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Chapter 1

Introduction

1.1 Breast cancer

Breast cancer is the most common type of cancer in women world-wide. In the western
world ten percent of all women are confronted with breast cancer in their lives. Breast
cancer is the result of uncontrolled growth of breast cells. The female breast is mainly
made up of lobules (milk-producing glands), ducts (milk passages that connect the lob-
ules to the nipple), fatty and connective tissue surrounding the ducts and lobules, blood
vessels, and lymphatic vessels (see Fig. 1.1). Most breast cancers have their origin in
the cells of the ducts, some in the cells of the lobules. The early stage of ductal cancer
is referred to as in-situ, meaning that the cancer remains confined to the ducts (ductal
carcinoma in-situ). When it has invaded the surrounding fatty tissue and possibly has
also spread to other organs, it is referred to as invasive. Breast cancer is most treatable
when it is detected in its early stages. Therefore, many nations have started breast cancer
screening programs.

1.2 Breast cancer screening

The organization of a screening program is such that asymptomatic women are invited
for X-ray examination of both breasts (mammogram) on a regular basis. The age range
of women, and the frequency of invitation varies between different programs. After the
menopause, the breast tissue gradually becomes less dense, making it easier to detect
cancers. X-ray images of the breast can be taken from different angles. The most com-
mon projections are the mediolateral oblique (MLO) view and the craniocaudal (CC)
view (see Fig. 1.2). The MLO view is taken from an angled view, and shows part of the
pectoral muscle. The images are interpreted by one or two radiologists. Breast cancer

1



2 1 INTRODUCTION

chest

pectoral
muscle

wall

fatty tissue

lobules

nipple

duct

Figure 1.1: Side view of the female breast showing the anatomy.

MLO right MLO left CC right CC left

Figure 1.2: A mammogram showing the two most common projections, mediolateral
oblique (MLO) and craniocaudal (CC). In the MLO views part of the pectoral muscle is
visible in the upper part of the images.
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mass calcifications

Figure 1.3: Breast cancer will manifest itself in the form of a mass and/or calcifications
in the mammogram. A mass is a group of cells clustered together more densely than
the surrounding tissue. A mass can be caused by benign breast conditions or by breast
cancer. The size, shape, and margins of the mass help the radiologist in evaluating the
likelihood of cancer. Calcifications are calcium deposits that appear as white spots on
the mammogram. They can occur as relatively large calcium deposits (macrocalcifica-
tions) or tiny specks of calcium (microcalcifications). Macrocalcifications are associated
with benign conditions, caused by things like aging of the breast arteries, old injuries, or
inflammations. For microcalcifications, the shape and layout help the radiologist judge
how likely it is that cancer is present.

will manifest itself in the form of a mass and/or calcifications in the mammogram (see
Fig. 1.3). When there are abnormal findings the women is recalled for further examina-
tion, including further imaging by for instance ultrasound or biopsy.

In the Netherlands, breast cancer screening started in 1989, and in 1997 it reached
full coverage of the country. Women between the ages of 50 and 75 are invited biannualy
to have a mammogram taken. Participation is high, with an overall attendance rate of
about 80 %. For the initial screening both a MLO and CC views are taken. For subse-
quent rounds the radiographer decides whether it is necessary to acquire a CC view, for
instance when there are considerable changes compared to the previous (or prior) mam-
mogram. Acquisition of a CC view occurs in about 30 % of subsequent screening rounds.
The mammograms are interpreted by two radiologist independently. If one radiologist
recommends recall and the other does not, then the final decision for recall is reached by
discussion (consensus double reading). The recall rate of 1.3 % (in 2001) is the lowest
world-wide, compared to 2-5 % for other European countries (Otten et al. 2005), and
much higher in the US. For that same year the overall detection rate was 5 ‰.
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The introduction of the breast cancer screening program has contributed to the re-
duction of the breast cancer mortality rate in the Netherlands. In 1986-1988, before the
Dutch screening program began, the breast cancer mortality rate in Dutch women aged
55-74 years was 105.2 per 100 000; in 2001, after the screening program was in place,
the mortality rate was 85.3 per 100 000 (Otto et al. 2003).

1.3 Computer-aided Detection

The reduction of breast cancer mortality due to screening might become even larger,
since studies have shown that radiologists fail to recall a significant number of cases
with breast cancer (for example Blanks et al. (1998)). The causes of these false negative
screening mammograms are not clear. It is often suggested that abnormalities that are
clearly visible in retrospect must have been overlooked. However, a cancer might also be
missed because signs were misinterpreted. To increase the detection rate Computer-aided
Detection (CAD) systems are being developed. These systems use pattern recognition
techniques to identify features in an image that are characteristic for breast lesions. CAD
systems are not intended to replace the radiologist, but rather to aid the radiologist during
image review by prompting suspicious regions. Most CAD systems aim at avoiding
detection errors. However, there is also evidence that CAD systems can increase the
radiologists’ performance by helping with the interpretation of detected lesions (Chan
et al. 1999; Jiang et al. 1999; Veldkamp et al. 2000; Karssemeijer et al. 2003).

1.3.1 Benefit of CAD

A number of studies have investigated the benefit of using CAD systems. These studies
can be divided into three groups. The first group of studies are the retrospective stud-
ies. Here the researchers test the CAD algorithms on previous mammograms of breast
cancers detected by mammography. An example of such a study is that of Burhenne
et al. (2000). In this study a panel of radiologists reviewed mammograms from 427 cases
taken prior to the screening mammograms that led to the detection of breast cancer. At
retrospective review, they found that 67 % of the screen detected breast cancers were
visible on the prior mammogram, and 27 % (n=115) were deemed actionable. Of these
115 cases, the CAD system correctly marked 77 %. These results suggest that CAD
prompting could have potentially reduced the false negative rate by 77 %. The second
group of studies are the prospective sequential studies. Here the mammograms are first
interpreted by a group of radiologists without the assistance of CAD, followed immedi-
ately by a re-evaluation of areas marked by the CAD system. In such a study, conducted
by Freer & Ulissey (2001), 12,860 mammograms were read by radiologists with and
without the assistance of CAD. When comparing the radiologists’ performance without
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CAD with that when CAD was used, they observed both a 19.5 % increase in the number
of cancers detected and an improvement in the proportion of malignancies detected at an
earlier stage. The increase in recall rate from 6.5 % to 7.7 %, was considered to be quite
acceptable by the authors. The last group of studies are the prospective comparison stud-
ies. In these studies the changes in recall and cancer detection rates are assessed after the
introduction of a CAD system. An example of such a study is that of Gur et al. (2004).
In their study they compared the recall and breast cancer detection rates for 24 radiolo-
gists who interpreted 115,571 screening mammograms with (n = 59,139) or without (n
= 56,432) the use of a CAD system. They found no statistically significant changes in
recall and breast cancer detection rates. There was a lot of debate about the meaning
of these results. Feig et al. (2004) made some important points regarding the study by
Gur et al. (2004). One of these points was that the large confidence intervals allow for
a wide range of detection rate changes. The source of this large variation is the result of
variability among readers, and the fact that the cases read with and without CAD were
different. Another important point made was that the percentage of women who were
screened for the first time decreased from approximately 40% to 30%. A population
undergoing periodic mammographic screening typically has lower cancer detection rates
on second and third screens than on the first screen. As a consequence, this may have
obscured any evidence of benefit from CAD.

1.3.2 Multiple view CAD techniques

In general, the sensitivity of CAD techniques for mass detection is high, however the
specificity is only modest. To reduce the number of false positive detections, there is
a lot of interest in developing CAD techniques that use image context, asymmetry, and
multiple view information. Most current CAD schemes use information from only one
view at the time. For a case based evaluation of CAD performance the results of all views
are independently combined afterwards. Radiologists on the other hand use the informa-
tion from all available views during interpretation. They are trained to use comparisons
of the left and right breast to identify suspicious asymmetric densities. The comparison of
temporal mammogram pairs is important to see whether there are new or growing densi-
ties in the mammogram. It is also known that screening with two mammographic views,
MLO and CC, improves the detection accuracy of abnormalities in the breast, which can
be explained by the fact that two projections allow better estimation of conspicuity of
lesions and may reveal lesions hidden by glandular tissue in one of the projections.

In literature a number studies have been described that investigate the use of mul-
tiple view information for CAD techniques, including the search for asymmetry, tem-
poral comparison and combination of MLO and CC information. Asymmetry detec-
tion has been performed by creating a mapping between the left and right breast us-
ing a set of control points on the skin line (Karssemeijer & te Brake 1998; Lau &
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Bischof 1991). A small benefit was found when using asymmetry in the detection
scheme. However, no studies have been published since then that confirm the useful-
ness of asymmetry for automated detection of breast lesions. With respect to the use
of temporal information, Sanjay-Gopal et al. (1999) developed an automated regional
registration technique to identify corresponding lesions in temporal pairs of mammo-
grams, and Hadjiiski et al. (2001b) developed interval change analysis of masses to
improve their classification accuracy between benign and malignant. For the use of
MLO and CC information a number of studies have been presented on methods to es-
tablish correspondence between detected objects in both views (Highnam et al. 1998;
Good et al. 1999). To our knowledge, the only study presented on the use of MLO and
CC information to improve detection results is that of Paquerault et al. (2002). They
developed a two view matching method which results in a correspondence score for each
possible mass pair. By combining this correspondence score with their single view de-
tection score, their detection results improved significantly.

1.4 Breast density

There are various risk factors connected with breast cancer. It is well known that increas-
ing age, hormonal factors, especially a long menstrual life, and no or late childbearing,
have an important influence. The use of oral contraceptives at a young age and the use
of hormone replacement therapy are also known to increase the risk of developing breast
cancer. The occurrence of breast cancer in first degree relatives also increases the risk. In
some families the patterns of breast cancer incidence seems to be consistent with known
patterns of genetic inheritance. In 1994, researchers discovered that women who carry
mutations of BRCA1 (breast cancer gene 1) or BRCA2 (breast cancer gene 2) are at
higher risk of developing both breast and ovarian cancer than women who do not have
these genetic mutations (Futreal et al. 1994). Research is still continuing to gain more
insight in risk factors.

For many years, research has focused on breast tissue density as an important risk
factor for breast cancer development (Byrne et al. 1995). Some studies even showed that
the risk of breast cancer for women with increased breast density is four to six times that
for women with less dense breasts (Harvey & Bovbjerg 2004). Breast tissue density plays
an important role in epidemiological studies, and might be used to identify a high risk
population. This high risk population might then benefit from more frequent screening
and/or additional imaging with other modalities. In addition, including breast density as
a feature in a CAD system might be used to increase performance in CAD systems. In
current practice, breast density is determined qualitatively by the radiologist. The use of
breast density in CAD systems requires, however, a less subjective and more quantitative
measure of breast density that can be obtained automatically.
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1.5 This thesis

The topic of this thesis is the development of computer-aided detection and image pro-
cessing techniques that improve the detection of masses in mammograms by using multi-
ple view information. Chapters 2 and 3 address the comparison of temporal mammogram
pairs. Chapters 4 to 6 address the improvement of CAD results by using two views, MLO
and CC, of the same breast.

To be able to make temporal comparisons it is important that previous and current
mammograms are similar. When reading a mammogram, radiologists use the mammo-
gram from the previous screening round to search for growing or new densities. To
facilitate this, correct positioning of the breast during the examination is very important.
Inadequate positioning is, however, a frequently encountered problem. To some extent
suboptimal positioning can be compensated for by registration. In Chapter 2 we tested
four methods for temporal mammogram registration. Two of the methods were relatively
simple alignment procedures based on nipple location and center of mass of the breast
area. The third method used mutual information, which is computed from the joint prob-
ability distribution of the images’ intensities. And the fourth method used a warping
approach, based on a set of automatically determined control points located on the breast
contour.

In mammography, it is generally believed that growth of lesions is an important clue
to detect lesions and to discriminate between benign and malignant. The introduction of
digital mammography over the last few years has given rise to new opportunities. Digital
mammography also opens new ways to design display strategies for screening, which
might also lead to improved perception of lesion growth. In Chapter 3 we investigated
two ways of presenting prior and current mammograms on a mammography workstation:
next to each other and alternating at the same display (toggle). Using an observer exper-
iment, we determined threshold detection levels of lesion growth under both conditions.

During the development of multiple view techniques we have noticed that they are
hampered by the phenomena that mass lesions are sometimes detected by multiple re-
gions of our CAD scheme. These multiple candidate regions on the same lesion compli-
cates the process of automatically linking regions in multiple views. Chapter 4 describes
a technique we developed to regroup initial CAD regions to facilitate the final classi-
fication of suspicious regions. This method aims at recognizing lesions that are hit by
multiple regions and performing a re-segmentation and re-evaluation as a single region.

It is common for CAD algorithms to combine detection results in separate views
independently. However, most development of CAD systems has been based on the
analysis of single views. Before multiple view information can be used, correspondence
has to be established between views. In Chapter 5 we present a method to link potentially
suspicious areas of our CAD scheme in MLO and CC views. Using this linking method,
Chapter 6 focuses on the improvement of the mass detection results using two view
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information.
A number of studies investigated the use of image context for CAD systems, includ-

ing asymmetry and multiple view information. Concluding from these studies, however,
the benefit of context and multiple view information for CAD systems is not always clear.
In Chapter 7 we present a study in which we made use of human observers to investi-
gate the potential benefit of using context information for CAD systems. The observers
were presented with a number of cases in three different ways, showing only the region
of interest, showing the whole image, and showing all available images of the screening
round. They were asked to rate each presented view by giving it a malignancy score.

As mentioned in the previous section, breast tissue density has been identified as an
important risk factor for breast cancer development. In literature a number of studies
have been presented that determine the size of the dense tissue projection on a mam-
mogram. As a quantitative measure of breast density the projected dense tissue area
is, however, not ideal, as it is not invariant to compression and projection angle. The
last chapter of this thesis presents a method for accurate quantitative estimation of the
dense tissue volume from mammograms obtained with full field digital mammography.
We validated this method by comparing with the dense tissue volumes determined from
Magnetic Resonance Imaging data.



Chapter 2

A comparison of methods for
mammogram registration 1

2.1 Introduction

Breast cancer is the most common type of cancer in women world-wide. Ten percent
of all women are confronted with breast cancer in their lives. When it is detected in
its early stages, breast cancer is most treatable. Therefore, many nations have started
mammography screening programs to detect breast cancer as early as possible. The
organization of a screening program is such that asymptomatic women are invited for
X-ray examination of both breasts on a regular basis. The age range of women, and
the frequency of invitation varies between different programs. After the menopause, the
breast tissue gradually becomes less dense, making it easier to detect cancers. X-ray
images of the breast can be taken from different angles. The most common projections
are the mediolateral oblique (MLO) view and the craniocaudal (CC) view (see Fig. 2.1).
The MLO view is taken from an angled view, and shows part of the pectoral muscle. The
images are interpreted by one or two radiologists. Breast cancer will manifest itself in the
form of a mass or calcifications in the mammogram. When there are abnormal findings
the women is recalled for further examination. During interpretation information from
all available views is used. The mammograms from previous examinations are used to
recognize changes in the breast, and the mammogram is searched for asymmetries.

Since radiologists make comparisons between different views, both bilateral and tem-
poral, positioning of mammograms is important to aid the radiologist during mammo-
gram interpretation. To facilitate scanning for asymmetries, positioning should be such
that the nipples of the left and right breast are projected on a horizontal line. Further-

1The content of this chapter has been published previously in van Engeland et al. (2003a).
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MLO right MLO left CC right CC left

Figure 2.1: A mammogram showing the two most common projections, mediolateral
oblique (MLO) and craniocaudal (CC). In the MLO views part of the pectoral muscle is
visible in the upper part of the images. When breast positioning is correct the nipples
are horizontally aligned and the pectoral muscle is equally visible in the left and right
breast. Left and right images are hung next to each other to create a symmetric view.

more, the pectoral muscle and glandular tissue should be projected as similar as possible
for left and right breasts. Also for temporal comparisons it is important that previous and
current mammograms are similar. For example, it has been shown that alternating be-
tween previous and current views at the same display improves the perception of lesion
growth (van Engeland et al. 2003b) (see Chapter 3). Proper positioning of the breast re-
quires highly skilled radiographers. Inadequate positioning is the most frequent problem
encountered when reading mammograms (Dronkers et al. 2002). A mammogram which
is properly positioned is displayed in Fig. 2.1. Introduction of digital mammography and
soft-copy reading of mammograms enables the use of display optimization techniques.
To some extent suboptimal positioning can be compensated for by registration.

Registration of mammograms is not only important in displaying mammograms but
it can also be used to develop Computer-aided Detection (CAD) methods that use infor-
mation from previous mammograms. Most current CAD techniques for mammography
are based on the analysis of single views and detection. However, interest in CAD for
classification into benign and malignant has grown, and for this purpose temporal anal-
ysis is usually required. In addition to improving classification, also detection might be
improved by using information from previous mammograms.
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The mammographic appearance of breast tissue in previous and current mammo-
grams of the same patient may vary considerably, because of differences in breast com-
pression and positioning, differences in imaging techniques, and changes in the breast
itself. As mentioned earlier, after the menopause the dense glandular tissue starts dis-
appearing. Together with the fact that there are no clear landmarks in a mammogram,
except for the nipple, this makes mammogram registration a challenging task.

In literature some approaches have been described for mammogram registration and
techniques to find corresponding lesions in pairs of mammograms. Most work has been
done on the registration of temporal pairs of mammograms. Sallam & Bowyer (1996)
used a two-dimensional warping technique to find correspondence between all pixels
within the breast region in the current image to pixels within the breast region in the
reference image. Wirth et al. (2002) combined the use of a similarity-measure and a
point-based spatial transformation for the registration of temporal mammogram pairs. In
contrast to these studies where the whole breast area is registered, Hadjiiski et al. (2001a)
developed an automated regional registration technique to identify corresponding lesions
in temporal pairs of mammograms. A bilateral registration technique was developed by
Yin et al. (1994). This technique was based on determining correspondence between
control points on the skin line. Corresponding points of the right breast were registered
with those on the left breast using a least-squares method, allowing translation and ro-
tation. Validation of the registration methods mentioned above was only presented by
Hadjiiski.

