally, competition processes might be more difficult to detect for elements that occur in noninitial position of an utterance. For the utterances and languages studied by Schiller and Caramazza (2003) and Schriefers (1993), the type of gender-marked morpheme (freestanding vs. bound) and the position the respective element (initial vs. noninitial) takes in the utterance are fully confounded. Gender-marked determiners always occur in initial position, whereas gender-marked adjective suffixes always occur in noninitial position, as suffix to the adjective stem. This fact could have important consequences for processing. When producing determiner–adjective–noun utterances, speakers logically need to have selected the appropriate gender-marked determiner before articulation can be initiated. This situation is different when producing adjective–noun utterances. In this case, participants can, in principle, initiate articulation as soon as the adjective stem is available without having selected the appropriate gender-marked suffix yet. Such behavior could be advantageous, as it would enable fast speech onset while providing the production system with additional time for resolving a conflict between different suffixes. At the same time, the chance of detecting existing competition processes for noninitial elements would be reduced when focusing on the initiation of articulation. Still, there is the possibility that corresponding competition processes manifest themselves, at least in part, in the duration of articulation; the presence of competition yet to be resolved could occasionally lead to either a lengthening of the initial part of the utterance or to minimal, not always detectable interruptions. In other words, competition processes for noninitial elements might, in part or fully, be masked when analyzing speech-onset latencies, but might—in part—become visible when analyzing speech durations.

How does this issue relate to the conflicting findings? Both Schiller and Caramazza (2003) and Schriefers (1993) reported analyses on speech-onset latencies only, but a closer look at their data is instructive. Schriefers obtained a significant gender-congruency effect of 56 ms for determiner–adjective–noun utterances and a smaller but also significant effect of 31 ms for adjective–noun utterances, with a stimulus onset asynchrony (SOA) of 0 ms. Schiller and Caramazza obtained a significant

2 With respect to the issue at hand here, the gender systems of Dutch and German have comparable properties.

3 One should point out that Schiller and Caramazza (2003) considered the possibility that “any effects of competition in the selection of affixes is not measurable with the currently used paradigms” (p. 178), but ultimately refuted it in favor of the idea that gender-marked bound morphemes undergo qualitatively different processes.
gender-congruency effect of 16 ms (Experiments 1c and 4b,
SOA = 0 ms) for determiner–adjective–noun utterances and no
effect for adjective–noun utterances (−3 ms and −8 ms; Experi-
m ents 1b and 4a, SOA = 0 ms). Clearly, the effect for utterance-
initial gender-marked morphemes (which one could take as an
estimate of the base effect indexing full lexical competition that
has to be resolved before speech onset) was much larger in the
study by Schriefers than it was in the study by Schiller and
Caramazza. The small base effect in the latter study, then, might
have substantially reduced the chance of detecting a modulated
effect with smaller size.

If our considerations are correct, the failure to obtain a gender-
congruency effect in the production of adjective–noun utterances
in the study by Schiller and Caramazza (2003) might not be
indicative of particular differences in processing freestanding ver-
sus bound morphemes but could simply have to do with a more
general problem of detecting competition effects for utterance-
noninitial elements. In this respect, two other conditions included
in the experiments by Schriefers (1993) are instructive. Apart from
distractors that were either gender-congruent or gender-
 incongruent to the noun, the experiment also included distractors
that were semantically related or unrelated to the adjective. The
gender-congruency effect amounted to 56 ms for gender-marked
elements in initial position and 31 ms for gender-marked elements
in noninitial position. Similarly, the semantic interference effect
amounted to 39 ms for adjectives in initial position and 26 ms for
adojectives in noninitial position. Thus, in both cases, the experi-
mental effects were attenuated when the target element shifted to
a later position in the utterance.

In the present article, we report a series of experiments with
speakers of German in which we tested whether competition
effects between gender-marked elements are a general phenome-
non, in that they apply to freestanding and bound morphemes alike
as suggested by Schriefers, 1993), or of more limited scope, in
that they are restricted to freestanding morphemes (as suggested
by Schiller and Caramazza, 2003). Our experiments differ from those
reported by Schiller and Caramazza (2003) and Schriefers (1993)
in that we used a different paradigm, namely a simple picture-
 naming task, in which no distractors were present. This choice was
motivated by the fact that this task has been shown to be sensitive
to competition processes among determiner forms (Janssen &
Caramazza, 2003; Schriefers et al., 2002) and allows for a more
straightforward interpretation of possible interaction patterns than
the more complex picture–word task (see Schriefers et al., 2002,
for discussion).