We implemented and validated four methods for temporal mammogram registration.
The first two methods were relatively simple alignment procedures based on nipple lo-
cation and center of mass of the breast area. For the first method the nipple was detected
automatically and the nipple in the previous and current view were positioned at the
same location by translation of the previous view. For the second method the mam-
mograms were segmented into breast, pectoral and background area, and the center of
mass of the breast area in the previous and current view were positioned at the same
location by translation of the previous view. The third method used mutual information,
which is computed from the joint probability distribution of the images’ intensities. By
maximizing mutual information, two images are registered. In contrast to the first two
techniques, also rotation, scaling and shearing could be applied to register previous and
current views. The fourth technique was a warping approach. This technique used a set
of automatically determined control points located on the breast contour and the pectoral
muscle. The control points in both views were mapped onto each other, and the warped
image was obtained by interpolating between the control points using a thin-plate spline
surface method.
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In many applications validation of registration methods is problematic, as a ground
truth is rarely available. In this study we take a task-oriented validation approach. As the
main purpose of mammogram registration is lesion examination, we used the adequacy
of the alignment of lesions in temporal pairs as our validation measure. To this end,
we used a set of 150 previous and current mammographic views from the Dutch breast
cancer screening. Densities and calcifications visible in both views were annotated. The
distance between the centers of mass of these annotations after registration was used as
a criterion to compare the methods.

2.2 Methods

2.2.1 Data set

The data set we used consisted of 150 temporal pairs from the Dutch breast cancer screen-
ing program. The mammograms were digitized with a resolution of 50 µm and averaged
down to 200 µm (12 bits/pixel). Annotations of landmarks, either mass-like lesions, in
the rest of the paper referred to as densities, or large calcifications visible in both previ-
ous and current view, were made. The densities we selected were mostly benign, and in
the range of 0.5 - 1.5 cm in diameter. The data set contained: 60 densities and 90 calcifi-
cations visible in 30 CC views, and 120 MLO views. The average time interval between
the previous and current mammographic views was 23 months (range 6-27 months).

2.2.2 Nipple alignment

The first method we tested was the alignment of previous and current views by registering
the nipples, by translating the images in horizontal and vertical direction. This approach
is similar to the approach used by many radiologists, who use the distance to the nipple
to find corresponding locations of lesions in two mammographic views. Radiologists we
interviewed had the experience that this distance remains fairly constant between views.

We used an automated nipple detection method. The first step in this method was the
segmentation of the mammogram into background and breast tissue. Our breast segmen-
tation algorithm, which is similar to the method described by Highnam & Brady (1999),
is based on the idea that the background is very flat and can be identified by low gradient
values. We use a fixed threshold on the gradient magnitude to determine pixels in the
background. In addition, a threshold on the image intensity values is used to exclude
brighter pixels from the background. This threshold is determined by histogram analy-
sis. Morphological operations are applied to merge regions in the breast and to remove
labels. By assuming that the location of the nipple is somewhere on the skin contour,
the problem of locating the nipple was reduced to a one-dimensional problem. For every
point on the contour, features that describe intensity gradients, shape of the skin contour,
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Figure 2.2: Histogram of the distance from the actual to the estimated nipple position
for the used data set.

line patterns of the glandular tissue, and the geometry of the breast, were determined and
fed into a three-layer backpropagation network. The network was trained using a set of
314 mammograms with known nipple position. The distance to the actual nipple loca-
tion (tip of the nipple), which was indicated by a non radiologist working in the field of
mammography, was used as the target value for the network. Figure 2.2 gives the nipple
detection results on the testing set of 300 mammographic views that were used for the
comparison of the registration methods.

Registration based on nipple location has some disadvantages. First, the detection
of the nipple depends strongly on the correct segmentation of the mammogram. When
the breast contour is not detected properly, the nipple detection method may easily give
a wrong nipple location. Second, even when the breast contour is detected correctly,
this registration technique will only work when the breast is positioned correctly. For a
correctly positioned breast the nipple is visible in profile. In our data set, we have found
that in 35 % of the images, the nipple was not clearly visible.
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To study the potential of this method, we also made a ’best case’ comparison using
manually indicated nipple positions. Finally, to investigate the importance of correct
breast positioning for this registration technique, our data set was split up into two sets,
one set where the nipple was clearly visible in profile in both temporal views and one
set where the nipple was not clearly visible in one or both temporal views. For this
comparison we used the network determined nipple positions.

2.2.3 Center of mass alignment

Mammographic views can also be registered by aligning the centers of mass (CM) of
the breast area. However, analogous to the previous method, the performance of this
method will depend strongly on segmentation of the mammogram. Especially with high
contrast films used nowadays, it is often very difficult to find the breast contour. Another
problem with center of mass alignment in the MLO views is the varying proportion of
the pectoral muscle that is visible. When positioning is not adequate, this may give a
large variation in the vertical coordinate. Therefore, we expect that this method can
be improved by excluding the pectoral muscle in the center of mass calculation. We
implemented registration with and without the pectoral muscle, where the edge of the
latter was detected automatically.

The pectoral muscle segmentation technique is described in detail in Karssemeijer
(1998). It selects a region of interest in the image where the pectoral muscle is likely to
be located. By applying the Hough transform on this region a parameter space, which
represents straight lines through the region, is obtained. Finally, the highest peak is
selected, which represents the straight line estimate of the pectoral muscle boundary. To
improve the segmentation, pixels with a stronger gradient have a larger increment in the
Hough accumulator, and a correction is made to reduce the bias towards longer pectoral
muscle boundaries. Furthermore, if there are more candidate peaks in Hough space, the
peak with the largest corresponding pectoral muscle area is selected.

2.2.4 Mutual information

The use of mutual information (MI) for medical image registration applications was inde-
pendently introduced in 1995 by both Viola & Wells (1995) and Collignon et al. (1995).
It is a popular registration technique also used for multi-modality image registration.
Since the appearance of previous and current views can be considerably different, mu-
tual information might be a good technique for temporal mammogram pair registration.
It is expected to be less dependent on positioning changes than the previous alignment
techniques, as it uses the internal structure of the breast.
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Mutual information gives a measure of the strength of the dependence between vari-
ables (ie. pixel values occurring in two images). For two images A and B it is defined
as:

I(A,B) = H(A) +H(B) −H(A,B), (2.1)

where H(A) and H(B) being the entropies of A and B, respectively and H(A,B) their
joint entropy. The entropy of image A is defined as:

H(A) = −
∑

a

pA(a)logpA(a), (2.2)

where pA(a) is the pixel value distribution of image A. In other words, I(A,B) is the
amount of information that image B contains about image A. Therefore, maximization
of Eq. 2.1 by transformation of one of the images is equivalent to registering the images.

The current mammographic view is considered as the reference image, and trans-
formations are applied to the previous view or floating image. This naming conven-
tion will be used throughout the paper. Possible transformations were translation, rota-
tion with respect to image center, scaling and vertical shearing. This in contrast to the
previous two methods, which only used translation. Scaling was included in the trans-
formation to correct for slight size changes due to varying compression. A disadvantage
of allowing scaling might be that the registration method can use scaling to compensate
for physical changes, like the reduction of glandular tissue after menopause. This might
make interval change analysis unreliable. This is a major drawback, as estimation of
lesion growth is very important for classification of benign and malignant lesions. To
study potential problems with scaling, we tested MI registration both with and without
scaling. We could use a much larger data set of 1000 pairs of temporal mammographic
views for this experiment, since no lesion annotations were required. We assumed that by
using a large data set compression differences between subsequent views would average
out. The average interval between subsequent mammograms in this series was two years.
Finally, we also determined the size of the segmented breast area for all temporal pairs
and compared these results with the scaling factors found by MI registration.
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Mutual information uses internal structures in the breast and assumes that the co-
occurrence of the most probable values in two images is maximized at registration. This
might be a problem when large changes occur, for instance due to an aggressive invasive
cancer. In our study database we excluded such cases, but we investigated this issue
in a separate series of 20 cases with strong interval change (average lesion diameter
2.5 cm). A mask was used to exclude the regions where the lesions developed for MI
value determination. For this set of image pairs no landmarks were available to determine
the accuracy of MI registration. Therefore we could only compare transformation values
with and without the excluding mask. One might argue that similarity of transformation
values with and without exclusion mask would not imply that the registration is correct.
Therefore, we also used an exclusion mask (diameter 2 cm) on the 150 image pairs for
which landmarks were available, and compared these results with the registration results
obtained without masking part of the breast.

Implementation To be able to exclude background pixels for MI value determination,
the reference and floating image were segmented into background and breast tissue.
Both images were linearly scaled to 128 pixel values. For less than 64 pixel levels bins a
slight decrease in performance was found. Bi-linear interpolation was used to determine
the image intensity at the transformed image position. Transformations were applied in
the following order: shearing, rotation, scaling and translation. Only vertical shearing
was applied and rotation was performed with respect to the image center. The MI value
was optimized by transforming the floating image using Powell optimization (Press
et al. 1992).

2.2.5 Warping

The fourth method we tested was a method originally developed to define a mapping be-
tween the left and the right breast to obtain a local measure of asymmetry (Karssemeijer
& te Brake 1998). This technique used a set of automatically determined control points
(nmlo=14 and ncc=10) located on the breast contour and the pectoral muscle (Fig. 2.3).
The control points were obtained after segmenting the mammograms into breast tissue,
pectoral muscle and background. After mapping the points in both views onto each
other, the warped image was obtained by interpolating between the control points using
a thin-plate spline method (Bookstein 1989).
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Figure 2.3: Control points in a MLO and a CC view. On the skin line both end points
(M1, M9, C1 and C9) and seven equidistant points (M2 - M8 and C2 - C8) were se-
lected. For the MLO view two points on the pectoral boundary were added, respectively
one in the middle (M10) and one at the intersection with the chest boundary (M11). At
the chest boundary three more control points were selected, one at the top (M12), one
(M13) in between M11 and M12, and one (M14) in between M9 and M11. For the CC
view only one control point (C10) at the chest boundary in the middle of both end points
(C1 and C9) was added.
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2.3 Results

2.3.1 Comparing results from different techniques

Figure 2.4 and Table 2.1 show the registration results obtained with the four techniques.
CM registration results were obtained after excluding the pectoral muscle, and MI results
were obtained using translation and rotation. The MI results presented in the table were
obtained using translation and rotation. MI outperformed the other registration tech-
niques, and the warping technique performed worst. The main reason for this is that the
warping algorithm only takes into account points on the breast contour. Registration by
center of mass turned out to be better than registration by nipple location.
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mutual information

center of mass

nipple

before

Figure 2.4: Boxplot of distances in mm between lesion in previous and current view be-
fore and after registration using different techniques. Boxes show lower quartile, median
and upper quartile values. The whiskers indicate the minimum and maximum distances.
◦ represent outliers, which are data points with a distance to the upper quartile value of
more than 1.5 times the interquartile range.
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In Fig. 2.5 registration based on manually indicated nipple positions is compared
with registration based on network determined nipple positions. The median registration
results are about equal, however the number of outliers is higher for registration based on
network determined nipple positions. Registration based on nipple position was better
for cases where the nipple was clearly visible in profile (Fig. 2.6), this difference was,
however, not significant (Wilcoxon rank sum test, p = 0.11).
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Figure 2.5: Boxplot of distances in mm between lesion in previous and current view after
registration using alignment by nipple location, where the nipple was either manually
indicated or detected using the neural network.

In Fig. 2.7 center of mass alignment results are compared with and without excluding
the pectoral muscle. It can be seen that pectoral muscle segmentation is essential for
good performance of this technique. In Fig. 2.8 and Table 2.2 MI registration results
are presented using different transformation settings. Table 2.3 gives the transformation
values used to optimize MI.

From Table 2.3 it can be seen that the average scale factor found by MI registration
is not equal to one. This result could be reproduced on a larger data set of 1000 temporal
image pairs, again with an average time interval of two years. For this data set we found
an average scale factor of 0.97 (significantly different from 1.00, sign test, p � 0.001).
We also compared the size of the segmented breast area in the previous view with the
size in the current view. This comparison resulted in an average scale factor of 0.98
between previous and current views (significantly different from 1.00, sign test, p �

0.001). However, the linear relationship between both scale factors turned out to be
weak (correlation coefficient 0.40).

To study the effect of large developing densities on MI registration performance, we
used 20 temporal image pairs with strong interval change and a mask to exclude the re-
gions where the lesions developed. We compared the mean and standard deviation of the
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Figure 2.6: Boxplot of distances in mm between lesion in previous and current view after
registration using alignment by nipple location for the cases where the nipple was clearly
visible in profile and the cases where the nipple was not visible in profile for one or both
temporal views.
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Figure 2.7: Boxplot of distances in mm between lesion in previous and current view after
registration using alignment by center of mass either with or without pectoral muscle.
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Figure 2.8: Boxplot of distances in mm between lesion in previous and current view af-
ter registration using mutual information with different transformation settings, using a
combination of horizontal (TX) and vertical translation (TY ), rotation (ROT ), scal-
ing (SC) and shearing (SH). ∗ indicates that images were used without excluding the
background.

Table 2.1: Results after registration by different techniques. Values given are minimum,
median, mean and maximum distances between lesions in previous and current views
and the standard deviations (SD) in mm.

min median mean max SD

before 1.9 12.7 14.7 43.5 8.6

nipple 1.2 8.6 11.1 63.3 9.7

center of mass 0.4 7.7 8.8 28.0 5.7

mutual information 0.5 6.1 7.9 31.4 6.2

warping 1.6 20.5 24.5 142.3 17.8
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Table 2.2: Results after MI registration with different transformation settings using a
combination of horizontal (TX) and vertical translation (TY ), rotation (ROT ), scal-
ing (SC) and shearing (SH). Values given are distances between lesions in previous
and current views in mm. ∗ indicates that registration was done without excluding back-
grounds.

min median mean max SD

before 1.9 12.7 14.7 43.5 8.6

TY 0.5 8.0 9.8 56.3 7.7

TY TX 0.6 6.7 8.1 32.6 6.2

TY TX ROT 0.5 6.1 7.9 31.4 6.1

TY TX SC 0.4 6.6 8.0 32.6 6.1

TY TX SH 0.6 6.5 8.1 34.5 6.2

TY TX SC SH 0.5 6.7 8.0 33.4 5.9

TY TX SC ROT SH 0.6 6.5 7.5 30.0 5.4

TY TX ROT ∗ 0.9 9.6 12.0 41.7 8.0

transformation parameters with and without exclusion: TX: -1.8 ± 3.2 with exclusion,
-1.8 ± -3.8 without exclusion, TY : 4.4 ± 17.0 with exclusion, 4.4 ± 17.1 without ex-
clusion, ROT : 2.7 ± 5.0 with exclusion, 3.0 ± 5.0 without exclusion. None of these
results were significantly different (paired two-sided t-test). We also compared the mean
and standard deviation of the registration results with and without exclusion mask for
the dataset with 150 image pairs, and found a mean distance error 7.9 ± 6.1 for both
registrations. The performances of registration with and without exclusion mask were
not significantly different (paired two-sided t-test). Therefore, it may be concluded that
MI is not hampered by the changes between the previous and the current view.

Finally for all four techniques, registration results obtained for MLO and for CC
temporal image pairs were compared. As can be seen in Fig. 2.9 the distance between
annotations in temporal pairs is smaller for lesions in CC views before registration as well
as after registration using the nipple, center of mass and warping. For MI registration
median distance errors are equal for lesions in MLO and CC views.

2.3.2 Examples of registering temporal mammogram pairs

In this section some examples will be given of image registration results obtained by
the tested methods, including cases where image registration fails, to help understand
shortcomings of the techniques.
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Table 2.3: Transformation values used to optimize MI for the 150 mammographic image
pairs. Transformations were applied in the following order: shearing, rotation, scaling
and translation.

min median mean max SD

vertical shear -0.25 0.00 0.00 0.16 0.05
rotation (deg) -9.5 0.0 0.0 13.7 3.1
scaling 0.80 0.99 0.97 1.07 0.05
horizontal translation (mm) -17.2 -0.1 0.3 24.0 6.0
vertical translation (mm) -45.1 0.0 0.2 36.1 12.0
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Figure 2.9: Boxplot of distances in mm between lesion in previous and current view
before and after registration using different techniques for MLO and CC image pairs.
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Nipple alignment

The assumption that the lesion to nipple distance remains constant between views holds
only when the breast is positioned correctly and the nipple is visible in profile. Therefore,
using registration based on nipple location is only guaranteed to work when the nipple is
visible in profile (65 % of the images). The difference in registration performance for this
technique between correctly and not optimally positioned cases can be seen in Fig. 2.6.

Center of mass alignment

Registration by alignment of the centers of mass of the previous and current view is a
very basic approach to mammogram registration, which appeared to work reasonably
well. However, we have found that segmentation of the pectoral muscle for MLO views
is essential for this technique (see also Fig. 2.7). Fig. 2.11 shows the results of CM
alignment with and without pectoral muscle segmentation.

Mutual information

As an example, in Fig. 2.10 the joint pixel value distributions of two temporal views
before and after MI registration are presented. We found that registration by mutual in-
formation is sometimes hampered by labels or a nonuniform background in the images.
Therefore, excluding the background significantly improved registration results, which
can be seen in Fig. 2.8 and Table 2.2. Figure 2.12 shows an example where MI registra-
tion fails because of the presence of labels in both the previous and the current view.
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Figure 2.10: Joint pixel value distributions of two temporal views before and after reg-
istration.
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Figure 2.11: Example of a previous and current image pair before and after registration
using center of mass alignment with and without segmenting the pectoral muscle. This
example shows the effect of excluding the pectoral muscle for CM calculation on regis-
tration. In all images the location of the lesion in the reference image is indicated (©),
also in the floating images the corresponding lesion location is marked (�).

Warping

The warping approach we tested performed worst of all four registration methods. Be-
cause the warped image is calculated by interpolation between control points on the
breast outline, strange deformations sometimes occurred inside the breast area of the
warped image (see Fig. 2.13).

PSfrag replacements
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Figure 2.12: Example of registration using MI for images with and without excluding the
background. As can be seen, by excluding the background registration results improve.
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Figure 2.13: Example of a previous and current image pair before and after registration
using warping and MI registration. Strange deformations inside the breast area of the
warped image can be seen.

2.4 Discussion & conclusions

It was found that registration by mutual information outperformed other tested registra-
tion techniques. However, it appeared that mammogram segmentation is necessary to
exclude the background. The benefit of mutual information over the other techniques is
that it makes use of the internal structure of the breast, and not just one point or several
points on the breast contour. Another advantage of this technique is that it allows rota-
tion, scaling and shearing. This could correct for compression differences between the
previous and the current mammogram and slight rotations of the breast.

The basic registration approach of aligning the centers of mass of the breast area gave
reasonable results. However, we found that when using this approach pectoral muscle
segmentation was essential. In practice this can be a disadvantage, because it makes the
method more complicated and less robust. Our method for pectoral muscle segmentation,
which uses a straight line approximation, rarely failed completely. By visual inspection,
we found that for only one image in the data set used the algorithm selected a line that
did not match the pectoral boundary at all. One might argue that the straight line approx-
imation may not be accurate enough. The shape and position of the boundary might for
instance be optimized by an active shape or contour model. However, some variability in
the segmentation is unavoidable, since sometimes the pectoral boundary cannot be iden-
tified unambiguously even by human readers. We expect that improving pectoral muscle
segmentation will not lead to a strong improvement of the registration results obtained by
warping and CM alignment. Most outliers in the results obtained with these techniques
were caused by large differences between subsequent temporal views.

Results obtained by registration with nipple alignment and warping turned out to be
worse than the performance of the other two techniques. The main drawback of the nip-
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ple registration technique is that it is very sensitive to correct positioning of the breast
and the visibility of the nipple in profile. Improving the nipple detection method may re-
move some outliers from the registration results. However, our experiment with manually
identified nipple locations showed that it will not significantly improve results. Warping
might be improved by including control points inside the breast. It is very difficult to de-
fine such points. Attempts have been made by Vujovic & Brzakovic (1997) and Sallam
& Bowyer (1996), who presented methods for placing control points on the intersec-
tions of elongated structures and on the boundary of dense tissue, respectively. It seemed
however that the definition of these points is not accurate enough for our purpose.

We studied the scale factor found by MI registration on a large data set of 1000
temporal image pairs. As shown in Sec. 2.3.1, this scale factor is on average lower than
one. In addition it can be seen in Table 2.3, that sometimes scaling factors selected are
quite large, which is unacceptable. The intention of using scaling was to correct for
small compression differences, however sometimes large scaling factors were selected
to correct for large differences in positioning between subsequent views. Large scaling
factors will make size estimations and determination of lesion growth inaccurate. If the
global registration step is to be followed by a regional registration step and subsequent
feature analysis for temporal CAD systems, it is safer to use MI registration without
scaling. Also our results showed that there is no significant benefit in the use of scaling
(Table 2.2 and Fig. 2.8).

We also compared the size of the segmented breast area in the previous view with
the size in the current view. This resulted in a scale factor which was on average also
lower than one. However, the linear relationship between both scale factors turned out to
be weak. Large differences in compression between previous and current view, resulted
in both a large MI scale factor and a large size scale factor. However, relatively large
size scaling factors could sometimes also be explained by difficulties with segmenting
the breast contour. On high contrast films the skin air contour is sometimes not visible
due to the limited optical density range of our digitizer. Large MI scale factors were
selected when there were large positioning differences between the temporal views and
sometimes to correct for the reduction of glandular tissue.

A potential problem with MI when large developing densities are present was inves-
tigated. It appeared that MI is not hampered by the changes between the previous and
the current view. However, further study on a larger data set will be needed to investigate
the robustness of MI with respect to large developing densities.

We compared the performance of the registration methods for both MLO and CC
image pairs. The distance in the image matrix between annotations in temporal pairs
turned out to be smaller for lesions in CC views than in MLO views both before and after
registration. Only for MI registration, median distance errors turned out to be equal for
lesions in MLO and in CC views. For warping and CM registration, this effect might
be caused by the inaccuracy of the pectoral muscle segmentation. However it is more
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likely that this effect is due to variations in positioning. It is well known that even for
well trained radiographers the positioning varies between subsequent views. As the MLO
view positioning is more difficult, it would not be surprising that even for the unregistered
views there is more variation for the MLO images.

Our results could be compared with those obtained by the regional registration tech-
nique developed by Hadjiiski et al. (2001a). They developed a multi-stage regional reg-
istration technique and tested it on a set of 124 temporal pairs obtained with an average
time interval of one year. In the first stage a fan-shaped search region is defined on the
prior mammogram based on the location of the lesion of interest in the current mammo-
gram. As the basis of this fan-shaped region the nipple location was chosen, which was
determined manually. Radial and angular size of this search region were experimentally
chosen based on the used data set. After this initial stage they found an average distance
error of 8.4 mm, which could be reduced to 4.2 mm with subsequent regional matching
stages. Using our global MI registration approach we found an average distance error
of 7.9 mm. We did not investigate local matching to improve lesion registration. It is
noted that the advantage of our technique is that it is fully automatic, and did not require
manual nipple segmentation. Comparison with other studies was not possible, because
these did not include a validation step.

In conclusion, in this study MI appeared to be the best technique for global mammo-
gram registration. It seems that the average distance error obtained with this technique
is sufficient for display purposes and the method does not rely on accurate segmentation
of the breast or its internal structures. In CAD applications this global registration may
facilitate detection and analysis of temporal lesion pairs. In the current study the dis-
tance between annotations in two subsequent temporal views is used as a criterion to test
global mammogram registration. Due to deformation of the breast during the imaging
procedure it is very difficult to obtain more accuracy with global registration. If needed, a
regional registration step can be used in addition, for instance to correct for slight rotation
of a lesion.



Chapter 3

Optimized perception of lesion
growth in mammograms using
digital display 1

3.1 Introduction

In mammography, it is generally believed that growth of lesions is an important clue
to detect lesions and to discriminate between benign and malignant. However, in a lit-
erature review it appeared that the importance of obtaining previous mammograms to
compare with new studies is not clear. Bassett et al. (1994) studied the usefulness and
costs of comparing previous and current mammographic examinations. They concluded
that comparison with previous mammograms has a positive effect on cancer detection
and clinical management, however the overall costs and time involved in obtaining pre-
vious mammograms are substantial. Thurfjell et al. (2000) evaluated the effect of old
mammograms on the specificity and sensitivity of radiologists in mammography screen-
ing. They found a significant increase in the specificity, while the effect on the sensitivity
was unclear. Callaway et al. (1997) also studied the effect of previous films on mammo-
graphic interpretation and detection of breast carcinoma. In contrast to Thurfjell, they
did not find an improvement in diagnostic accuracy, only a significant reduction in ad-
ditional examinations that would have been requested. Wilson et al. (1996) performed a
retrospective evaluation in women with mammograms that were initially interpreted as
negative or negative with benign findings pending comparison with a mammogram from
a previous examination. In only 1 % of the cases comparison with the previous mam-

1The content of this chapter has been published previously in van Engeland et al. (2003b).

29
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mograms altered the original interpretation. Recently, Burnside et al. (2002) published a
study to analyze the differential value of comparison with previous examinations. They
found that for screening mammography comparison with previous examinations signif-
icantly decreases false-positives, but has no effect on true-positive findings. They also
mention that comparison permits detection of cancers at an earlier stage, which seems to
be in contradiction with the previous statement.

Indirect evidence for the fact that temporal change analysis is important can be found
in papers presenting studies about missed cancers, follow-up of probably benign lesions
and comparison of initial and subsequent screening. Bird et al. (1992) analyzed the char-
acteristics of missed lesions and compared them with correctly diagnosed cancers. One
of the results they found was that missed cancers were more likely to demonstrate a devel-
oping opacity as an indication of cancer. Sickles (1991) found 17 malignant cases in a set
of 3,184 consecutive cases of non-palpable, probably benign breast lesions, for which the
majority manifested by means of interval mammographic change. Frankel et al. (1995)
studied the difference between initial and subsequent screening mammography. Next to
the expected effect of finding less and smaller lesions for subsequent screening, they also
found a significantly higher biopsy yield for subsequent screening, demonstrating the
positive effect on the radiologists’ interpretation when using prior studies.

All studies investigating the usefulness and costs of using previous mammograms
question the benefit on diagnostic accuracy because of the high costs of acquiring the
old mammograms (Wilson et al. 1996; Bassett et al. 1994). However, in the near future
digital archiving of mammograms will reduce the costs and the efforts needed to acquire
old mammograms.

Digital display of mammograms also offers new ways to optimize display that may
lead to improved perception of lesion growth. Introduction of digital mammography also
opens new ways to design display strategies for screening mammography. Optimized
display might lead to improved perception of mammographic changes over time. In this
study we investigated two ways of presenting prior and current mammograms: next to
each other (simultaneous) and alternating at the same display (toggle). The mammo-
grams were displayed on a dedicated mammography workstation. The stimuli were cre-
ated using extracted lesions that were pasted into normal mammograms. For each stim-
ulus the observer was asked to select the image containing the largest lesion. Threshold
detection levels of lesion growth were determined under both conditions.
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Figure 3.1: Creating the stimuli.

3.2 Methods

3.2.1 Creating the Stimuli

The process to create the 210 stimuli consisted of three main steps (Fig. 3.1). First a set
of extracted regions was created. Next, a set of normal mammograms was selected. And
finally, the stimuli were created by pasting the lesions into the normal mammographic
views. These steps are described in the following paragraphs.
Creating the set of extracted lesions

Lesions were annotated in 100 µm images (Fig. 3.2). Regions of interest (ROI’s)
of 500 × 500 pixels containing these lesions were selected, centered at the center of
mass of the annotation. The background of each lesion was estimated by interpolating
the intensities on the annotation contours. The regions around the annotations and the
interpolated areas were then smoothed and subtracted from the original ROI’s. In the
experiment the lesion set consisted of 7 extracted lesions.
Acquiring the set of normal mammograms

Two normal mammograms of mostly fatty breasts were selected for which images of
two subsequent screening rounds were available. The previous and current mediolateral
oblique (MLO) views of the right breast were used and aligned based on the nipple
position.
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ROI of original image ROI with annotation

annotation plus area around lesion interpolation of lesion background

result after smoothing result after subtraction

Figure 3.2: Extracting the regions. See also text.
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Figure 3.3: Example of a stimulus. The lesion diameter on the current view (II) is 5 %
larger than the lesion diameter on the previous view (I).

Final stimulus creation
For every stimulus one of the normal mammograms was selected. Next, a lesion was

selected at random from the set of extracted lesions. A random location in the previous
mammogram was selected and it was checked whether this was a suitable position to
paste the lesion, i.e. inside breast area, not too close to skin or pectoral muscle and not
in a high intensity region. When the location satisfied these conditions, the lesion was
resized using a selected resize factor and bilinear interpolation. The original lesion was
then pasted into the previous view, and the resized lesion was pasted into the current view
at the same location, or the other way around, making sure that the final set contained
as many stimuli where the largest lesion was in the previous view as in the current view.
When the lesion location did not fulfill the requirements another location was selected
until success. Seven resize factors were used ranging from 1.0 to 1.1.

3.2.2 Experimental setup

The stimuli were displayed on a dedicated mammography workstation (MBC-SCR1,
MeVis BreastCare) that was developed by a European Consortium in which we partici-
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pated 1. The workstation was equipped with two high-resolution CRT displays (BARCO,
MGD 521, 300 Cd/m2, using BarcoMed 5MP1H 12 bit graphics boards). The used
workstation was a research prototype allowing swapping of images on the display with a
transition time of 0.52 ± 0.01 seconds.

In a 2AFC paradigm, the observers were asked to select the image containing the
largest lesion. Figure 3.3 shows an example of a stimulus. In half of the trials, the
previous and current view were displayed next to each other (simultaneous). In the other
half of the trials the observers could alternate between the previous and current view
(toggle). The toggle- and simultaneous-trials were presented in mixed order. For both
conditions 210 trials were presented, resulting in 30 observations per resize factor per
condition.

Four observers participated in the experiment. The observers were physicists working
in the field of mammography. The conditions were similar to standard reading conditions
for screening mammography. There was no time limit and no limit on the number of
alternations for decision making. The observers used two sessions of approximately one
hour each. Time intervals of images displayed in toggle mode used by the observers
typically ranged from 0.5 to 1.5 seconds.

3.2.3 Evaluation

The results of the experiments are presented in the form of psychometric curves, rep-
resenting the relationship between stimulus level and observer response. In our exper-
iments the stimulus level was a measure of the size difference between the lesions on
both views. The psychometric curves show the fraction of correct observer responses as
a function of the resize factor. A logistic psychometric function (Eq. 3.1) was used.

ψ =
1

1 + e(α−x)/β
(3.1)

where, ψ is the fraction of correct responses, x is the resize factor, α is the threshold, and
β determines the slope.

The experimental setup was such that α is one. The free parameter β was fitted using
MUEST (Snoeren & Puts 1997).

3.3 Results

In Fig. 3.4 the results for all four observers are presented. The graphs show that observers
2-4 performed more accurate in selecting the largest lesion when using the toggle option.
For observer 1 there was no difference in performance.

1Soft-Copy REading ENvironment SCREEN, EU-Project, IST-1999-10246.
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Figure 3.4: Psychometric curves for all four observers.

Table 3.1 shows a statistically significant increase in slope of the psychometric curves
when comparing simultaneous display and toggling (paired t-test, one-tailed, P = 0.027).
Table 3.2 presents the thresholds for 90 % correct observer response.

So far, results have shown an increase in performance when the observers used the
toggle option. Since a significant increase in decision time when using the toggle op-
tion would be a drawback for this technique during screening, we also investigated the
decision times.

For three of the four observers the time needed to decide which image contained
the largest lesion, was less when displaying the images simultaneous (Fig. 3.5). This
difference between decision time for toggle and simultaneous conditions was however
not statistically significant (P = 0.09, Table 3.3).
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Table 3.1: β values (slope at x = 1.0 is 0.25∗β) of psychometric curves for simultaneous
and toggle condition for all four observers.

simultaneous condition toggle condition
observer 1 40.5 ± 6 42.1 ± 6
observer 2 33.2 ± 5 53.1 ± 7
observer 3 42.1 ± 6 73.1 ± 11
observer 4 49.8 ± 7 74.4 ± 11

Table 3.2: Size change detection thresholds for 90 % correct observer response.

simultaneous condition toggle condition
observer 1 5.4% 5.2%
observer 2 6.6% 4.1%
observer 3 5.2% 3.0%
observer 4 4.4% 2.9%

Table 3.3: Median decision time (sec) for both the simultaneous and the toggle condition
per observer.

simultaneous condition toggle condition
observer 1 8.25 9.84
observer 2 12.48 11.55
observer 3 10.06 12.80
observer 4 9.94 13.80

3.4 Discussion

Interval change analysis is considered to be very important for both lesion detection and
classification into benign and malignant. We have shown that observers perform more
accurately in detecting lesion growth when alternating at the same display (toggling).
Although, the difference in performance between both display methods was significant,
the improvement in size change detection thresholds might seem rather small. However,
even a small improvement in size change detection can be important, since mammogra-
phy screening is particularly useful in detection of slow growing tumors. Furthermore,
observers mentioned that they were hampered by the fact that during toggling there was a
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Figure 3.5: Decision times for each observer for toggle and simultaneous conditions.
The median values, upper and lower quartile values are plotted. The whiskers extend to
the most extreme data point which is no more than 1.5 times the length of the box away
from the box, and the circles represent the outliers.

short period of time when there was no image on the screen. We expect that shorter image
transition times will improve observer performance, and as a consequence increase the
difference between toggling and displaying simultaneous. A shortcoming of our study
might be that no radiologists participated in the experiment. However, since it is not nec-
essary to have extensive knowledge of mammography for this particular task of growth
detection, we do not expect that the outcome of the experiments would be different for
a group of radiologists. Besides, all our observers worked in the field of mammography,
and were therefore very familiar with mammograms.

In conclusion, in the near future digital mammography will reduce costs and efforts
to obtain previous mammograms, and digital display can lead to improved perception
of lesion growth. Therefore it is expected that the benefit of comparison with previous
mammograms will outweigh the costs and efforts needed for the retrieval of previous
studies.
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Chapter 4

Regrouping initial CAD mass
detections to facilitate
classification of suspicious
regions in mammography 1

4.1 Introduction

Most development of CAD for mammography has been based on the analysis of sin-
gle views. By combining information from multiple mammographic views (temporal,
mediolateral oblique (MLO) and craniocaudal (CC), or bilateral) it should be possible to
improve the accuracy of CAD methods.

In literature some approaches have been described to establish correspondence be-
tween multiple views. However, few studies have been conducted to use the multiple
view information to improve classification. Hadjiiski et al. (2001b) developed interval
change analysis of masses and found that their classification accuracy improved signifi-
cantly. Paquerault et al. (2002) developed a two view matching method which results in
a correspondence score for each possible mass pair. By combining this correspondence
score with their single view detection score, their classification results also improved
significantly.

During the development of multiple view techniques,we have noticed that these tech-
niques are hampered by the phenomena that lesions are sometimes detected by multiple
regions (van Engeland et al. 2002). On a data set containing 385 images with a mass le-

1The content of this chapter has been published previously in van Engeland & Karssemeijer (2005).
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(a) (b) (c) (d)

Figure 4.1: Examples of initial detections, showing multiple detections on the lesion.
The views in (a) and (b) belong to the same case, as do (c) and (d).

sion we found that our CAD scheme initially detected 20 percent of the mass lesions by
multiple regions. This complicates the process of automatically linking lesions visible in
multiple views. In addition, it might also decrease single view detection performance, as
region based features are not representative for the characteristics of the entire lesion. In
Fig. 4.1 CAD results for the MLO and CC image of two cases are presented. For the case
presented in Fig. 4.1(a) and 4.1(b) the lesion is detected in the CC view as one region, and
in the MLO view it is detected by two non-overlapping regions. For the case presented in
Fig. 4.1(c) and 4.1(d) the lesion is detected by several overlapping regions in both views.
In such a situation it is not possible to find a one-to-one correspondence between regions
in the MLO and CC view. Furthermore, even if correct correspondence is found, com-
bination of feature values into multiple view representation will not be optimal, because
some regions will describe only part of the lesion while others will represent the whole
lesion. Therefore, we aim at developing a technique in which lesions hit by multiple
regions are recognized. Subsequently, they can be re-segmented and re-evaluated as a
single region.

The initial step in our CAD algorithm creates a likelihood image that contains for
every pixel a malignancy score based on characteristic tumor features, like spiculation.
In this likelihood image peak detection is done at one scale. Our detection scheme was
optimized for the detection of lesions with a diameter around 15 mm. Multiple peaks
on the same lesion can occur for relative large densities with inhomogeneous pixel value
distribution. Also when groups of spicules present at some locations on the edge of a
lesion do not all point to the same center, this sometimes leads to multiple detections on
the same lesion. It is difficult to overcome these problems with a multi-scale approach,
since characteristic features like spiculation are only visible for a certain scale. The
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possible benefit of using multi-scale detection has been studied before by te Brake &
Karssemeijer (1999). Their study showed only minor improvements for the multi-scale
method over the single-scale approach, provided that an optimal scale was chosen.