We report three experiments that were identical except for the
utterance format used to name the stimuli. Native speakers of
German saw pictures of either one or two target objects varying in
size (small vs. large). In Experiment 1, participants named the
stimuli by means of singular or plural noun phrases consisting of
a definite determiner, a size adjective, and a noun. Note that in
these noun phrases, gender marking is carried by the definite
determiner, whereas the adjective is not marked for gender (see
Table 1 for an overview of the utterance formats used in Experi-
ments 1–3).

We expected to replicate the pattern reported in Schriefers et al.
(2002) with new materials and to extend it to a more complex
utterance format (determiner–adjective–noun in place of
determiner–noun). The aim of this experiment was to identify the
base effect indexing competition among utterance-initial free-
standing morphemes. Experiment 2, in which participants pro-
duced bare nouns in place of definite noun phrases, served as a
control experiment. It assessed possible differences in the ease of
producing singular versus plural forms among the item sets used in
the three gender classes that might have contributed to the pattern
of results for utterances with gender-marked elements. Finally,
Experiment 3, in which participants named the same stimuli by
means of noun phrases consisting of a size adjective and a noun,
was most critical. Note that in these noun phrases, gender marking
is carried by the suffixes of the adjectives. To be more specific, for
this type of noun phrase in the singular, gender is marked on
corresponding inflectional suffixes of the adjective (see Table 1).
For the corresponding noun phrases in the plural, there is only one
inflectional suffix for all three gender classes, which coincides
with the feminine singular affix. Thus, for the gender-marking
inflectional affixes, the situation is, in principle, the same as it is
for the gender-marked definite determiners, with the only differ-
ence being that the latter are free morphemes in utterance-initial.

Table 1

<table>
<thead>
<tr>
<th>Number and gender</th>
<th>Experiment 1 (det + adj + noun)</th>
<th>Experiment 2 (bare noun)</th>
<th>Experiment 3 (adj + noun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuter</td>
<td>das große Haus</td>
<td>Haus</td>
<td>großes Haus</td>
</tr>
<tr>
<td></td>
<td>[the plural large house]</td>
<td>[house]</td>
<td>[large plural house]</td>
</tr>
<tr>
<td>Masculine</td>
<td>der große Pfeil</td>
<td>Pfeil</td>
<td>großer Pfeil</td>
</tr>
<tr>
<td></td>
<td>[the plural large arrow]</td>
<td>[arrow]</td>
<td>[large plural large arrow]</td>
</tr>
<tr>
<td>Feminine</td>
<td>die große Kirsche</td>
<td>Kirsche</td>
<td>große Kirsche</td>
</tr>
<tr>
<td></td>
<td>[the plural large cherries]</td>
<td>[cherry]</td>
<td>[large plural cherries]</td>
</tr>
<tr>
<td>Plural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuter</td>
<td>die großen Häuser</td>
<td>Häuser</td>
<td>große Häuser</td>
</tr>
<tr>
<td></td>
<td>[the plural large houses]</td>
<td>[houses]</td>
<td>[large plural houses]</td>
</tr>
<tr>
<td>Masculine</td>
<td>die großen Pfeile</td>
<td>Pfeile</td>
<td>große Pfeile</td>
</tr>
<tr>
<td></td>
<td>[the plural large arrows]</td>
<td>[arrows]</td>
<td>[large plural large arrows]</td>
</tr>
<tr>
<td>Feminine</td>
<td>die großen Kirschen</td>
<td>Kirschen</td>
<td>große Kirschen</td>
</tr>
<tr>
<td></td>
<td>[the plural large cherries]</td>
<td>[cherries]</td>
<td>[large plural cherries]</td>
</tr>
</tbody>
</table>

Note. English translations appear in brackets. det = determiner; adj = adjective.
position, whereas the inflectional suffixes are bound morphemes in noninitial position. To the extent that competition between gender-marked morphemes is a general phenomenon and occurs for free morphemes (e.g., determiners) and bound morphemes (e.g., adjective suffixes) alike, the general pattern from Experiment 1, though possibly attenuated, should be replicated. However, if competition is confined to free morphemes (as suggested by Schiller & Carpenter, 2003), no such interaction pattern should be obtained.

Experiment 1

In Experiment 1, participants named one or two target objects by producing either a definite singular or a definite plural noun phrase consisting of a gender-marked determiner, a size adjective, and a noun (e.g., *das große Haus* [the neuter large house]). We expected to replicate the pattern reported by Schriefers et al. (2002): There should be costs when producing plural noun phrases compared with singular noun phrases for nouns with masculine or neuter gender, whereas these costs should be absent for the nouns with feminine gender.