In our current CAD method, an algorithm searches for peaks that are located closer
than 8 mm together, in order to avoid multiple detections on the same lesion. If these
multiple detections are found the detection with the lowest likelihood value is removed.
This is a basic approach that removes many of the multiple detections, however we have
found that when correspondences between detections are to be determined in multiple
view analysis, this approach did not suffice. The current study describes the develop-
ment of an algorithm to remove multiple detections that does not only take the distance
between initial detections into account, but also at the image structure between detec-
tions. When correspondence is found, the two detections are replaced by a new detection
in between the initial detections.

After a short description of our CAD scheme (Sec. 4.2.2), the regrouping technique
is described in detail in Sec. 4.2.3. Results are presented in Sect. 4.3.

4.2 Methods

4.2.1 Data set

The used data set consisted of 201 cases, containing 804 images. All cases had four-view
mammograms. There was a mass lesion visible in 385 images. In 20 percent (79 images)
the mass lesion was detected by multiple regions. The mammograms were taken from
an annotated database containing cases from the Dutch breast cancer screening program.
The mammograms were digitized with a Lumisys 85 digitizer at a pixel resolution of
50 µm, and averaged down to a resolution of 200 µm, maintaining the original gray
value depth of 12 bits.

4.2.2 CAD scheme

Our CAD scheme consists of the following steps (Fig. 4.2):

• Segmentation of the mammogram into breast, pectoral muscle, and background
area,

• Initial detection step resulting in a number of suspect image locations,

• Region segmentation with dynamic programming using these locations as seed
points,

• Final classification step to classify regions as true abnormalities and false positives.

These steps wills be described in more detail in the following paragraphs.
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image segmentation peak detection

region segmentationinitial detection step

classification

0.938

Figure 4.2: Overview of our CAD scheme.

Segmentation of the mammogram Our breast segmentation algorithm, which is simi-
lar to the method described by Highnam & Brady (1999), is based on the idea that the
background is very flat and can be identified by low gradient values. We use a fixed
threshold on the gradient magnitude to determine pixels in the background. In addition,
a threshold on the image intensity values is used to exclude brighter pixels from the back-
ground. This threshold is determined by histogram analysis. Morphological operations
are applied to merge regions in the breast and to remove labels.

The pectoral muscle segmentation technique is described in detail in Karssemeijer
(1998). It selects a region of interest in the image where the pectoral muscle is likely to
be located. By applying the Hough transform on this region a parameter space, which
represents straight lines through the region, is obtained. Finally, the highest peak is
selected, which represents the straight line estimate of the pectoral muscle boundary. To
improve the segmentation, pixels with a stronger gradient have a larger increment in the
Hough accumulator, and a correction is made to reduce the bias towards longer pectoral
muscle boundaries. Furthermore, if there are more candidate peaks in Hough space, the
peak with the largest corresponding pectoral muscle area is selected.
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Initial detection step For each image pixel inside the breast area a number of features
are calculated that represent tumor characteristics. These features are related to the
presence of spicules (Karssemeijer & te Brake 1996), and to detecting a central mass
(te Brake & Karssemeijer 1999). A neural network is used to classify each pixel us-
ing these features and assigns a measure of suspiciousness to it, resulting in a so-called
likelihood image L(i, j). This likelihood image is smoothed, and a peak detection is
performed at one scale. The peak detection algorithm visits every pixel in the likelihood
image and a peak is detected when the likelihood is above a certain threshold and there
are no other pixels in the neighborhood (square neighborhood with size 32 x 32 pixels)
with a higher likelihood value. This results in a number of suspect image locations. In
our current CAD method, an algorithm searches for peaks that are located closer than
40 pixels together, in order to remove multiple detections on the same lesion. If these
multiple detections are found the detection with the lowest likelihood value is removed.

Region segmentation The initial detection step results in a number of suspect image
locations. Each of the detected peaks is used as seed point for region segmentation,
based on dynamic programming (Timp & Karssemeijer 2004).

Final classification For each region, features are calculated that describe the position
of a region in the breast (for instance the distance to the pectoral and the skin), region
size, contrast, texture, compactness and acutance measures. A neural network is used to
classify regions as true abnormalities and false positives based on these features.

4.2.3 Regrouping algorithm

The algorithm starts with a list of locations that are sorted based on the likelihood value
of each location, where the location with highest likelihood value is first in the list. The
algorithm then checks for the first location whether there is another detection within a
distance of 120 pixels (24 mm). If this is the case, dynamic programming is used to find
the path with the highest pixel level between these detections. The path finding algorithm
is described in detail in the next section. Next, the variance of the pixel values along this
path is calculated and normalized with the pixel value variance in the whole breast area
(see Sec. 4.2.5). If this value is below a certain threshold the two detections are joined by
removing the location with the lowest likelihood value. The detection with the highest
likelihood is replaced by a new detection in between the combined detections. Then
the algorithm searches further to find other detections that can be combined with this
detection. The same procedure is followed for the remaining detections in the list. We
have set a limit to the number of detections that can be combined. After the algorithm
is finished a combined detection can consist of two to four initial detections. Fig. 4.3
describes the algorithm in pseudo-code.
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for (k = 0; k < ndetections - 1; k++) {

joined = 0
for (l = k+1; l < ndetections; l++) {

if (distance(k,l) < 120 && detection[k].valid > -1 &&
detection[l].valid > -1 && joined ≤ 1 && varpath(k,l) < 0.04 &&
detection[k].level > 125 && detection[l].level > 125) {

joined++
detection[l].valid = -1
detection[k].x = (detection[l].x - detection[k].x) / 2 + detection[k].x
detection[k].y = (detection[l].y - detection[k].y) / 2 + detection[k].y
detection[k].level = (detection[k].level + detection[l].level) / 2

}

}

}

Figure 4.3: Regrouping algorithm in pseudo-code. Where ndetections is the number
of initial detections, distance(k, l) is the distance between the k-th and the l-th detec-
tion, valid indicates whether a detection is still active and has not yet been discarded,
varpath(k, l) is the normalized variance of pixel values along the path from the k-th to
the l-th detection, level indicates the likelihood value for a detection, and joined in-
dicates whether a detection has already been used in a combination before. This last
variable is used to ensure that not too many initial detections are combined into one.

4.2.4 Finding the highest pixel value path between two detections

Once the algorithm has found two detections, k and l, close together, it searches for the
path between k and l with the highest pixel value using dynamic programming. This pro-
cedure starts with the selection of a region of interest (ROI) containing both detections. A
rectangular region is formed by resampling the image perpendicular to a line connecting
k and l. The length of this ROI is equal to the distance between the detections and the
height is set to 50 pixels. Next, a cost matrix is generated, where the costs per pixel are
defined as:

c(i, j) =
max(g) − g(i, j)

max(g)
, (4.1)

where max(g) is the 99th percentile of the pixel values in the ROI. The first column
in the cost matrix represents the start nodes for the algorithm, whereas the end nodes
are represented by the pixels in the last column of the cost matrix. The cumulative cost
matrix of each path stores the cumulative costs for each path. In the first column the
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pixels are set equal to the cost of these pixels:

C(i, 0) = c(i, 0), (4.2)

where C(i, 0) is the cumulative cost, and c(i, 0) is the cost value for pixel (i, 0). The
other pixels in the cumulative cost matrix are calculated by a recursive step:

C(i, j + 1) = min
−m≤l≤m

C(i+ l, j) + c(i, j + 1) + h(l), (4.3)

where l is the direction, and h(l) is the cost assigned to direction l. For searching the
maximum pixel value path we have set the direction costs to zero. The end point of the
path is the pixel in the last column of the cumulative cost matrix with the lowest cost. The
optimal path is found by back tracing from the end pixel to one of the pixels in the first
column. Since the detections are peaks in the likelihood image and not in the pixel value
image, the begin and end points of the path do not have to coincide with the detections k
and l.

4.2.5 Estimating pixel value variance along path

The variance in pixel values along the path between two detections is used to decide
whether two detections should be combined. The variance along the path is normalized
with the variance of the pixel values in the breast area of the image, excluding the pectoral
muscle. The variance of the pixel values within the breast area of the image is given by:

Vimage =

∑

(i,j)∈B(g(i, j) − ḡ)2

N − 1
, (4.4)

whereN is the number of pixels inside the breast areaB, and ḡ is the average pixel value.
And the relative pixel value variance Vpath along the path is given by:

Vpath =

P

(i,j)∈P (g(i,j)−ḡp)2

Np−1

Vimage
, (4.5)

where P is the set of pixels on the path between k and l, ḡp is the average pixel value on
the path, and Np is the path length.

Figure 4.4 shows the relative variance values along the paths between false positive
(FP) detections, true positive (TP) detections, and TP and FP detections.

The threshold value for the path variance was experimentally chosen, and for
var(path) < 0.04 detections were considered as belonging to the same structure and
were combined.
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Figure 4.4: Relative variances of pixel values along paths between detections for differ-
ent types of region combinations. Boxes show lower quartile, median and upper quartile
values. The whiskers indicate the minimum and maximum variances. ◦ represent out-
liers, which are data points with a distance to the upper quartile value of more than 1.5
times the interquartile range.

4.2.6 Evaluation

The regrouping algorithm was evaluated in two ways, by determining the number of
correctly linked TP - TP initial detections and the number of erroneously linked TP - FP
detections.

Also, the algorithm was evaluated both by comparing the number of incorrect links
established between MLO and CC regions and by comparing the detection performances,
with and without applying the regrouping algorithm. The linking algorithm to find links
between regions in corresponding MLO and CC views is described in short in the fol-
lowing section, and Sec. 4.2.6 describes the evaluation of the classification between TPs
and FPs.

Region correspondences in MLO and CC view

The initial goal of this study was to try to reduce the number of incorrect links between
MLO and CC regions for our multiple view detection scheme. For each region in a
mammographic view our linking algorithm searches for the most likely region match in
the corresponding view. The most important feature that is used is the distance from a
region to the nipple, since it is generally believed that this distance remains fairly constant



4.3 RESULTS 47

between views. Other features that are used to find corresponding regions in MLO and
CC view are: region size, contrast, and spiculation. To determine the likelihood of links
we determine a cost function which assigns a higher cost to a link when features do not
match. The best possible link is found by searching for the link with the lowest cost. The
cost function is defined as follows:

C(p, q) =
∑

f∈F

2 ∗ (−0.5 +
1

1 + e
−

|fp−fq|

0.5∗(fp+fq)

), (4.6)

where F is the set of features used, p and q are regions on corresponding views, and fp

is the feature value of feature f on region p.
For this study parameter settings and the choice of combination features was not fully

optimized. Our main concern was to test whether the regrouping technique resulted in
less cases with wrong MLO - CC region combinations. Region combinations could only
be tested for true positive regions, using annotations made by a radiologist.

Detection performance

The detection performance after regrouping of suspicious locations is compared with
the original detection performance on all mammograms in the data set. A three-layer
backpropagation neural network is used with 8 hidden nodes. The classifier is tested
using crossvalidation with 90 percent training and ten percent testing. Free-response
Receiver Operating Characteristic (FROC) analysis is used to present the results.

4.3 Results

4.3.1 Example image

In this paragraph the use of the regrouping algorithm is demonstrated on the image in
Fig. 4.1. Figure 4.5(a) shows the initial detections, represented by their region segmen-
tations. Also four possible region combinations are shown. Combinations 1 and 2 are
FP - FP region combinations and 3 and 4 are TP - TP combinations. For all four pos-
sible region combinations the paths are determined with the highest pixel values (see
Sec. 4.2.4). These paths are presented in Fig. 4.5(b). Figure 4.6 shows the pixel values
and likelihood levels along each path. After calculation of the variances of the pixel val-
ues along the paths, the algorithm decides to combine the detections attached by path 1,
3 and 4. This can also be appreciated from the plots in Fig. 4.6, although paths 3 and 4
show a minimum in the likelihood value, leading to the detection of two separate loca-
tions, the pixel values are relatively constant. The result after combination of detections
and segmentation using the new seed points are presented in Fig. 4.5(c).
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Figure 4.5: Example image showing initial detections. Four detection combinations are
selected and used to demonstrate the path finding procedure (a). Paths with highest pixel
values between initial detections found by dynamic programming (b). Result; original
detections (black contours) and regrouped detections (white contours) (c).

4.3.2 Results of regrouping

Table 4.1 summarizes the combination results for the whole data set. In 48 percent (38
of the 79 multiple region lesions) the initial detections were correctly combined. For two
percent of the FPs in the data set a combination was established with another FP (106 out
of 5891 FP detections). In one percent (5 of the 385 lesions) a TP region was incorrectly
combined with a FP region.

Table 4.1: Combination results, number of different types of combinations established.
FP - FP TP - TP TP - FP

no. of links 106 38 5
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Figure 4.6: Pixel values and likelihood values along paths between detections in Fig. 4.5.
Note that for the second path the variance was calculated only with pixels not containing
calcifications.

At its current stage of development, the regrouping algorithm is not able to establish
a link between initial detections on the lesion in half of the multiple region cases. The
reasons for these missed TP - TP combinations are (in order of importance):

• the lesion looks very diffuse on the mammogram (see for example Fig. 4.7(a))

• the exact location and size of the lesion is unclear on the mammogram, for instance
in case of a invasive lobular carcinoma, which is a type that may be harder to detect
in a mammogram than the common invasive ductal carcinoma,

• a large part of breast is affected, resulting in many CAD regions over a large area
of the breast,
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(a) (b)

Figure 4.7: Example where the initial detections are not combined in an image with a
diffuse lesion (a). Example of a wrong initial detection combination (b). Black contours
indicate the original detections, white contours indicate the regions after regrouping.

• the boundaries of the lesion are not clear,

• the lesion consists of more parts, also microcalcifications were annotated, and

• the lesion is visible as an architectural distortion.

Reasons for incorrect TP - FP combinations can be summarized as:

• the exact location and size of the lesion is unclear on the mammogram,

• the lesion is located in dense glandular tissue and boundaries are not clear, and

• there is an elongated structure attached to lesion (see for example Fig. 4.7(b)).

4.3.3 Region correspondences in MLO and CC view

The application of the regrouping algorithm reduced the number of cases with incorrect
links from 70 to 62 (out of 201). Of the remaining incorrectly linked cases a large part, 30
percent, could still be attributed to multiple detections on the lesion. However, the major



4.4 DISCUSSION 51

reason for incorrect region links were caused by large differences in positioning between
the CC and MLO view and unclear nipple position on one or both views. Both these
situations make the distance between the nipple and the lesion a less reliable measure for
linking.

4.3.4 Detection performance

Figure 4.8 shows the detection performances of our CAD scheme with and without using
the regrouping algorithm. Both image and case based performances are provided. Both
image and case based curves show an improvement in the range of 0.02 - 0.3 FP/image.
However, statistical significance of this improvement could not yet be demonstrated.

4.4 Discussion

The results presented in Sec. 4.3.2 show that the regrouping algorithm correctly com-
bined the initial detections in half of the cases with multiple initial detections on the
lesion.

When running our linking algorithm to link regions in corresponding CC and MLO
views, we found that application of the regrouping algorithm reduced the number of cases
with incorrect links by 10 percent.

Incorporation of the regrouping algorithm in our CAD scheme resulted in a slight
improvement of the detection results. This effect might be caused by the the fact that ap-
plication of the regrouping algorithm reduced the number of lesions detected by multiple
regions, leading to better region based features. In addition, recombination of FPs re-
duces the number of FPs in the set, which might also have attributed to the improvement
in the detection performance. However, since the number of combinations is relatively
small compared to the total number of initial detections in the data set, this improvement
in detection performance was relatively small.

At its current stage of development, the regrouping algorithm is not able to establish
a link between initial detections on the lesion in half of the multiple region cases. The
major reason for the missed cases is that some lesions appear very diffuse on the mam-
mogram. This makes it more difficult for our algorithm to combine the initial detections.
Also for some lobular carcinomas, which are in general harder to find in a mammogram
than the more common ductal carcinoma, the algorithm failed to establish a link between
the initial detections. Next to the correct initial detection combinations, the algorithm
unfortunately also made 5 TP - FP combinations. The majority of these incorrect com-
binations were established as a result of unclear lesion boundaries, for instance when a
lesion is located inside the dense glandular tissue. In two cases, a region on an elongated
strand of tissue attached to the lesion, which was not annotated as being part of the lesion,
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Figure 4.8: FROC curves comparing the original detection results and the detection
results after application of the regrouping algorithm.
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was combined with the region on the actual lesion.
In order to improve the current regrouping algorithm a solution has to be found for

the diffuse lesions. It is not only very hard to establish correspondence in multiple views
for these diffuse lesions. Also once correspondence is established it is very difficult to
find a good feature description of the entire region. Another point of research might be to
look closer at the segmentation of the new regions found after regrouping. Segmentation
results might improve when changing settings for preferred region size and shape for
these larger regions in our dynamic programming algorithm.

4.5 Conclusions

We have developed a technique to regroup initial CAD regions to facilitate the final
classification of suspicious regions. The regrouping technique searches for detections
that belong to the same structure. To this end, it takes into account the distance between
the detections and the image structure along the path between the detections. When
correspondence is found, the two detections are replaced by a new detection in between
the initial detections. Our regrouping technique correctly regrouped the detections in
48 percent of the masses initially detected by multiple regions. Of the FP detections two
percent were combined, and the percentage of TP - FP combinations was one. The results
show an increase in detection performance, and a decrease in the number of incorrectly
linked regions in corresponding mammographic views.
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Chapter 5

Finding corresponding regions of
interest in mediolateral oblique
and craniocaudal
mammographic views 1

5.1 Introduction

To decrease the number of missed cancer cases during breast cancer screening, Computer-
aided Detection (CAD) systems have been developed. These systems are intended to aid
the radiologist by prompting suspicious regions. The benefit of CAD for the detection of
microcalcifications has been demonstrated by for instance Freer & Ulissey (2001). They
showed in a prospective study that the sensitivity of screening increased by 19.5 % by
using CAD. This effect was mainly due to the increased detection of microcalcifications.
Although some more recent studies also report improved detection due to computer aided
detection of masses (e.g. Cupples et al. (2005)), the effectiveness of computer aided de-
tection of masses is not undisputed. Many radiologists feel that the performance of CAD
for detection of masses should be improved to make it more useful.

Most development of CAD systems has been based on the analysis of single views.
To decrease the number of false positives and to improve consistency, there is a lot of in-
terest to develop CAD techniques that use multiple view information (temporal, bilateral
or two views of the same breast). Radiologists in breast cancer screening are trained to
use comparisons of the left and right breast to identify suspicious asymmetric densities.