Method

Participants. Thirty-two native speakers of German, most of them students from the University of Leipzig, Leipzig, Germany, took part in the experiment. In all experiments described here, participants were paid EUR7 (approximately U.S. $7). They had no known hearing deficits, and they had normal or corrected-to-normal vision.

Materials. There were line drawings of 72 different objects that all had one unambiguous name, as established in previous studies. An equal number of objects had names with masculine, feminine, and neuter gender; see the Appendix for a complete list. Pictures of each object were prepared in three sizes: small (filling a square of approximately 55 × 55 mm; 175 × 175 pixel), medium (filling a square of approximately 82 × 82 mm; 262 × 262 pixel), and large (filling a square of approximately 110 × 110 mm; 350 × 350 pixel). We selected these sizes on the basis of pretests ensuring that small-sized and large-sized pictures were easily discriminated. We used the small- and large-picture versions in the main experiment, and we used the medium-sized picture version during the study and training phase. During the main experiment, two exemplars of a picture were presented side by side as double-object pictures. We cued singular trials by presenting one target exemplar in black color (RGB 0 0 0) and a second exemplar in medium gray color (RGB 200 200 200) on a light gray background (RGB 244 244 244; in the stimulus presentation system used, RGB color codes vary from 0 to 255). We cued plural trials by presenting both exemplars in black color (cf. Schriefers et al., 2002). Each experimental picture appeared once in the singular condition and once in the plural condition. We chose this way of cuing singular and plural trials in order to control display complexity across singular and plural trials (see also Schriefers et al., 2002).

For the construction of a practice block to be presented at the beginning of the main experiment, we selected 18 additional objects (6 from each gender group). We used each of these items twice (once in the singular and once in the plural condition) for constructing 36 practice and warm-up trials.

Design. There were two crossed variables: the three-level variable, gender (neuter vs. masculine vs. feminine), and the two-level variable, number (singular vs. plural). Both variables were tested within subjects. Gender was tested between items, and number was tested within items. Each participant received each of the 72 experimental pictures exactly once in the singular condition and once in the plural condition, resulting in a total of 144 experimental trials. For the singular trials, the position of the target object (left vs. right) was systematically counterbalanced. The same held for the presentation sequence of the singular and plural condition. Across groups of participants, the items were reassigned to these four conditions in a way such that, overall, each item occurred in each condition equally often.

Sixteen different experimental lists were created according to the following general criteria: (a) Repetitions of an object were separated by at least eight intervening trials, (b) semantically or phonologically related objects did not appear in adjacent trials, (c) no more than five trials from the same gender class or with the same determiner form followed each other, (d) no more than five plural trials or five singular trials with the same position of the target object followed each other, and (e) no more than 5 trials with pictures of the same size followed each other. The 16 experimental lists were used equally often.

Procedure. Each participant was tested individually in a session lasting about 35 min. The participant was comfortably seated in a dimly lit room, separated from the experimenter by a partition wall. The visual stimuli were presented centered on a 37.4-cm (17-in.) monitor. Viewing distance was about 60 cm (≈ 23.6 in.). The presentation of the visual stimuli and the online collection of the data were controlled by a computer with a Pentium processor (Intel, Santa Clara, CA). Speech-onset latencies were measured to the closest millisecond with a voice key connected to the computer.

The actual experiment consisted of three parts: a study phase, a training phase, and the main session. During the study phase, participants studied a written instruction booklet that emphasized both the speed and accuracy of their responses. Participants also previewed all pictures and their names on the monitor. Each picture was presented in black color and medium size in the center of the screen along with its name (as bare noun, i.e., without the definite determiner), and participants were instructed to use these names only during the experiment. During the training phase, each of the 72 experimental and 18 warm-up items was presented once as a single medium-sized object in black color in the center of the monitor, and participants named them by producing singular bare nouns. The next two practice blocks consisted of 9 practice trials each. Participants had to name the 18 practice items with either their singular or their plural form. The main experimental session consisted of two blocks. Each block consisted of 9 warm-up trials followed by 72 experimental trials. There was a short break between blocks.

In the main experiment, a double-object picture was presented for 1,000 ms. Participants named the picture as quickly as possible by producing either a singular noun phrase (if only one of the objects in the double-object picture appeared in black color; e.g., *das große Haus* [the neuter large house]) or a plural noun phrase (if both objects appeared in black color; e.g., *die großen Häuser* [the large houses]). Speech onset latencies were measured during 3,000 ms from the onset of the target picture. The next picture was presented 2,500 ms after the offset of a picture.

Results and Discussion

Observations were discarded from the reaction time analyses whenever any of the following conditions held: (a) A picture had been named other than expected, including the use of a deviant name, an incorrect size adjective, or an incorrect determiner; (b) a nonspeech sound preceded the target utterance, triggering the voice key; or (c) a dysfluency occurred, or an utterance was

4 This design controls for the distribution of singular and plural trials but leads to unequal distributions of the different determiner forms, with a predominance of the determiner form *die* (1/6 *der,* 1/6 *das* and 2/3 *die*), and one might suspect that this asymmetry might have an impact on the patterning of results. However, this objection was addressed and refuted by Schriefers et al. (2002), who found parallel interaction patterns when the distribution of singular and plural trials was controlled (Experiment 3) and when the distribution of determiner forms was controlled (Experiment 1).
Table 2

<table>
<thead>
<tr>
<th>Gender</th>
<th>Neuter</th>
<th>Masculine</th>
<th>Feminine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>M</td>
<td>SE</td>
<td>M</td>
</tr>
<tr>
<td>Singular</td>
<td>702</td>
<td>12</td>
<td>5.0</td>
</tr>
<tr>
<td>Plural</td>
<td>718</td>
<td>16</td>
<td>5.1</td>
</tr>
<tr>
<td>Difference</td>
<td>16</td>
<td>9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note. Difference = plural minus singular.
Results and Discussion

The raw data were treated as they were treated in Experiment 1. According to these criteria, 109 observations (2.3%) were marked as erroneous, and 88 observations (1.9%) were marked as outliers. Table 3 displays mean reaction times and error rates broken down by number and gender class. Overall, there were more errors with plural noun utterances than were with singular noun utterances (3% vs. 1.3%), $F_1(1, 31) = 8.88, p < .01, \text{MSE} = 0.46$; $F_2(1, 69) = 6.90, p < .05, \text{MSE} = 0.79$. There was no systematic effect of gender. Neuter nouns were produced slightly slower than were masculine or feminine nouns, $F_1(1, 62) = 21.83, p < .01, \text{MSE} = 382.94; F_2(1, 69) = 1.91, p = .16, \text{MSE} = 3,716.44$. There were fewer errors with nouns of feminine gender than there were with nouns of either masculine or neuter gender, $F_1(2, 62) = 4.79, p < .05, \text{MSE} = 0.39; F_2(2, 69) = 2.92, p = .06, \text{MSE} = 0.34$. As important, in contrast with Experiment 1, there was no Gender × Number interaction for speech-onset latencies, all $F_s < 1$; for error rates, $F_1(2, 62) = 2.43, p = .10, \text{MSE} = 0.32; F_2(2, 69) = 1.33, p = .27, \text{MSE} = 0.79$.

The absence of a Gender Class × Number interaction in Experiment 2 confirms the corresponding interaction in Experiment 1 is due to competition among gender-marking determiners. In the case of nouns of feminine gender, the selection of the plural determiner benefits from the fact that it receives additional activation from the singular number feature. In the case of nouns of either masculine or neuter gender, no such facilitation is obtained. Rather, the selection of the plural determiner is delayed by the activation of a different singular morpheme. Having established the Gender Class × Number interaction for utterances with a gender-marked determiner and having ruled out the case of plural formation for the particular item sets tested as the source of this effect, we can turn to the main point of the present article: Is a corresponding interaction also obtained for utterances consisting of a singular adjective with a bound suffix that marks gender? We tested this issue in Experiment 3.

Experiment 3

In Experiment 3, participants produced singular or plural noun phrases consisting of a singular adjective with a gender-marked suffix and a noun. To the extent that competition between gender-marked lexical elements is a general phenomenon, we expected to replicate the interaction pattern observed in Experiment 1, though possibly in a somewhat attenuated form, as the gender-marked element (the inflectional suffix of the adjective) does not occur in utterance-initial position.

Method

Participants, materials, and design. Thirty-two students from the University of Leipzig took part in the experiment. The materials and design were identical to those used in Experiment 1.

Procedure. The procedure was the same as the one used in Experiment 1; the only exception was that in the main experiment, participants were instructed to produce singular noun phrases consisting of a singular adjective and a noun (e.g., große Häuser [large houses]) if only one of the objects in the double-object picture was presented in black color and corresponding plural noun phrases (e.g., große Häuser [large houses]) if both objects were presented in black color.