1The content of this chapter has been accepted for publication in Medical Physics.
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Views from previous screening rounds are used to detect developing densities. It is also
known that screening with two mammographic views, mediolateral oblique (MLO) and
craniocaudal (CC), improves the detection accuracy of abnormalities in the breast, which
can be explained by the fact that two projections allow better estimation of conspicuity
of lesions and may reveal lesions hidden by glandular tissue in one of the projections
(Bassett et al. 1987; Thurfjell 1994; Blanks et al. 1999).

Such multiple view CAD techniques require a registration step to find correspond-
ing candidate regions in all available views. In literature some approaches have been
described to establish correspondence between multiple views. Timp et al. (2005) and
Sanjay-Gopal et al. (1999) developed an automated regional registration technique to
identify corresponding lesions in temporal pairs of mammograms. Karssemeijer & te Brake
(1998) and Lau & Bischof (1991) both created a mapping between the left and right
breast by using a set of control points defined on the skin line, in a method for asymme-
try detection. Highnam et al. (1998) used a model-based method to find a curve in the
MLO view which corresponds to the potential positions of a point in the CC view. Good
et al. (1999) reported a preliminary attempt of matching computer-detected objects in
two views by exhaustive pairing of the detected objects and feature classification. Paque-
rault et al. (2002) developed a two view matching method, for the combination of MLO
and CC information, which resulted in a correspondence score for each possible mass
pair. By combining this correspondence score with their single view detection score,
their detection results improved significantly.

In this paper we present a method to link potentially suspicious areas determined by
a CAD scheme in MLO and CC views. It is more difficult to establish correspondence
between MLO and CC views than for temporal image pairs, because the breast is com-
pressed in different ways. There is also lack of invariant landmarks. In practice, only
the nipple can be used as a reliable landmark. Radiologists use the distance to the nipple
to correlate a lesion in MLO and CC views. It is generally believed that this distance
remains fairly constant. We have tested this hypothesis in a previous study (van Enge-
land & Karssemeijer 2001), and found that in 79 percent of the cases the distance to the
nipple does not deviate more than 1.5 cm between both views. In the present study we
use an automatically determined nipple location to define an annular search area in the
other view. For all possible combinations of candidate regions, features that describe
the difference in the radial distance from the candidate regions to the nipple, gray scale
correlation between both regions and the mass likelihood of the regions are determined.
Next, a Linear Discriminant Analysis (LDA) classifier is used to give a correspondence
measure for every possible combination. For every region in the original view the region
in the other view with the highest correspondence score is selected as the corresponding
candidate region.

We intend to use the linking method to combine information extracted from MLO
and CC views in order to improve the mass detection results of our CAD scheme for
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masses. The idea is that the confidence that a CAD finding corresponds to cancer may be
increased when a finding is visible in both views. The suspiciousness of false positives,
on the other hand, may be decreased, because these are usually not correlated between
views. In this way we may also increase the number of cancers marked in two views,
which has recently been found to be very important in practice, as radiologists appear
to pay more attention to such marks (Gur et al. 2006; Nishikawa et al. 2006). Different
approaches may be chosen to use correspondences found between views in a detection
method. One way would be to add a multi view stage to the detection method in which
new estimates of the confidence of CAD findings are made based on the single view
classification and the obtained correspondence between views. Investigation of such
methods is outside the scope of this paper.

5.2 Methods

In this section we will first give a short overview of our single view detection scheme.
Sections 5.2.2 and 5.2.3 present the linking method, and Sec. 5.2.4 explains the evalua-
tion procedure and the used data set. We end this section by briefly describing a technique
to regroup suspicious regions marked by a CAD scheme (see Chapter 4). During the de-
velopment of multiple view techniques we have found that these are hampered by the
presence of multiple candidate regions on the same lesion or structure. The described
regrouping technique removes many of these multiple regions.

5.2.1 Single view detection

Our CAD scheme consists of the following steps (see Fig. 5.1):

• Segmentation of the mammogram into breast area, pectoral muscle, and back-
ground area,

• Initial detection step resulting in a likelihood image L1(x, y)

• Peak detection resulting in a number of suspect image locations,

• Region segmentation with dynamic programming using these locations as seed
points,

• Final classification step to determine the likelihood of malignancy L2(i) for each
region i.

These steps wills be described in more detail in the following paragraphs.
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Figure 5.1: Schematic overview of our single view CAD scheme. HereL1(x, y), the mass
likelihood, is a measure of suspiciousness for every location in the breast area, which is
obtained after application of a neural network classifier (NN1). And L2(i), referred to
as the likelihood of malignancy, is the final output of our single view detection scheme
for each region, obtained after application of a second neural network classifier (NN2).

Segmentation of the mammogram The first step in our CAD scheme is the segmentation
of each image into breast area and background, using a breast boundary segmentation
algorithm that was developed previously in our group. In the MLO views, part of the
pectoral muscle is visible, that needs to be segmented as well. To this end we use a
pectoral muscle segmentation algorithm, which is described in detail in Karssemeijer
(1998).

Initial detection step For each location inside the breast area a number of features are
calculated that represent tumor characteristics. These features are related to the presence
of spicules (Karssemeijer & te Brake 1996) and a central mass (te Brake & Karssemeijer
1999). A neural network (NN1) is used to classify each location using these features
and assigns a measure of suspiciousness to it, resulting in a so-called likelihood image
L1(x, y). This likelihood image is smoothed, and a peak detection is performed at one
scale. The peak detection algorithm visits every location in the likelihood image and
a peak is detected when the likelihood is above a certain threshold and there are no
other locations in the neighborhood (square neighborhood with size 6.4 x 6.4 mm) with
a higher likelihood value. This results in a number of suspect image locations. An
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algorithm searches for peaks that are located closer than 8 mm together, in order to
remove multiple candidate locations on the same lesion. If these multiple regions are
found the candidate location with the lowest likelihood value is removed.

Region segmentation The initial detection step results in a number of suspect image
locations. Each of the detected peaks is used as seed point for region segmentation,
based on dynamic programming (Timp & Karssemeijer 2004).

Final classification For each region, features are calculated that describe the position
of a region in the breast (for instance the distance to the pectoral and the skin), region
size, contrast, texture, compactness and acutance measures. A neural network (NN2) is
used to classify regions as true abnormalities and false positives based on these features.
We use a soft classification in which a likelihood of malignancy (L2) is determined.

5.2.2 Correspondence measures

We will describe the methods for the situation where the MLO view is studied and cor-
responding regions are sought in the CC view. In the other direction the procedure is
exactly the same, and thus in the following MLO can be replaced for CC and vice versa.

For every region in the MLO view a search area is defined in the CC view based on
the distance to the nipple. For every candidate region in the search area in the CC view,
features are calculated that compare both regions (joint features). These features are used
as input to a LDA classifier to discriminate between correct and incorrect links. Based
on the LDA output, for every region in the MLO view the most likely link with a region
in the search area of the CC view is sought. In the following paragraphs every step will
be described in more detail.

definition of search area

Radiologists use the distance to the nipple to correlate a lesion in the MLO and CC view.
It is generally believed that this distance remains fairly constant. Therefore, we use
this distance to define an annular search area in the CC view. For all points within the
search area in the CC view (see Fig. 5.2), the distance to the nipple is comparable to the
distance between the candidate region and the nipple in the MLO view. To set the search
area width, we used an annotated database containing 373 MLO/CC image pairs with a
mass lesion that is visible in both views. For a lesion in the MLO view the corresponding
lesion in the CC view is within the search area if the radial distances in both views do
not deviate too much, i.e. the difference in radial distance to the nipple is less than half
the search area width. Figure 5.3 presents the percentage of lesions in the CC view that
is within the search area for varying width. Based on this, we set the width of the search
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area for all cases to 48 mm. The nipple location was roughly estimated using a simple
approach in which we assumed that the nipple is the point on the skin contour with the
largest distance to the chest or the pectoral muscle (for the MLO views).

MLO CC

48 mm

Figure 5.2: Definition of the search area in the CC view. The estimated nipple location
is indicated by the white dot in both views.

calculation of joint features

Features for which the value in one view can be easily predicted from the value in the
other view will be good features to establish correct links. Examples of such features
are those that are invariant with respect to compression and positioning, and have high
correlation between the values in both views. The following paragraphs describe the
features that we investigated for this purpose.

* distance to the nipple Next to using the distance to the nipple for the definition of
the search area, the distance to the nipple is also used as a joint feature. In a previous
study, we have tested the assumption that the distance between a lesion and the nipple
remains fairly constant between views (van Engeland & Karssemeijer 2001). We showed
that there is a high correlation between the distance between the lesion and the nipple in
MLO and CC views (correlation coefficient 0.90). The distance feature is defined as
follows:
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Figure 5.3: Percentage within the annular search region for varying search area size.

distance =
|dmlo − dcc|

w
, (5.1)

where dmlo is the distance between the region and the nipple in the MLO view, dcc is
the distance between the region and the nipple in the CC view, and w is the width of the
search region. In Fig. 5.4 we have plotted the distance from a lesion to the nipple in the
CC view against the distance in the MLO view for all lesions in the used data set.

* angle Although the correlation of the angular location in both views is much lower
than that of the radial location (van Engeland et al. 2002), there is some correlation since
the difference between the MLO and CC projection angle is 45 deg. This is shown in
Fig. 5.4. Therefore, the angular location of a region is also tested as a joint feature (see
Fig. 5.5). This feature is defined as follows:

angle = |amlo − acc|, (5.2)

where amlo is the angular location of a region in the MLO view, and acc is the angular
location of a region in the CC view.
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Figure 5.4: (a) Distribution of the values of the distance feature in MLO and CC views.
(b) Distribution of the values of the angle feature in MLO and CC views.
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Figure 5.5: Schematic representation of both mammographic views, indicating also the
angular a and radial d location.

* gray scale correlation Gray scale template matching was used by both Sanjay-Gopal
et al. (1999) and Timp et al. (2005), who developed a regional registration technique
for the registration of lesions in temporal pairs of mammograms. We implemented this
registration measure as a feature for linking MLO and CC regions.

First a mass template is created which consists of all pixels enclosed by the contour
of the region, and a band of pixels around the contour (Fig. 5.6). The width of this band
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(a)

in
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(b)

Figure 5.6: (a) Image showing the template used for gray scale template matching. (b)
Image showing the inner and outer template used for histogram correlation.

was equal to the maximum distance to the contour of all points inside the contour. We
placed this template on a candidate region c in the CC view with center of mass of the
MLO template on the peak in the likelihood image of the candidate region in the CC
view, and calculated Pearson’s correlation measure:

gray scale correlation =

∑

x,y(gmlo(x, y) − gmlo)(gcc(x, y) − gcc)
√

(
∑

x,y(gmlo(x, y) − gmlo)2)(
∑

x,y(gcc(x, y) − gcc)2)
,

(5.3)
where (x, y) is the location inside the MLO mass template, gmlo(x, y) is the pixel value
in the MLO mass template at location (x, y), gcc(x, y) is the pixel value of the candidate
region c at the same relative location. The average pixel values in the MLO mass tem-
plate and the candidate region are given by gmlo and gcc. In a recent study Filev et al.
(2005) compared twelve different similarity measures for the task of template matching
in temporal mammogram pairs. Pearson’s correlation coefficient was one of the measures
that performed best.

* polar registration The gray scale template matching described above has been used
to find corresponding regions pairs in temporal mammograms. The problem of finding
corresponding regions in MLO and CC views is different, however, since both views
are acquired under compression at different angles. This, together with the fact that the
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breast is a soft-tissue structure which is inhomogeneous, anisotropic and compressible,
makes it very difficult to predict how the shape of the lesion on both projections will
correlate. To compensate for this we have implemented a registration measure deduced
from the standard template matching algorithm. Here the regions are transformed to a
polar coordinate system with the center of mass of the regions as center. Then Pearson’s
correlation measure in the polar representation is calculated, allowing also a rotation φ
of the CC region with respect to the MLO region. The resulting registration feature is
described as:

polar correlation = max(gray scale correlation(φ)). (5.4)

In Fig. 5.7 an example is given of a candidate region in a MLO view and the corre-
sponding candidate region in the CC view, and the gray scale correlation as a function of
the rotation angle.

* histogram correlation To determine the histogram correlation between the region
in the MLO view and the candidate region in the CC view, two templates are used,
one containing the inside of the region and one containing a band of pixels outside the
contour (see Fig. 5.6). To correct for differences in exposure and the local density of
the backgrounds in which the lesions are embedded, for both the MLO mass template
and the candidate region the cumulative distribution functions are obtained. From these
cumulative distribution functions a look-up table of pixel values is determined that ap-
proximately maps pixel values of the MLO mass template to pixel values of the candidate
region. Next, after application of the look-up table, the pixel value histograms for both
regions are obtained. The histogram correlation (HC) is then calculated as:

HC = 1 −
1

2

∑

g

|
Hmlo[g]

Tmlo
−
Hcc[g]

Tcc
|, (5.5)

where g is the pixel value, Hmlo is the histogram of the region in the MLO view, Hcc

is the histogram of the candidate region in the CC view, and Tmlo and Tcc are the total
number of counts in the MLO respectively the CC histogram.

The used joint feature is described as:

histogram correlation = mean(HCin, HCout), (5.6)

with HCin the histogram correlation for the inner template, and HCout the histogram
correlation for the outer template.

* mass likelihood We refer to the output of the first neural network classifier in our
detection scheme as the mass likelihood (L1 in Fig. 5.1). From this mass likelihood
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Figure 5.7: An example of a region and the corresponding region in the other view, and
the gray scale correlation as a function of the rotation angle of the candidate region in
the CC view.
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two joint features are derived, the mass likelihood of the region in the CC view (like-
lihood other view), and the difference in mass likelihood of the regions in both views
(likelihood difference).

* region size The difference in size of the segmented regions in both views is also
tested as a joint feature:

region size = |RSmlo −RScc|, (5.7)

with RSmlo and RScc the size of the segmented region in the MLO view, respectively
the CC view. Since the MLO and the CC view are different projections of the same
mass, we do not expect that the correlation between both sizes is high, however there
might be a weak correlation.

* contrast Finally, the use of a contrast feature for linking is tested. The feature that
describes the difference in contrast of the regions in both views is described as:

contrast difference = |contrastmlo − contrastcc|, (5.8)

with contrast defined as

contrast =
(E(I) − E(O))2

σ(I) + σ(O)
. (5.9)

Here E(I) and E(O) are the average intensities inside and outside the contour, and the
square of the difference between the average intensities are divided by the sum of the
standard deviations. The outside region consists of all pixels outside the segmentation
with a distance of less than 0.6R from the contour, where R is the effective radius (R =
√

area of the inside region
π ) of the inside region.

5.2.3 classification of region combinations

The features described above are used as input into a LDA classifier to discriminate be-
tween correct and incorrect region pairs. A correct region pair is a true positive detection
linked with a true positive (TP) detection in the other view. Incorrect region pairs are
TP - false positive (FP) combinations. To select the best features for linking, forward
feature selection (based on the area under the Receiver Operating Characteristic (ROC)
curve, Az) is used. To train the classifier only candidate region pairs are used where the
region in the MLO and/or CC view is a lesion, this means only TP - TP, TP - FP and
FP - TP region combinations. The classifier is tested using 50 % cross-validation. We
refer to the resulting LDA classifier output as the correspondence score. Application of
the LDA classifier thus results for every candidate region in the MLO view in a list of
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possible links in the CC view with accompanying correspondence scores (see Fig. 5.8).
We investigated the following three methods to obtain the final links of candidate regions
from the correspondence score tables:
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Figure 5.8: Table of correspondence scores between regions in the MLO and CC view.

I) determine most likely link for every candidate region For every detection in the
MLO view the most likely link in the CC view is selected, that is the one with the highest
correspondence score.

II) one-to-one correspondence This method assumes that a region can only be linked
once to another region, so-called one-to-one correspondence. It starts with selecting the
most likely combination of candidate regions from the correspondence score table, for
instance between region c0 from the CC view and region m1 from the MLO view. For
the next step all combinations with either c0 or m1 are excluded. The process continues
until all MLO and/or CC regions are used.

III) one-to-one correspondence - maximize total correspondence score This meth-
ods also assumes one-to-one correspondence, however it searches for the combination
of candidate regions so that the total of the correspondence scores selected is maximal.
We used the Linear Assignment Problem (LAP) algorithm described by Jonker and Vol-
genant (Jonker & Volgenant 1987) for this purpose.

5.2.4 Performance testing

The initial detection step in our CAD scheme results in a number of suspect image loca-
tions. The number of image locations that is taken into account for further evaluation is
determined by a threshold value for the likelihood. Here we used a relative low threshold,
resulting in a relative large number of candidate regions, however, for each view we only
take into account at most ten suspicious locations. We tested the effect of the number of
candidate regions in the other view on the performance. The performance of the linking



68 FINDING CORRESPONDING REGIONS IN MLO AND CC VIEWS

algorithms are compared by counting the number of TP - TP links, and the number of TP
- FP links established.

The used data set consisted of 412 cases, containing 1648 images. All cases had
four-view mammograms. In every case there was a mass lesion visible in at least one
of the views. The mammograms were taken from two annotated databases containing
cases from the Dutch breast cancer screening program. The annotations were made by
or under supervision of an expert radiologist. Both databases contained mammograms
obtained at three points in time, the diagnostic mammogram at time of detection and the
mammograms taken in the two screening rounds prior to detection (referred to as prior
and reference mammogram). The diagnostic mammograms were either clinical mam-
mograms of the interval cancer cases or screening mammograms of the screen detected
cases. The time interval between subsequent screening mammograms of each case is two
years on average. In this study, the majority of the mammograms used were diagnostic
mammograms, and a small percentage were prior mammograms.

The mammograms from the first database were digitized with a Lumisys 85 digitizer
at a pixel resolution of 50 µm, and averaged down to a resolution of 200 µm, maintaining
the original gray value depth of 12 bits. The mammograms from the second database
were digitized with a Canon CFS300 scanner with the same resolution and gray value
depth.

Table 5.1: The used data set.
set no. images no. cases

database 1 diagnostic 740 185

database 1 prior 112 28

database 2 diagnostic 744 186

database 2 prior 52 13

total 1648 412

5.2.5 Removing multiple candidate regions on the same lesion

During the development of multiple view techniques we have noticed that they are ham-
pered by the phenomena that mass lesions are sometimes detected by multiple candi-
date regions. In the previous chapter we have developed a technique to regroup initial
CAD locations to facilitate the final classification of suspicious regions (van Engeland
& Karssemeijer 2005). This regrouping technique searches for candidate locations that
belong to the same structure. Therefore, it takes into account the distance between the
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locations and the image structure along a path between the locations. When correspon-
dence is found, the two locations are replaced by a new location in between the initial
candidate location. In this paper we investigate further the effect of using this algorithm
prior to linking.