Results and Discussion

The raw data were treated as they were treated in Experiment 1. According to these criteria, 241 observations (5.2%) were marked as erroneous, and 79 observations (1.7%) were marked as outliers. Table 4 displays mean reaction times and error rates broken down by number and gender class. Plural utterances were produced faster than were singular utterances (702 ms vs. 712 ms), $t(31) = 4.22, p < .05, \text{MSE} = 1.97$. The Number × Gender interaction reached significance in the participant analysis of reaction times, $F_1(2, 62) = 3.12, p = .05, \text{MSE} = 379.10; F_2(1, 69) = 7.24, p < .05, \text{MSE} = 425.51$. Naming latencies were slightly shorter for nouns of feminine gender than they were for nouns of either feminine or neuter gender, yielding a significant effect of gender in the participant analysis only, $F_1(2, 62) = 5.28, p < .01, \text{MSE} = 453.51; F_2 < 1$. Fewer errors were obtained with nouns of feminine gender than with nouns of either masculine or neuter gender, $F_1(2, 62) = 6.62, p < .01, \text{MSE} = 0.89; F_2(2, 69) = 4.22, p < .05, \text{MSE} = 1.97$. The Number × Gender interaction reached significance in the participant analysis of reaction times, $F_1(2, 62) = 3.12, p = .05, \text{MSE} = 379.45; F_2(2, 69) = 1.29, p = .02, \text{MSE} = 425.51$. According to t-tests, the decrease in naming latencies from singular to plural noun phrases for nouns of feminine gender

Table 3

<table>
<thead>
<tr>
<th>Gender</th>
<th>Neuter</th>
<th>Masculine</th>
<th>Feminine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>RT</td>
<td>%</td>
<td>RT</td>
</tr>
<tr>
<td>Singular</td>
<td>M</td>
<td>SE</td>
<td>M</td>
</tr>
<tr>
<td>Plural</td>
<td>M</td>
<td>SE</td>
<td>M</td>
</tr>
<tr>
<td>Difference</td>
<td>M</td>
<td>SE</td>
<td>M</td>
</tr>
</tbody>
</table>

Note. Difference = plural minus singular.

6 Including the factor size in the analysis showed that the Size × Gender × Number interaction was not significant, $F_1(2, 62) = 2.68, p = .08, \text{MSE} = 1077.82; F_2(2, 69) = 1.70, p = .19, \text{MSE} = 789.44$, indicating that the critical Gender × Number interaction appears to be stable across the two levels of the factor size.
Table 4

Mean Reaction Times (RTs; in ms) and Error Rates (in Percentages) for Experiment 3

<table>
<thead>
<tr>
<th>Gender</th>
<th>Neuter</th>
<th></th>
<th>Masculine</th>
<th></th>
<th>Feminine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>SE</td>
<td>RT</td>
<td>SE</td>
<td>RT</td>
<td>SE</td>
</tr>
<tr>
<td>Number</td>
<td>M</td>
<td>%</td>
<td>M</td>
<td>%</td>
<td>M</td>
<td>%</td>
</tr>
<tr>
<td>Singular</td>
<td>715</td>
<td>14</td>
<td>14</td>
<td>6.1</td>
<td>9.0</td>
<td>710</td>
</tr>
<tr>
<td>Plural</td>
<td>707</td>
<td>16</td>
<td>5.5</td>
<td>1.0</td>
<td>709</td>
<td>16</td>
</tr>
<tr>
<td>Difference</td>
<td>−8</td>
<td>−6</td>
<td>−0.6</td>
<td>1.4</td>
<td>−2</td>
<td>5</td>
</tr>
</tbody>
</table>

Note. Difference = plural minus singular.
Table 5
Reaction Times and Adjective-Stem-Duration Measures (in ms) for a Subsample of Participants From Experiment 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Neut M SE</th>
<th>Masc M SE</th>
<th>Fem M SE</th>
<th>Neut M SE</th>
<th>Masc M SE</th>
<th>Fem M SE</th>
<th>Neut M SE</th>
<th>Masc M SE</th>
<th>Fem M SE</th>
<th>Neut M SE</th>
<th>Masc M SE</th>
<th>Fem M SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular</td>
<td>646 15 636 14 656 15</td>
<td>227 7 215 6 228 6</td>
<td>877 20 850 17</td>
<td>885 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plural</td>
<td>643 18 631 16 635 15</td>
<td>229 6 228 7 227 7</td>
<td>875 21 858 20</td>
<td>860 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>-3 8 -4 7 -21 5</td>
<td>2 2 13 2 -1 2</td>
<td>-2 10 8 7 -25 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Difference = plural minus singular. Reaction time = stimulus onset to speech onset; adjective stem = speech onset to end of adjective stem; total = stimulus onset to end of adjective stem (reaction time + stem); neut = neutral; masc = masculine; fem = feminine.

For determiner–adjective–noun utterances, latencies were shorter when participants produced plural noun phrases as opposed to singular noun phrases for nouns of feminine gender, for which singular and plural determiner forms are identical. By contrast, for nouns of masculine or neuter gender, for which singular and plural determiner forms are different, no such gain was obtained. Rather, latencies were longer when participants produced plural noun phrases as opposed to singular noun phrases. This pattern replicates the Gender × Number interaction that we had found in our previous study (Schriefers et al., 2002, Experiments 1 and 3) for utterances consisting of a gender-marked determiner and a noun. Experiment 2 demonstrated that there was no difference between plural and singular utterances for bare noun utterances. Thus, the interaction found in Experiment 1 was not due to differences in the difficulty of plural formation or differences in other properties of the item sets for the three gender classes.

We addressed the central question of the present study in Experiment 3. In this experiment, we tested whether lexical competition as reflected in the Gender × Number interaction is restricted to freestanding morphemes, as suggested by Schiller and Caramazza (2003), or whether it also occurs for bound morphemes like adjective inflections, as suggested by the results of Schriefers (1993). Participants produced noun phrases consisting of an adjective with a bound gender-marked suffix (exhibiting the same distributional properties over gender classes and number, singular vs. plural, as the definite determiner, see Table 1) and a noun. As in Experiment 1, there was a Gender × Number interaction. However, the interaction obtained for bound morphemes was different from the one obtained for free morphemes in that it was due to a plural gain for adjective–noun phrases with feminine nouns but no plural costs for the corresponding noun phrases with neuter and masculine nouns. Before considering whether this difference does imply that free and bound morphemes are processed differently in language production, as suggested by Schiller and Caramazza, we first introduce a recent study by Costa, Kovacic, Fedorenko, and Caramazza (2003) that further specifies the theoretical position taken by Schiller and Caramazza.

Costa et al. (2003) used the gender-congruency effect in the picture–word task to investigate the processing of gender-marked elements in Croatian. In their first experiment, they obtained a gender-congruency effect for utterances with a gender-marked accusative pronoun, in other words, with a free-standing gender-marked morpheme (e.g., vidim ga [see him] or vidim je [see her]). By contrast, for utterances with gender-marked possessive pronouns (e.g., moj krevet [my masc bed] or moja kuca [my fem house]), they did not obtain a gender-congruency effect (Costa et al., 2003, Experiments 2 and 3).

Costa et al. (2003) interpreted this result by assuming that morphophonological processes operating with bound morphemes (like gender-marked suffixes) do not involve a simple concatenation in which a stem and an inflectional suffix are first selected independently and are subsequently combined in a phonological frame. Rather, they assume that morphophonological processes involve phonological transformations, and thus “the role of grammatical features would not be to select a specific bit of phonological material but to select a phonological transformation” (p. 1279). On the basis of their results, Costa et al. suggested that the selection of such a transformation might be a noncompetitive process.

How do the results of Costa et al. (2003) relate to the other evidence in this domain? They confirm that it is in principle possible to find a (possibly attenuated) gender-congruency effect in the picture–word task for gender-marked elements not occurring in utterance-initial position (see Schriefers, 1993), in this particular case, for freestanding gender-marked personal pronouns.

However, there are also divergences between the present data (and those reported by Schriefers, 1993) and those reported by Costa et al. (2003). Let us first turn to the gender-congruency effect in the picture–word task. Schriefers obtained a gender-congruency effect for inflected gender-marked adjectives, whereas Schiller and Caramazza (2003) failed to observe such an effect. Costa et al., using possessive pronouns, also did not find a gender-congruency effect, taking this finding as further support for the hypothesis that gender-marked inflectional suffixes come for free via phonological transformations that are noncompetitive processes. The question, of course, arises whether inflected possessive pronouns and inflected gender-marked adjectives are in fact directly comparable. It appears that Costa et al. implicitly assume this to be the case, as they refer to possessive pronouns as “possessive adjectives.”