5.3 Results

Table 5.2: Link results of the LDA classifier for five candidate regions in the other view.
The features that were selected by forward feature selection were: likelihood other view,
polar correlation, distance, histogram correlation, and contrast difference.

features Az number TP - TP links

distance 0.743 481 (55 %)

angle 0.510 261 (30 %)

gray scale correlation 0.725 562 (64 %)

histogram correlation 0.606 541 (62 %)

polar correlation 0.782 601 (69 %)

likelihood other view 0.826 681 (78 %)

likelihood difference 0.609 456 (52 %)

region size 0.510 249 (28 %)

contrast difference 0.501 256 (29 %)

We used forward feature selection to find the optimal set of joint features. To give an
impression of the importance of the different features for the linking method, Table 5.2
presents the individual performances. It can be seen that the mass likelihood of the
candidate region in the other view is a good indicator for the correctness of a link. This
was expected since the classifier was trained on TP - TP and TP - FP combinations,
and the TP candidate regions are more likely to have a higher mass likelihood value.
The distance to the nipple was also an important joint feature. An interesting result that
follows from Table 5.2, is that the polar gray scale correlation measure performs also
very good, showing a higherAz than the standard gray scale correlation. Region size and
contrast appeared to be less important correlation features. The forward feature selection
procedure resulted in the selection of five joint features, namely likelihood other view,
polar correlation, distance, histogram correlation, and contrast difference. Using these
features in the LDA classifier the Az value for the link classifier was 0.92.
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Figure 5.9: Distributions of the correspondence score for two types of region combina-
tions.

After application of the LDA linking scheme using the selected features, for every
candidate region in the MLO view a list of possible links in the CC view with accompa-
nying correspondence scores was obtained. Figure 5.9 presents the outputs of the LDA
classifier for two types of region combinations.

Table 5.3: Link results for different combination methods. The second half of the ta-
ble presents the link results after application of the regrouping technique described in
Sec. 5.2.5.

method TP - TP TP - FP

most likely link for every candidate region 707 (81%) 162 (19%)
one-to-one correspondence 531 (61%) 335 (39%)
one-to-one correspondence - maximize total score 415 (47%) 451 (53%)
after regrouping technique
most likely link for every candidate region 699 (82%) 155 (18%)
one-to-one correspondence 563 (66%) 289 (34%)
one-to-one correspondence - maximize total score 406 (47%) 444 (53%)

We tested three methods to obtain the final region links from the correspondence
score tables. Table 5.3 presents the results for the three methods. It can be seen that
selecting for every region in the MLO image the most likely link in the CC image works
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better than the other two methods, which require a one-to-one correspondence between
the regions in the two views. 82 % of the TP detections were correctly linked to the TP
detection in the other view. In total there were 872 TP regions in the data set. For some
cases there was no TP detection in one of the views, for instance, when the lesion was
located near the pectoral muscle in the MLO view. Since the pectoral muscle is often not
visible in CC views, it occurs often that these lesions are not visible in the CC view. On
the other hand, for other cases there was more than one TP detection in the MLO and/or
CC view. Because not all cases contained a TP region in both views, the maximum
performance that could have been achieved is 92 %. Table 5.3 also presents the results of
linking after application of the technique to regroup the initial candidate regions. For the
data set used, regrouping only gives gives a very small increase in the link performance.
When looking at the number of cases with incorrect links (TP - FP combinations), the
effect of the regrouping technique is more clear. Before regrouping there where 137
(out of 412) cases containing a TP - FP combination, and after regrouping this number
reduced to 129 cases.

We also tested the effect of the number of candidate regions in the other view. Fig-
ure 5.10 shows that the fraction of correct links increases with the number of candidate
regions in the other view until five regions per view, for more than five candidate regions
the performance stays more or less constant.

We investigated the causes for missed links, and present the results in Table 5.4.
When a rather subtile lesion was incorrectly linked to a FP region in the other view
we counted this as the first error cause presented in the table. This was because the
lesion appearance was in these cases actually not very different from the appearance of
a glandular tissue part. The fourth cause of errors mentioned, were the cases were the
lesion was clearly visible in both views for an observer, however the appearance was
very different on both views. In Fig. 5.11 an example of a MLO/CC image pair is given
where the true positive detections in the CC view are incorrectly linked to regions in the
MLO view. For this case the incorrect links are mainly due to the large difference in
appearance of the lesion in both views. We also found that for the prior mammograms
the percentage of correct links was lower than for the diagnostic cases (69 % correct
against 83 % correct). The lesions in these mammograms are less obvious since they
were detected by the radiologists in retrospect.

5.4 Discussion & conclusions

We have presented a method to link candidate regions determined by our CAD scheme
in MLO and CC projections. This method uses a LDA classifier to discriminate between
correct and incorrect links, based on a set of link features. This classifier results for
every possible combination of candidate regions in a correspondence score. Using an
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Figure 5.10: The fraction of correct and incorrect links for varying number of regions in
the other view. Here we tested for every view containing a lesion whether this lesion was
correctly linked with the lesion in the corresponding view. The dotted line indicates the
fraction of links that would have been found if all detected true positives were correctly
linked.

annotated database we have shown that the method was able to establish a correct link
between the true positive regions for 82 % of the TP regions with the TP region in the
other view.

In Sec. 5.2.3 we have described three methods to obtain the final links of the candidate
regions from the correspondence score tables. We found that allowing only one-to-one
correspondences (both methods II and III) between candidate regions in corresponding
view decreases the number of correct TP-TP links considerably (see Table 5.3). This may
partly be explained by problems related to lesions marked by more than one candidate
region. The main disadvantage of one-to-one correspondence, however, lies in the fact
that sometimes the correspondence of a true positive with a false positive is stronger
than the correspondence with the actual true positive. By just using the most likely
link for every region the true positives may still be linked, whereas using one-to-one
correspondence this is not allowed. Using the LAP algorithm appears to have worse
performance. This suggests that maximizing the total correspondence score is not a good
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Table 5.4: The most important causes for link errors.

similar region at same distance from nipple 33 %

large distance to nipple difference 33 %

multiple regions on the same lesion 5 %

lesion appearance very different in both views 3 %

idea because generally false positives in MLO and CC views do not correspond.
The majority of the incorrect links were caused by the fact that there was a similar

region at about the same distance from the nipple and that the distance between the lesion
and the nipple differed too much between both views (see Table 5.4). The latter could,
for instance, be due to suboptimal positioning of the breast. Other reasons were multiple
regions on the same lesion, and a strong difference in appearance between views. To
reduce the effect of multiple regions per lesion we investigated application of a method
that we developed previously to regroup initial candidate regions. The effect of this
method is small on the data set used in the current study. This might be due to the fact
that we used a data set that mainly contained small lesions, which are less likely to be
detected by multiple candidate locations. The percentage of lesions that was prompted
more than once by our CAD system is twice as low in the current study (10 percent
against 20 percent in the referred study (van Engeland & Karssemeijer 2005)).

Even if lesions appear rather similar visually this may be difficult to determine for an
automatic method. In particular if features are used that strongly rely on lesion segmenta-
tion similarity may be hard to establish, because segmentation of lesions is a notoriously
complex problem. In this work we tried to avoid the use of features that are strongly
dependent on region boundaries. Furthermore, we by using a state-of-art segmentation
method (Timp & Karssemeijer 2004) we tried to eliminate variability due to inaccurate
segmentation as much as possible.

One of the features that was selected for the link classifier was the difference in
distance between the region and the nipple in both views. To calculate this distance
we used automatically determined nipple locations, using a simple algorithm in which
we assumed that the nipple is the point on the skin contour with the largest distance to
the chest or pectoral muscle. To determine the effect of the automated nipple detection
method on the link results, for the subset database 1 diagnostic we also determined the
number of correct links when using manually indicated nipple locations. For this subset
the percentage of correct links was 85 % with the manually determined nipple locations
and 84 % with the automatically determined nipple locations. Based on these results we
assume that the nipple detection method had little influence on our final link results.

It is very difficult to predict the shape of a lesion in the CC view from the shape of
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Figure 5.11: Example of a MLO/CC image pair showing the single view candidate re-
gions. For this case our algorithm was not able to establish correct links between the TP
detections in the MLO view and CC view. The white dashed line represents the annota-
tion of the lesion made by the radiologist. The link results of our algorithm were:
1 (in CC) ↔ 1 (in MLO), 2 ↔ 3, 3 ↔ 1, 4 ↔ 2, 5 ↔ 2.

the lesion in the MLO view. However, if lesions are somewhat elongated or irregular,
this is usually seen in CC and MLO views, but orientation is different in general. There-
fore we decided to implemented a template matching algorithm in which we also allow
rotation. The resulting polar gray scale correlation measure proved to be a good feature
to discriminate between correct and incorrect region combinations (see Table 5.2).

There are two studies in literature describing the correlation of MLO and CC views.
Highnam et al. (1998) used a model-based method to find the curve in the MLO view
on which a location in the CC view may be mapped. They demonstrated with a data
set of 32 cases that the average minimum distance between this curve and the actual
corresponding position was 6.48 mm. However, assumptions on the parameters and the
deformation of a compressed breast had to be made, and to our knowledge further eval-
uation of the model has not yet been presented. Good et al. (1999) reported an attempt
of matching computer-detected objects in two views. Their study was similar to ours.
They also demonstrated the feasibility of identifying corresponding objects (Az = 0.82)
in two views by exhaustive pairing of the detected objects and feature classification using
a database of 60 MLO/CC pairs containing 38 masses. The features they used for linking
were related to location, contrast, region size and boundary complexity. Our ROC evalua-
tion resulted in a higherAz value of 0.92. Results suggest that the improved performance
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is due to the use of the region likelihood and the gray scale correlation measures. When
removing the region likelihood feature and the gray scale correlation features from our
selection we found that the number of correct links decreased with 10 % and 3 %.

A preliminary investigation indicates that it is possible to improve mass detection re-
sults of our CAD scheme using the described method to link candidate regions in MLO
and CC views. An application of the method may be found in improvement of the presen-
tation of CAD results on a mammographic workstation. Studies suggest that radiologists
are less likely to ignore prompts on true positives when CAD marks a lesion in both
views (Gur et al. 2006; Nishikawa et al. 2006). The proposed method cannot be used
directly, however, to increase lesions prompted in two views without increasing the num-
ber of false positives. To overcome this limitation more elaborate techniques are needed
to combine information from two views in a CAD scheme. The method presented here
to establish correspondence between regions should be regarded as one of the key com-
ponent of such a scheme.
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Chapter 6

Using information from two
mammographic views to improve
mass detection results 1

6.1 Introduction

In the previous chapter we presented a method to link potentially suspicious areas deter-
mined by our CAD scheme in mediolateral oblique (MLO) and craniocaudal (CC) views.
Joint features for all possible combinations of candidate regions in both views were cal-
culated. These features described the difference in radial distance from the candidate
regions to the nipple, gray scale correlation between both regions, and the mass likeli-
hood of the regions. Next, a Linear Discriminant Analysis (LDA) classifier was used to
give a correspondence measure for every possible combination. Finally, for every region
in the original view, the region in the other view with the highest correspondence score
was selected as the corresponding candidate region. Using an annotated database we
have shown that this linking method was able to correctly link 82 % of the true positive
(TP) regions in MLO and CC views.

In this chapter we describe a method that uses the obtained correspondences to im-
prove the computer-aided detection of masses. In literature some approaches have been
described to establish correspondence between multiple views. However, few studies
have been described that use this correspondence to improve detection or classification
results. Paquerault et al. (2002) developed a two view matching method which results in
a correspondence score for each possible mass pair. By combining this correspondence

1The content of this chapter has been submitted to Medical Physics.
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score with their single view detection score, their detection results improved significantly.
Hadjiiski et al. (2001b) developed a method for the interval change analysis of masses
to improve their classification accuracy between benign and malignant. Recently, Timp
& Karssemeijer (2006) presented a study on interval change analysis. They used a re-
gional registration technique and calculated temporal features to improve the detection
performance.

To combine information from MLO and CC views, we investigate adding another
classifier to our CAD scheme. As input to this classifier features that depend on com-
bined information from MLO and CC views are used. The final detection performance
is compared with our single view detection performance using Free-response Receiver
Operating Characteristic (FROC) analysis.

6.2 Methods

In the previous chapter we described our single view detection scheme (see Sec. 5.2.1).
To this scheme we added another classifier, which we will refer to as the two view clas-
sifier (NN3 in Fig. 6.1). As input to the this classifier we have investigated both single
view features and two view features. The two view features are the likelihood of ma-
lignancy of the corresponding region in the other view, and a number of measures that
describe the resemblance between both regions. We will describe the used features in
Sec. 6.2.1, and the two view classifier in Sec. 6.2.2. Finally, Sec. 6.2.3 describes the
evaluation procedure and the used data set.

6.2.1 Features for two view classifier

As input to the two view classifier fifteen features are investigated (see Table 6.1). The
two view features were described in detail in the previous chapter (see Sec. 5.2.2 and
5.2.3). We will give a short description of the used single view features, which originate
from the first and second step of our CAD scheme, in the following paragraphs.

* spiculation features With respect to the detection of mass lesions in mammograms
there are two important lesion characteristics, one is the presence of spicules and the
other is the presence of a central mass. Our spiculation features are based on the idea
that stellate lesions show a pattern of lines directed towards the center of a lesion. In
the first step of our CAD scheme we use two spiculation features. The first feature is a
normalized measure for the fraction of image locations with a line orientation directed
towards the center. The second feature calculates to what extent the locations with a line
orientation towards the center are equally distributed in all directions. We will refer to
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Figure 6.1: Schematic overview of our CAD scheme. Here L1(x, y) is a measure of
suspiciousness for every location in the breast area (mass likelihood). L2(i) is the final
output of our single view detection scheme for each region (likelihood of malignancy).
And L3(i) is the final output of our two view detection scheme.

these features as f1, respectively f2. Details can be found in Karssemeijer & te Brake
(1996).

* focal mass features For the detection of masses we use a similar approach as for the
detection of spicules. Instead of determining the line orientations, we now calculate the
gradient orientation at each location in the image. If a mass is present, the majority of
image locations in a neighborhood of the center of the mass will have a gradient orienta-
tion towards the center. We derive two features from the calculated gradient orientations.
The first feature g1 is a normalized measure of the fraction of image locations with an
intensity gradient pointing towards the center. The second feature g2 calculates whether
these locations occur in all directions of the center location. Details can be found in
te Brake & Karssemeijer (1999).

* mass likelihood In the first step of our CAD scheme, the above described spiculation
and mass features are used as input to a 3-layer backpropagation neural network (NN1 in
Fig. 6.1) trained on known abnormalities, as was described in Sec. 5.2.1 of the previous
chapter. Application of this classifier results in a mass likelihood measure (L1 in Fig. 5.1),
which assigns a high value to suspicious locations.
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Table 6.1: The features we investigated for the two view classifier. The first column
represents the features that originate from our original single view CAD scheme, and
in the second column two view features are presented. The correspondence score is the
output of the LDA classifier that was used to discriminate between correct and incorrect
region combinations.

single view features two view features
- spiculation features (f1,f2) - correspondence
- focal mass features (g1,g2) - difference in distance to nipple (distance)
- mass likelihood (L1) - gray scale correlation
- contrast measures - polar correlation
(contrast1, contrast2) - histogram correlation

- region size - likelihood of malignancy single view of
- likelihood of malignancy corresponding region (L2 other view)
single view (L2)

* region size Another feature that is used in the second step of our CAD scheme is the
region size. This is the size of the segmented region, obtained after segmentation using
dynamic programming (Timp & Karssemeijer 2004).

* contrast measures In the second step of our single view CAD scheme a number
of contrast features are used. For the two view classifier two contrast measures are in-
vestigated. The first contrast measure is the difference in mean pixel value (which is
linear with the optical density) between pixels inside (E(I)) and pixels in an area outside
(E(O)) the segmentation,

contrast1 = E(I) − E(O). (6.1)

The area outside the segmentation consists of all pixels with a distance of less than 0.6R

from the contour, where R is the effective radius (R =
√

area of the inside region
π ) of the re-

gion. The second contrast feature is the square of the difference between the mean pixel
value inside and outside the contour, divided by the sum of the standard deviations of
both areas,

contrast2 =
(E(I) − E(O))2

σ(I) + σ(O)
. (6.2)

* single view likelihood of malignancy Next to the classifier output of the first step,
L1, also the final output of our single view CAD scheme, L2, is investigated as input to
the two view classifier.
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6.2.2 Two view classifier

Application of the linking algorithm results for every region in a corresponding region
in the other view with accompanying correspondence score. If there is no corresponding
link, the correspondence score and other two view features are set to zero.

To select the features to be used in our two view classifier, a Receiver Operating
Characteristic (ROC) analysis is performed. For this purpose a LDA classifier is used.
The optimal set of features is selected, using 50 % cross-validation, based on the area
under the ROC curve (Az) using a forward selection algorithm. To this end, a database
of annotated cases is used, which is described in the following section.

The two view classifier is a 3-layer neural network (NN3, in Fig. 6.1), trained with
backpropagation and three hidden nodes. The input to this classifier are the features
selected by the ROC analysis. Just as for the single view scheme, the output of this
classifier is a likelihood of malignancy for every region.

6.2.3 Evaluation

Our two view detection scheme is evaluated on a data set containing 412 abnormal cases,
and 537 normal cases. The abnormal cases are the same cases that were used in the
previous chapter for evaluation of the linking algorithm (see Table 5.1). Again all cases
have four-view mammograms. The set of normal cases were taken from the same two
databases of mammograms that were used for the selection of abnormal cases. The
normal cases do not include benign lesions, and were all verified to be normal by an
experienced radiologist.

Table 6.2: The data set that was used to test the two view classifier.

set no. images no. cases

database 1 normal 140 35

database 2 normal 2008 502

normals 2148 537

database 1 diagnostic 740 185

database 1 prior 112 28

database 2 diagnostic 744 186

database 2 prior 52 13

abnormals 1648 412

The two view classifier is tested using crossvalidation with 95 percent training and
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five percent testing. The performance of the two view classifier is compared with our
original detection performance using FROC analysis and we present both an image and
a case based evaluation. In the case based evaluation, a case is by definition regarded as
a true positive (TP) case if in at least one of the two views the lesion is detected by our
CAD scheme.