Note, however, that this labeling is at odds with standard linguistic classification and obscures important differences. In fact, inflected adjectives are open-class items, whereas possessive pronouns are considered to be closed-class items and sometimes even a subclass of determiners. From this perspective, the absence of a gender-congruency effect in Costa et al.’s (2003) experiments for utterances consisting of a possessive pronoun and a noun (Experiments 2 and 3) would be more the exception than the rule, as all relevant studies in Dutch and German until now have obtained a
gender-congruency effect with determiners in utterance-initial position (LaHeij et al., 1998; Schiller & Caramazza, 2003; Schriefers, 1993, Schriefers & Teruel, 2000; van Berkum, 1997). Thus, one might suspect that the null effect obtained by Costa et al. is due either to some special property of Croatian or to some specific details of the experiments of Costa et al.9

Taken together, it is questionable whether the results presented by Costa et al. (2003) really speak to the issue of how bound morphemes are processed in language production. But even if we would assume this to be the case, their account does not provide a straightforward explanation of the present results. If bound morphemes were processed via phonological transformations that are selected by noncompetitive processes (as suggested by Costa et al.), this would provide an explanation for the absence of plural costs for adjective–noun utterances with masculine or neuter nouns but no straightforward explanation for the presence of a plural gain for corresponding noun phrases with feminine nouns. Put differently, on this account there would be no explanation why the convergence of syntactic features (i.e., feminine singular and feminine plural) onto the same phonological transformation leads to facilitation although the divergence of syntactic features (masculine/neuter singular and masculine/neuter plural) does not have any effect. It should be noted, however, that the same problem arises for the position taken by Schriefers et al. (2002). Given the assumption that the production of plural noun phrases implies a divergence of activation onto different gender-marked morphemes for singular and plural in the case of masculine and neuter nouns, and a convergence of activation on one gender-marked morpheme in the case of feminine nouns, it remains unclear why the latter led to facilitation for free and bound morphemes, whereas the former led to inhibition for free morphemes and no effect for bound morphemes.

In this context, it is useful to have a closer look at the two experimental paradigms used in the relevant studies, in other words, picture–word studies focusing on the gender-congruency effect (e.g., Schiller & Caramazza, 2003; Schriefers, 1993) on the one hand and simple noun-phrase production studies focusing on a potential Gender × Number interaction on the other (e.g., Schriefers et al., 2002, and the present experiments). The gender-congruency effect in picture–word experiments refers to the reaction time difference between a gender-congruent and a gender-incongruent condition. In the gender-congruent condition, activation from picture and distractor is assumed to converge on the same determiner form (or some other gender-marked element like an adjectival inflection), whereas in the gender-incongruent condition, picture and distractor activate two different determiner forms (or some other gender-marked forms). This implies that it is impossible to decide whether the overall gender-congruency effect is due to facilitation in the gender-congruent condition, inhibition in the gender-incongruent condition, or some mixture of these two effects. Furthermore, it is impossible to decide whether the relative contributions of a potential inhibitory and a potential facilitatory component of the overall gender-congruency effect are the same for free and bound gender-marked morphemes or whether the relative contributions change as a function of the type of morpheme.

For the simple naming experiments of the present study, the situation is somewhat different. In contrast with the congruency effect in picture–word experiments, convergence versus divergence of activation of gender-marked elements does not concern different singular gender-marked elements activated by picture and distractor but, rather, the singular and plural gender-marked elements activated by the to-be-named object(s). Given the logic of these experiments and the singular-as-default hypothesis as established in previous experiments (Schriefers et al., 2002), the singular condition can be considered as a neutral baseline. Thus, the present experiments allow one to judge whether diverging activation of different gender-marked elements for plural noun phrases with masculine or neuter nouns leads to inhibition, or whether convergent activation onto the same gender-marked element for plural noun phrases with feminine nouns leads to facilitation.

The present results show a Gender × Number interaction for noun phrase with free gender-marked morphemes and for noun phrases with bound gender-marked morphemes. However, the former interaction is carried by inhibition for plural noun phrases with masculine and neuter nouns and facilitation for plural noun phrases with feminine nouns, whereas the latter interaction is carried by facilitation for plural noun phrases with feminine nouns. Thus, the present experiments provide a more fine-grained picture than the overall gender-congruency effect. The resulting picture indicates that the selection of freestanding and bound gender-marked morphemes does not differ in a principled sense, such that the former are selected by a competitive process, whereas the latter “do come for free”, in contrast with the proposal put forward by Schiller and Caramazza (2003; see also Costa et al., 2003). The present data also do suggest a difference in the processing of free and bound gender-marked morphemes such that in the selection of free morphemes, an inhibitory and a facilitatory component appear to play a role, whereas in the selection of bound morphemes, the facilitatory component appears to dominate. In this respect, it is interesting to note that the seemingly contradictory patterns of results from picture–word studies show a high degree of parallelism. As noted in the introduction, Schriefers (1993) obtained a 56-ms gender-congruency effect for Dutch noun phrases with a free gender-marked morpheme (i.e., definite determiners) and an effect of 31 ms for corresponding noun phrases with a bound gender-marked morpheme (i.e., gender-marked adjectival inflections). The corresponding values for Dutch noun phrases obtained by Schiller and Caramazza (2003) were 16 ms and ~8 ms, respectively. Thus, the reduction of the gender-congruency effect when going from free gender-marked morphemes to bound gender-marked morphemes is almost identical, 25 ms in the former study and 24 ms in the latter study. The fact that the reduction of the gender-congruency effect is highly comparable, whereas the studies clearly differ with respect to the presence or absence of a gender-congruency effect for bound gender-marked morphemes, once more suggests that investigation of this issue asks for exper-

9 One such feature concerns the fact that Costa et al. (2003) used only masculine and feminine nouns in their experiments despite the fact that Croatian is a three-gender language. Such a reduction of the full range of gender-marked elements to only a subset might affect the participants’ behavior in some unknown way. It should be noted, however, that Costa et al. did obtain a gender-congruency effect in their experiment with gender-marked personal pronouns (Experiment 1), although they used the same reduction to two gender classes. Thus, the reduction to two gender classes in Costa et al.’s experiments alone cannot provide a complete account of their results.
immental techniques that can tease apart the inhibitory and facilitatory components of the overall gender-congruency effect.

To conclude, the present data do not support the proposal that bound morphemes come for free whereas freestanding morphemes are selected by a competitive process. On such an account, we should not have obtained a Gender Class × Number interaction for both free morphemes (Experiment 1) and bound morphemes (Experiment 3). On the other hand, the present data also indicate that there must be some difference between utterances with gender-marked free morphemes and bound morphemes, at least for the type of utterances studied in the present experiments. This is reflected in the fact that the critical Gender Class × Number interaction took a different form for free morphemes and bound morphemes: A plural gain for feminine nouns was observed for both types of morphemes, whereas a plural cost for nouns of masculine and neuter gender was only observed for free morphemes. This can either be due to a genuine difference in the selection mechanism for free and bound morphemes or due to a common selection mechanism together with some additional effect induced by the different utterance types (e.g., utterance-initial versus -noninitial position of the critical morpheme and potential consequences for processes of phonological encoding; cf. Jescheniak, Schriefers, & Hantsch, 2003).

References

Appendix

Names of Experimental Objects Used in Experiments 1–3 (With Approximate English Translations in Brackets)

<table>
<thead>
<tr>
<th>Neuter</th>
<th>Masculine</th>
<th>Feminine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto [car]</td>
<td>Affe [monkey]</td>
<td>Ampel [traffic light]</td>
</tr>
<tr>
<td>Bein [leg]</td>
<td>Baum [tree]</td>
<td>Bombe [bomb]</td>
</tr>
<tr>
<td>Bett [bed]</td>
<td>Brauennen [fountain]</td>
<td>Brezel [pretzel]</td>
</tr>
<tr>
<td>Blatt [leaf]</td>
<td>Frosch [frog]</td>
<td>Bürste [brush]</td>
</tr>
<tr>
<td>Gewicht [weight]</td>
<td>Kuchen [cake]</td>
<td>Insel [island]</td>
</tr>
<tr>
<td>Haus [house]</td>
<td>Pfeil [arrow]</td>
<td>Kirsche [cherry]</td>
</tr>
<tr>
<td>Pferd [horse]</td>
<td>Schrank [cupboard]</td>
<td>Note [note]</td>
</tr>
<tr>
<td>Rad [wheel]</td>
<td>Schuh [shoe]</td>
<td>Rutsche [slide]</td>
</tr>
<tr>
<td>Schloss [castle]</td>
<td>Schwamm [sponge]</td>
<td>Schere [sissors]</td>
</tr>
<tr>
<td>Schwein [pig]</td>
<td>Spiegel [mirror]</td>
<td>Spritze [spray]</td>
</tr>
<tr>
<td>Seil [rope]</td>
<td>Stern [star]</td>
<td>Tafel [board]</td>
</tr>
</tbody>
</table>

Received November 1, 2003
Revision received May 19, 2004
Accepted June 11, 2004