Both the output of our single view and our two view CAD scheme are standardized
using only the images from the normal cases. To this end, we compute for every region
the number of normal regions per image with values lower than that of the current region.
We refer to this as the normality score. So, in other words, this is the frequency of
occurrence in normal mammograms of regions that are at least as suspicious as the region
at hand.

In the previous chapter we described three ways to obtain the final combinations of
candidate regions from the correspondence score tables (Sec. 5.2.3). For a maximum of
five regions per view, the effect of these linking methods (Sec. 5.2.2) on the two view
detection results is also investigated.

Finally, we prepared a data set which contained only normals and cases with correctly
linked TP regions (where the regrouping technique was used before linking). Also for this
data set the performance of the two view classifier and the original single view detection
performance are compared.

6.3 Results

Using forward feature selection, we determined the optimal set of features for our two
view classifier. To give an impression of the importance of the different features for use
in the two view classifier, Table 6.3 presents the individual feature performances. The
output of our single view CAD scheme L2 was the first feature that was selected by
the feature selection algorithm. The features that were selected next were all two view
features, namely correspondence, polar correlation, L2 other view, distance, and
histogram correlation.

We compared the performance of the two view classifier with our original CAD per-
formance using FROC analysis. The result of the image based evaluation is presented in
Fig. 6.2, and shows an improvement when using the two view classifier. For instance, at
a false positive rate of 0.1 FP/image the image based sensitivity increases from 52 % to
61 %. In the case based evaluation, however, we found no improvement.

To present the effect of the two view classifier in another way, in Fig. 6.3 and 6.4
the normalized classifier outputs of the single and the two view classifier are compared
for both TP and FP regions. In the histogram for the TP regions (Fig. 6.3), a shift of the
normality scores to the left can be seen. The negative values in the histogram correspond
to TP regions where the normality score was decreased by the two view classifier, i.e.
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Table 6.3: Az values for the LDA classifier for the single and two view features. Us-
ing forward feature selection the following features were selected: L2, correspondence,
polar correlation, L2 other view, distance, and histogram correlation.

features Az

single view features

f1 0.547

f2 0.594

g1 0.753

g2 0.774

L1 0.837

region size 0.737

contrast1 0.795

contrast2 0.750

L2 0.899

two view features

L2 other view 0.765

distance 0.619

gray scale correlation 0.676

histogram correlation 0.626

polar correlation 0.742

correspondence 0.826

they have become more suspicious. This is consistent with the improved FROC curve
presented in Fig. 6.2. In the case based evaluation, for every case the minimum normality
score of the TP regions in the MLO and CC view was used. Here the shift to the left
is no longer visible. Figure 6.4 shows the effect of the two view classifier on the FP
regions, where the FP regions are sorted into four groups based on the original (single
view) normality score. For the relatively suspect false positives (normality score > 0.1
& < 1.0) the histogram shows a shift to the right (they are found less suspicious by
the classifier). However, part of the less suspicious regions (normality score > 1.0) are
upgraded by the two view classifier.

In Figure 6.5 the single view detection results are compared with the two view de-
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Figure 6.2: Single view and two view mass detection results (image based FROC
evaluation). The following features were used as input: L2, correspondence,
polar correlation, L2 other view, distance, and histogram correlation.

tection results for different linking methods. It is shown that the improvement of the
detection results by the two view classifier is highest when using linking method I. In
Sec. 5.2.3 it was presented that this method, where for each region combinations with all
candidate regions in the other view were possible, performed best. The number of cor-
rectly established TP - TP regions links was 25 % higher than for the other two methods,
which assumed one-to-one correspondence.

Finally, Fig. 6.6 presents the results of the FROC analysis when using the part of the
data set with cases in which the TP regions were correctly linked. Here, both the image
and case based evaluation show an improvement by application of the two view classifier.

6.4 Discussion & conclusions

We have presented a method to combine information from MLO and CC views in our
CAD scheme to improve detection results. A two view classifier was added to our single
view CAD scheme. The input to this two view classifier was a feature vector containing
the likelihood of malignancy of the region, the likelihood of malignancy of the corre-
sponding region in the other view, and a number of features that describe the resemblance
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Figure 6.3: Histograms of difference between normality scores before and after applica-
tion of the two view classifier for true positives per image and per case.

between the both regions. In order to obtain region correspondences between regions in
MLO and CC views we used an algorithm that was described in the previous chapter.
The output of the two view classifier was a likelihood of malignancy for every region.
Using FROC analysis, we showed that our detection results improve for the image based
FROC evaluation when using two view information (see Fig. 6.2).

In the case based evaluation we found no improvement. It might be that lesions that
were found more suspicious after application of the two view classifier were already very
suspicious in the other view. Consequently, in the case based evaluation the sensitivity
for a certain false positive level did not change. Therefore, this might be an explanation
of the fact that the case based performance did not change. As can be seen in Fig. 6.3
the positive effect of the two view classifier on the malignancy score of the TP regions is
not visible in the case based evaluation. On the contrary, we see a small negative effect.
Figure 6.4 shows that the effect of the two view classifier on the FP regions also has a
positive effect on the performance. However, it seems that this benefit is canceled by
the negative effect on the TP regions in the case based evaluation. This effect can be
seen more clearly when calculating the sum of differences of the normality scores of the
TP regions before and after application of the two view classifier. In the image based
evaluation this sum of differences is 38.4 against -38.9 in the case based evaluation.
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Figure 6.4: Histograms of difference between normality scores before and after applica-
tion of the two view classifier, for different groups of false positives.
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Figure 6.5: Image based evaluation for single view and two view detection using different
linking methods, with I,II and III referring to the linking method described in Sec. 5.2.3.

For the two view classifier it is important that the number of incorrect links between
a TP region in one view and a FP region in the other view is as low as possible. This can
be seen in Fig. 6.5, where we compared the different linking methods. Here the use of the
linking method with the highest percentage of correctly established TP - TP region links
gave the highest increase in detection performance. This can also be seen in Fig. 6.6,
where we present the results of the two view classifier on the subset of cases with correct
TP - TP region links. Here also the mass detection results in the case based evaluation
improved.

To our knowledge, the only study presented so far on the use of MLO and CC infor-
mation to improve detection results is that of Paquerault et al. (2002). They developed
a two view matching method which results in a correspondence score for each possi-
ble mass pair. By combining this correspondence score with their single view detection
score, their classification results also improved significantly. Their image based detection
sensitivity was found to improve from 62 % with a one view detection scheme to 73 %
with their two view scheme, at a false positive rate of 1 FP/image. The corresponding
case based detection sensitivity improved from 77 % to 91 %. These results seem to be
in contradiction with our results. Figure 6.2 shows that at the false positive level of 1
FP/image the sensitivity of our scheme is improved only very slightly by using two view
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Figure 6.6: Image based evaluation for single view CAD and two view after removing
incorrect links.

information (from 82 % to 83 %). This requires further investigation. Unfortunately, in
the paper by Paquerault et al. no information was given about the percentage of correctly
established links.

Our detection results mainly improved for operating points with high specificity (low
number of false positives per image) in the FROC curve. For instance at a false positive
rate of 0.1 FP/image, the image based sensitivity increased from 52 % to 61 %. Since
it is important to obtain an as high as possible sensitivity without giving too many false
positive prompts to the radiologist, this is also the part of the curve we are most interested
in an improvement of the detection.

To summarize, our two view mass detection method improved the detection results
for the image based FROC evaluation. We have found that it is harder to improve the
results in a case based evaluation. Our method leads to more consistent CAD malignancy
scores for MLO and CC views, especially in the first part of the curve. When presenting
CAD results to radiologists they tend to complain when a lesion is marked by the CAD
system in one view and not in the other, although the lesion appears rather similar visually
in both views. The improvement we found in the image based FROC curve leads to a
more consistent behavior of the CAD system.



Chapter 7

Using context for mass detection
and classification in
mammograms 1

7.1 Introduction

In mammography, CAD mass detection and classification techniques mainly use local
image information to determine whether a region is abnormal or not. There is a lot of
interest in developing CAD methods that use image context, asymmetry, and multiple
view information. Radiologists in breast cancer screening are trained to use comparisons
of the left and right breast to identify suspicious asymmetric densities. It is also known
that screening with two mammographic views, mediolateral oblique (MLO) and cranio-
caudal (CC), improves the detection accuracy of abnormalities in the breast, which can
be explained by the fact that two projections allow better estimation of conspicuity of
lesions and may reveal lesions hidden by glandular tissue in one of the projections. It is
expected that human readers take advantage of their ability to easily match lesions in dif-
ferent views. It is common for CAD algorithms to combine detection results in separate
views independently.

A number of studies have been done to investigate the use of context for CAD, in-
cluding asymmetry and multiple view information. Paquerault et al. (2002) investigated
the use of two-view information, combining MLO and CC, to improve CAD mass detec-
tion. They developed a two view matching method which resulted in a correspondence
score for each possible mass pair. By combining this correspondence score with their

1The content of this chapter has been published previously in van Engeland et al. (2005).
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single view detection score, their results improved significantly. At a false positive rate
of 1 FP/image they found an increase in sensitivity from 62 % to 73 %. Karssemeijer
& te Brake (1998) , and Lau & Bischof (1991) both created a mapping between the left
and right breast by using a set of control points defined on the skin line, in a method
for asymmetry detection. Karssemeijer and te Brake found a small benefit when using
asymmetry as an additional feature in their detection scheme. However, to our knowl-
edge, no studies have been published since then that confirm the usefulness of asymmetry
for automated detection of breast lesions. Sajda et al. (2002) studied the use of context
information by applying hierarchical pyramid neural networks for microcalcification and
mass detection. This technique used multi-scale decomposition of an image, via pyramid
transforms, and the subsequent integration of multi-scale image features by a hierarchical
neural network, to learn contextual relationships from the data. They concluded that this
method might be useful for exploiting context for a variety of image analysis problems.

Concluding from the above described studies, apart from the study of Paquerault et
al., the improvements of CAD results are either small or not clear. The purpose of this
study was to investigate to what extent human readers make use of context information
derived from the whole breast area and from asymmetry for the tasks of mass detection
and classification. The effect of using two views of the same lesion, like CC and MLO,
was not studied. We assume that trained human readers have learned to exploit image
context. Results can guide further development of CAD algorithms. To our knowledge,
results from human observer studies have not been used before to decide where to focus
CAD development.

Some context-related observer studies regarding detection and interpretation in medi-
cal images have been published. Kundel and colleagues have found evidence that human
observers search radiographs by alternating between a global and focal feature analysis,
integrating both sets of features in their decision process (Kundel 2000) . Swensson et al.
(1982) studied the difference in radiographic interpretation with and without search in
chest radiographs. They concluded that there are perceptual mechanisms in the process
of visual search that facilitate the observer’s separation between normal and abnormal
features. Burgess et al. (2001) conducted a study where the observers were asked to
detect a projected sphere of variable size superimposed on two types of backgrounds:
real mammograms and low-pass filtered noise with the same power spectrum. Results
suggested that structures of the real mammograms helped the observers in a 2AFC (two-
alternative forced-choice) experiment.

In our experiments, we investigated to what extent observers make use of context
information by presenting the observers with a number of cases in three different ways,
showing only a region of interest, showing the whole image, and showing the whole case.
The observers were asked to rate each presented view by giving it a malignancy score.
There were two tasks, a detection task, for discriminating between FP and TP regions,
and a classification task for discriminating between benign and malignant. Detailed ex-
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planation of the experiments can be found in Sec. 7.2.1. Multiple-Reader Multiple-Case
ROC analysis was used to evaluate the results (see Sec. 7.2.2). Results are presented in
Sec. 7.3.

7.2 Methods

7.2.1 Experimental setup

Use of context information for detection

To study the use of context information on the detection performance, 60 TP and 60
FP CAD detected regions were selected from mammograms from an annotated database
containing cases from the Dutch breast cancer screening program. The mammograms
were digitized with a Canon CCD scanner at a pixel resolution of 50 µm x 50 µm, and
averaged down to a resolution of 100 µm x 100 µm, maintaining the original gray value
depth of 12 bits. The false positives were regions detected by our CAD program (Karsse-
meijer & te Brake 1996; te Brake & Karssemeijer 1999) with a high suspiciousness
level. We used a random sampling of regions that were prompted in normal cases, using
a threshold level of 0.5 FP/image. The normal cases did not include benign lesions, and
were all checked by an experienced radiologist.

The cases were presented in three ways, showing only a region of interest (roi), show-
ing the whole image of the breast (image), and showing also the same mammographic
view of the other breast (bilat), see Fig. 7.1. The roi contained the region and a border of
1 cm around the region, and was always positioned in the center of the display regardless
of the location of the region in the mammogram. In each trial, a contour indicated the re-
gion under investigation. This contour was obtained by segmentation of the region using
dynamic programming (Timp & Karssemeijer 2004). Presentation was done on a dedi-
cated mammography workstation (MBC-SCR1, MeVis BreastCare) that was developed
by a European Consortium in which we participated 1. The workstation was equipped
with two high-resolution CRT displays (BARCO, MGD 521, 300 Cd/m2, using Bar-
coMed 5MP1H 12 bit graphics boards). Every trial started with the available images
presented in overview mode (200 µm). The images could subsequently be displayed at
full resolution (100 µm). By pressing a button on a dedicated keypad the contour of the
region under investigation could be displayed or removed.

The cases and reading modes were randomized, and all trials were divided into three
reading sessions of 120 trials. In each session, each of the regions was displayed once
in one of the reading modes. On average there were two days between different read-
ing sessions, and each session took roughly an hour. Five observers participated in the

1Soft-Copy REading ENvironment SCREEN, EU-Project, IST-1999-10246.
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experiment. The observers were all non-radiologists with extensive experience in mam-
mography. The observers were asked to rate the likelihood of malignancy on a continuous
scale between 0 and 100. There was no time limit for decision making.

PSfrag replacements

roi

image

bilateral

Figure 7.1: Schematic overview of the reading modes for the detection study.

Use of context information for classification

The use of context information for classification was studied using 40 malignant and
40 benign regions selected from the above mentioned database. The malignant cases
were biopsy proven, and the benign cases were either histologically confirmed or had at
least a 6-month follow-up with mammography without suspicion for malignancy. The
cases were presented in two ways, showing only a region of interest, if available in both
MLO and CC view (roi), and showing all available views (case), see Fig. 7.2. The
contour that indicated the region under investigation was derived from the annotation by
an experienced radiologist. Here all trials were divided into 4 sessions of approximately
half an hour each. The same observers participated, and other conditions were equal to
the detection study.
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PSfrag replacements

roi

case

Figure 7.2: Schematic overview of the reading modes for the classification study.

7.2.2 Data analysis

The results were analyzed using Receiver Operating Characteristic (ROC) methodology
(Metz 1986) and performances were quantified by means of area under the ROC curve
(Az). Statistical analysis was performed using the Dorfman-Berbaum-Metz approach
(Dorfman et al. 1992). This method has been widely adopted in recent years for ana-
lyzing experimental data obtained in a multi-reader multi-case (MRMC) study design. It
has the advantage that both reader and case variability are taken into account in a proper
way, such that generalization to both the population of readers and cases is permitted.
The LABMRMC software1, which is publicly available, was used for computations.
Also CAD stand-alone results were computed for mass detection. The output of our
CAD scheme provided a measure of suspiciousness for each region used in the detection
experiment. This level was used to generate a ROC curve for the regions used in the
experiment.

7.3 Results

The average ROC curves for the detection task are presented in Fig. 7.3. Also CAD
stand-alone results are provided. In Table 7.1 the Az values for the three reading modes
are presented for each observer. All observers showed an improvement in discriminating
between TP and FP CAD prompts when using the whole image instead of only the roi

1http://www-radiology.uchicago.edu/krl/roc soft.htm
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(LABMRMC, significant, 95 % confidence level). Figure 7.3 also shows that CAD stand-
alone performance was significantly worse than that of the observers. Remarkably, the
results for the bilateral reading mode were slightly lower than those for the image mode.

The average ROC curves for the classification task are presented in Fig. 7.3. In-
dividual observer Az values are presented in Table 7.2. Only two observers showed an
improvement in discriminating between benign and malignant when using the whole case
instead of only the roi. MRMC analysis showed that there was no significant improve-
ment.

A group of 6 radiologists classified the same set of cases, their performance was
comparable to the observer performances (average Az radiologists 0.77, observers 0.74
case based, Az range radiologists 0.71 - 0.83, observers 0.63 - 0.81). There was no
significant difference in performance between the group of radiologists and the observers
(Wilcoxon rank sum test, p = 0.6623).
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Figure 7.3: Average ROC curves showing the average observer performance in discrim-
inating between FP and TP (a), and benign and malignant (b). The average curves
were obtained by averaging the parameters of the individual curves obtained using the
LABMRMC software.

7.3.1 Increase in performance when using context - examples

This paragraph shows some examples of cases where the observers improved their ma-
lignancy score when scoring with more context information. In Fig. 7.4 examples are
given for the detection task, and in Fig. 7.5 for the classification task.
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Table 7.1: Results of the detection experiment. Az values and standard error are given.

Observer roi image bilat

1 0.877 (0.032) 0.947 (0.019) 0.925 (0.027)
2 0.901 (0.030) 0.950 (0.019) 0.931 (0.023)
3 0.937 (0.022) 0.971 (0.014) 0.963 (0.016)
4 0.895 (0.029) 0.949 (0.019) 0.911 (0.029)
5 0.850 (0.036) 0.901 (0.028) 0.877 (0.032)

Table 7.2: Results of the classification experiment. Az values and standard error are
given.

Observer roi case

1 0.688 (0.060) 0.724 (0.057)
2 0.689 (0.058) 0.633 (0.062)
3 0.806 (0.049) 0.804 (0.049)
4 0.800 (0.049) 0.811 (0.048)
5 0.576 (0.063) 0.706 (0.057)

7.4 Discussion

Our results show that the observers improved their performance when using context in-
formation for classification of false positive and true positive regions. There was no sig-
nificant difference between their performance in the image and bilateral reading mode.

For classification of benign and malignant lesions the use of context seemed less
important. Only two out of five observers showed an improvement in discriminating
between benign and malignant when using the whole case instead of only the roi. MRMC
analysis showed that there was no significant improvement.

Our observers were non-radiologists with extensive experience in mammography.
Since the average performance of a group of radiologists was comparable to the average
observer performance for the classification task, we think that it is unlikely that the read-
ing skills of the observers influenced the results. Similarly, Wivell et al. (2003) evaluated
the ability of radiographers to read screening mammograms. They concluded that radio-
graphers are able to read screening mammograms at least as well as radiologists and do
not take longer to do so. However, it can not be ruled out that because of more extensive
training radiologists might show a higher performance increase when using context than
our group of observers.
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(a) (b)

Figure 7.4: For the detection task; Two examples where the observers improved their
malignancy score when viewing the whole image instead of only a roi containing the
region. In (a) a TP region with average observer scores: 31, 54, and 71, for respectively
the roi, image and bilateral reading mode. In (b) a FP region with average observer
scores: 54, 28, and 31, for respectively the roi, image and bilateral reading mode.

The performance of the observers for the detection task did not improve when using
the bilateral reading mode instead of the image reading mode. One might argue that
this is because of lack of training. However, since the average performance of a group
of radiologists was comparable to the average performance of our observer group, this
does not seem to be the most likely explanation. A more probable explanation is that
asymmetry is not a very specific sign, and it only plays a role in a very limited number
of cases. And as the majority of asymmetric densities are due to normal variation of the
parenchymal pattern, this might even explain the small decrease in performance for the
bilateral reading mode.

Our results indicate that context information might be used to improve CAD detection
performance. However, since our CAD detection performance was still much worse than
the average observer performance, it should be concluded that there is still a lot to be
gained from improvement of local feature extraction. Note however that this might be
different for other CAD systems.

We looked closer at the detection cases where the observers showed a large improve-
ment when using the image reading mode. During a feedback session with the observers
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(a) MLO view (b) MLO view

(a) CC view

Figure 7.5: For the classification task; Two examples where the observers improved
their malignancy score when viewing the whole case instead of only the roi(s) containing
the region. In (a) a malignant lesion with average observer scores: 27, and 47, for
respectively the roi, and case reading mode. In (b) a benign lesion with average observer
scores: 67, and 40, for respectively the roi and case reading mode.
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we tried to find reasons for this improvement. The observers indicated that they used
location information and the presence or absence of comparable densities in the breast.
They also indicated that they used the relative location of the region with respect to the
glandular tissue.

7.5 Conclusions

Context information can be used to improve CAD programs for mass detection. How-
ever, there is still a lot to be gained from improvement of local feature extraction and
classification. This is demonstrated by the fact that the observers did much better in
classifying TP and FP regions than our CAD program.

Experimental results show that the observers were not able to make use of bilateral
comparison to improve detection. This might be due to insufficient experience in read-
ing mammograms. It seems more likely however, that asymmetry is only helpful in few
cases. For classification of benign and malignant masses context seems to be less impor-
tant. This suggests that observer experiments in which only regions with abnormalities
are presented instead of complete mammograms may provide valid results for this task.



Chapter 8

Volumetric breast density
estimation from full field digital
mammograms 1

8.1 Introduction

Breast tissue density has been identified as an important risk factor for breast cancer de-
velopment. This relationship was first suggested by Wolfe (1976) and later confirmed by
others (Byrne et al. 1995). Also changes in density may be related to breast cancer risk
(van Gils et al. 1999a). For details, the reader is referred to a review by Heine (Heine
& Malhotra 2002b; Heine & Malhotra 2002a). Tissue that appears as dense on a mam-
mogram is a combination of connective tissue structures and epithelial tissue, together
referred to as fibro-glandular. It contrasts with fatty tissue that has a more transparent
appearance. Breast tissue density plays an important role in epidemiological studies. If
the relation between density and risk is causal, this may have a potential for preventive
measures. Breast density assessment may also be used to identify a high risk population,
who might benefit from more frequent screening and/or additional imaging with other
modalities (van Gils et al. 1999b), or in Computer-aided Detection (CAD) systems to
increase performance.

Radiologists usually estimate breast density from mammograms in a qualitative way,
for example using the density categories of the Breast Imaging Reporting and Data Sys-
tem (BI-RADS) lexicon or some other scheme. There is, however, need for a less sub-
jective and more quantitative measure of breast density that can be obtained automat-

1The content of this chapter has been published previously in van Engeland et al. (2006).
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ically. A number of methods have been published that report automated classification
of parenchymal patterns (Caldwell et al. 1990; Tahoces et al. 1995; Karssemeijer 1998;
Wang et al. 2003b) or computerized measurement tools for breast density assessment
(Byng et al. 1994; Byng et al. 1998b; Saha et al. 2001; Zhou et al. 2001). Most of these
are based on determination of the size of the dense tissue projection on a mammogram,
but some researchers have also explored use of texture measures for risk assessment (Huo
et al. 2000; Huo et al. 2002). If a method for segmentation of dense tissue is used, the
(relative) size of the dense tissue projection can be used directly instead of categorizing
breast density measurements.

As a quantitative measure of breast density the projected dense tissue area is not ideal,
as it is not invariant to compression and projection angle. Although harder to estimate
from mammograms, dense tissue volume is a more appropriate measure for breast den-
sity than its projected area. Using a physical model of image acquisition, Highnam &
Brady (1999) showed how mammograms can be converted to an interesting tissue (hint)
representation, in which every pixel represents the amount of interesting tissue (fibro-
glandular tissue and cancerous tissue). Their normalization method is based on the as-
sumption that the X-ray attenuation coefficients of fibro-glandular and cancerous tissue
are nearly equal, but are quite different from that of fatty tissue. After normalization,
a mammogram is corrected for scattered radiation and the dependency of image forma-
tion parameters like tube voltage, spectrum, and exposure time. A more recent name
given to this representation is Standard Mammogram Form (SMF). Recently, Marias
et al. (2004) presented a study with digitized mammograms that describes application of
this SMF representation to measure changes in breast density due to hormone replace-
ment therapy (HRT). Pawluczyk et al. (2003) also presented a method for quantitative
volumetric analysis of mammographic density from digitized film-screen mammograms.
The method is based on initial calibration of the imaging system and correction for vari-
ations in exposure factors and film processing characteristics. It requires a small calibra-
tion wedge to be imaged in every mammogram and imaging conditions and compressed
breast thickness should be known. Results obtained with phantoms showed that density
measurements could be made within 5 % from the actual value. No clinical validation
was performed yet.

Most breast density estimation studies to date focus on the use of digitized mammo-
grams. When using films, it remains cumbersome to obtain reliable calibration data. In
particular, sensitometric variables may change slightly from day to day.
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Therefore, even when films are digitized it remains hard to design a reliable mea-
surement procedure for breast density in clinical practice. The introduction of digital
mammography, however, gives rise to new opportunities. Stability and linearity of digi-
tal detectors, and the fact that many parameters for calibration are stored with the image
itself, will make breast density estimation much more feasible. In this study we investi-
gate a fully automated physics-based method to determine the volume of glandular tissue
from full field digital (FFD) mammograms. The method takes into account different en-
ergy spectra for different anode target/filter materials and is designed to work on raw
(unprocessed) data.

To validate breast density measurement methods it has been common practice to use
results obtained by visual assessment of radiologists as a gold standard. Obviously, this
approach suffers from the inaccuracies of visual judgments that one tries to avoid by
using automated image analysis. In some more recent studies, breast MRI data has been
used (Stoutjesdijk & Karssemeijer 2000; Wang et al. 2003a; Wei et al. 2004), which
allows more accurate and more objective validation. Also in this paper we will use this
method. An interactive method for segmentation of fibro-glandular tissue in 3D MRI
data sets was designed which was used to determine volume of dense tissue. Dense tissue
volumes obtained from MRI data were used as ground truth against which mammogram
measurements were compared. Validation was performed using FFD cases acquired with
a GE Senographe 2000D. We compared volume estimates in 88 mammographic views
from 22 patients.

8.2 Volumetric breast density estimation

In this section we show how the volume of dense tissue can be computed from an un-
processed digital mammogram and how total breast volume can be obtained using a ge-
ometric model. For breast density estimation, a polychromatic image model is used that
incorporates the photon energy spectrum for different anode target/filter materials and the
energy dependency of linear attenuation coefficients of breast tissue. While the model is
basically polychromatic, the relation we derive can be written in a monochromatic form
with effective linear attenuation coefficients that depend on acquisition settings. All re-
quired parameters are obtained from DICOM headers of the digital mammograms and
from empirical data in literature. To facilitate implementation of the density estimation
procedure, we present parameters for a range of acquisition settings in a table.
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8.2.1 Imaging model

The X-ray exposure I(r) at a detector location r is modeled by a polychromatic model

I (r)

I0
=

∫ ∞

E=0

p (E) e−
R h(r)

z=0 µ(r,z;E) dzdE, (8.1)

with p (E) the normalized photon energy spectrum, which we assume to be spatially
homogeneous. In this paper, the spectrum will be fully characterized by anode mate-
rial, filter material, filter thickness, and the tube voltage. We assume that the detector
is calibrated for inhomogeneities due to, e.g., the Heel effect. µ (r,z;E) is the linear
attenuation coefficient for tissue at the three-dimensional location (r, z). It depends on
the kind of tissue at location (r, z), but also on the photon energy E. The integral over
µ (r,z;E) is along the line segment with length h (r) of the X-ray beam intersecting the
breast tissue.

The normalized photon energy spectrum, p (E), is obtained from (Boone et al. 1997),
for molybdenum, rhodium, and tungsten anode target materials. The effect of filtration
has been modeled using attenuation data provided in (Hubbell & Seltzer 1995). It is
assumed that the required acquisition parameters are known. With full field digital mam-
mography these are generally made available as DICOM header tags.

With regard to X-ray attenuation, two types of tissue can be distinguished in the
breast, dense and fatty tissue, with linear attenuation coefficients µd(E) and µf (E), re-
spectively (throughout the paper subscripts d and f will be used for dense and fatty
tissue). It has been found that in good approximation mammographic imaging can be
modeled with only these two tissue components, apart from microcalcifications (High-
nam & Brady 1999). For the purpose of breast density estimation, it is safe to ignore
microcalcifications, because these, if present, only occupy a very small fraction of the
breast. We use tabulated experimental data for linear attenuation coefficients of dense
and fatty tissue presented by Byng et al. (1998a). The data labeled by PCJ (from (Johns
& Yaffe 1987)) are used throughout the paper. To obtain attenuation coefficients at a
given energy the experimental data were interpolated. We use cubic splines to interpo-
late lnµf (E) and lnµd(E). This function appeared to be almost linear in the parameter
range of interest.

To simplify computations, we compute effective attenuation coefficients for fatty and
dense tissue as a function of the anode and filter material, tube voltage, and tissue thick-
ness h. The attenuation of a mixture of dense and fatty tissue with thicknesses hd and
hf , at a given location, is given by

I

I0
=

∫ ∞

E=0

p (E) e−µf (E)hf−µd(E)hddE. (8.2)

It appears that for typical spectra used in mammographic imaging this attenuation can
very well be approximated by an exponential function. This implies that we can write
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Figure 8.1: For typical spectra used in mammography the logarithm of the attenuation
is approximately linear with dense tissue thickness, for a given breast thickness. This is
illustrated in the figure for an imaging system with different anode/filter combinations at
a tube voltage of 27 kVp.

the logarithm of the attenuation as

ln
I

I0
≈ −µf,eff hf − µd,eff hd

= −µf, eff (h− hd) − µd,eff hd, (8.3)

where the effective attenuation coefficients depend on acquisition parameters, and with
h the breast thickness. The linearity is illustrated in Fig. 8.1 for a tube voltage of 27 kVp
and different anode/filter combinations. It is noted that the dependence on breast thick-
ness includes the beam-hardening effect.

Effective linear attenuation coefficients for dense and fatty tissue are estimated by
linear regression of Eq. 8.3 for a range of acquisition parameters. In the next section it
will be shown that for computation of dense tissue volume only the difference of effective
linear attenuation coefficients, µd,eff − µf,eff , is needed. In Table 8.1 these differences
are given for a range of acquisition parameters.
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Table 8.1: Differences of effective linear attenuation coefficients, µd,eff − µf,eff , un-
der several acquisition conditions. For different anode target materials, filter materials,
breast thicknesses h, and kV ps, the effective linear attenuation coefficients are computed
with the polychromatic model (Eq. 8.3). The filter thickness was 30µm in all cases.

Mo/Mo h (cm)

kVp 2 3 4 5 6 7 8 9
24 0.513 0.477 0.452 0.433 0.417 0.403 0.390 0.379
25 0.497 0.461 0.435 0.414 0.396 0.379 0.363 0.348
26 0.484 0.448 0.421 0.398 0.378 0.358 0.340 0.324
27 0.468 0.432 0.403 0.377 0.354 0.333 0.313 0.295
28 0.456 0.419 0.388 0.360 0.335 0.312 0.291 0.273
29 0.442 0.403 0.370 0.340 0.313 0.289 0.267 0.249
30 0.429 0.387 0.352 0.320 0.292 0.267 0.246 0.228
31 0.414 0.371 0.334 0.301 0.272 0.247 0.227 0.210
32 0.402 0.357 0.319 0.285 0.256 0.232 0.212 0.196

Mo/Rh
24 0.448 0.415 0.392 0.373 0.358 0.346 0.335 0.326
25 0.432 0.401 0.379 0.361 0.345 0.333 0.322 0.313
26 0.422 0.392 0.370 0.352 0.336 0.323 0.312 0.303
27 0.413 0.384 0.361 0.342 0.327 0.313 0.301 0.291
28 0.407 0.377 0.354 0.335 0.318 0.303 0.291 0.280
29 0.399 0.369 0.345 0.325 0.307 0.291 0.277 0.265
30 0.392 0.361 0.336 0.314 0.295 0.278 0.263 0.249
31 0.384 0.352 0.326 0.302 0.282 0.263 0.247 0.233
32 0.377 0.344 0.316 0.291 0.269 0.250 0.233 0.219

Rh/Rh
24 0.429 0.393 0.369 0.351 0.337 0.326 0.318 0.310
25 0.406 0.373 0.351 0.335 0.322 0.313 0.304 0.298
26 0.388 0.358 0.338 0.323 0.312 0.302 0.295 0.288
27 0.374 0.346 0.327 0.313 0.302 0.293 0.285 0.278
28 0.363 0.337 0.319 0.305 0.294 0.285 0.277 0.269
29 0.353 0.328 0.310 0.297 0.286 0.276 0.267 0.259
30 0.344 0.320 0.303 0.289 0.277 0.267 0.258 0.249
31 0.336 0.312 0.295 0.281 0.268 0.257 0.247 0.238
32 0.328 0.304 0.286 0.272 0.259 0.247 0.236 0.226
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8.2.2 Dense tissue volume

In an unprocessed FFD mammogram pixel values are proportional to the total exposure
I (r). Hence, the image model is obtained from Eq. 8.1 by replacing exposure value (I)
by pixel value (g)

g (r)

g0
=

∫ ∞

E=0

p (E) e−µf (E) hf (r)−µd(E) hd(r)dE

=

∫ ∞

E=0

p (E) e−µf (E) h(r)−(µd(E)−µf (E)) hd(r)dE. (8.4)

In this equation the photon energy spectrum p (E) , and the attenuation coefficient µf (E)

and µd (E) are known from empirical data. When we could also determine breast thick-
ness h (r) and the pixel value associated with the incident X-ray beam g0, computation
of the dense tissue thickness hd (r) would be straightforward. Unfortunately, it is not
easy to obtain accurate estimates of these parameters in practice. A compressed breast
thickness measurement is provided by most modern mammographic imaging systems,
but measured values are usually not very precise and small errors in breast thickness lead
to large deviations in hd(r) when computed directly with Eq. 8.4. Moreover, breast
thickness is not uniform and falls off in the periphery of the breast. This should be taken
into account. Also the background exposure may be hard to obtain. Due to its high
value, the background in mammograms is often clipped, in which case the background
pixel value does not give a representative value for I0. Because of these problems, we
use another method to determine hd(r) which will be explained below.

Suppose that we can carry out a thickness correction transform on the mammogram
in which a layer of adipose tissue with attenuation coefficients µf (E) and thickness
H − h (r) was added to the breast. Methods to perform such a transform have been de-
scribed in the literature, e.g. (Bick et al. 1996; Byng et al. 1997; Snoeren & Karssemeijer
2004; Snoeren & Karssemeijer 2005), and application of these has become more or less
standard to enhance visualization of the periphery of the breast. Ideally, after thickness
correction we would obtain an image in which the following equation would hold

g (r)

g0
=

∫ ∞

E=0

p (E) e−µf (E) H−(µd(E)−µf (E)) hd(r)dE. (8.5)

In this image, pixel values only vary with dense tissue thickness. Purely adipose tissue
looks the same everywhere in the corrected mammogram, no matter the local breast
thickness. In most mammograms it is easy to identify a location that corresponds with
almost pure fatty tissue. Because the attenuation coefficient of fatty tissue is smaller than
that of dense tissue, this location is determined by the maximum of g (r).
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Figure 8.2: Sketch of volumetric breast density estimation. The upper left panel shows
a cross section of a breast with one lump of dense tissue. The upper right panel shows
the thickness profiles for this cross section; from bottom to top: thickness of dense tissue,
hd (r); breast thickness, h (r); and breast thickness after thickness correction, H . The
lower left panel shows the corresponding exposure profiles for different attenuation coef-
ficients after linearization. The lower right panel shows the bump in the lower left panel,
from this the thickness profile of dense tissue is obtained.
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The corresponding image model for purely fatty tissue is obtained by setting hd (r) = 0

in Eq. 8.5:
gf

g0
=

∫ ∞

E=0

p (E) e−µf (E) HdE, (8.6)

where we neglected the skin (we will elaborate further on its effect in the discussion). By
substituting the pixel value of fatty tissue gf in 8.5 we obtain

g (r)

gf

=

∫ ∞

E=0
p (E) e−µf (E) H−(µd(E)−µf (E)) hd(r)dE

∫ ∞

E=0
p (E) e−µf (E) HdE

. (8.7)

In principle, hd(r) can be solved from this equation if H is known. It turns out, however,
that the value of H is not critical anymore, due to the internal calibration with a fatty
tissue pixel value. In fact, when we apply the exponential approximation of Sec. 8.2.1
and rewrite 8.7 with the effective attenuation coefficients µf,eff and µd,eff the explicit
dependency of H disappears, and we obtain the following relation

g (r)

gf

= e−(µd,eff−µf,eff ) hd(r) ⇒

hd (r) = − 1
µd,eff−µf,eff

ln g(r)
gf
. (8.8)

It should be noted, however, that the dense tissue thickness remains dependent on breast
thickness as the effective attenuation coefficients vary with H . The total volume of glan-
dular tissue is given by

Vd =

∫

B
hd (r) d2

r = −
1

µd,eff − µf,eff

∫

B
ln
g (r)

gf

d2
r, (8.9)

where the integral is taken over the projected breast area B, excluding the pectoral area.
Figure 8.2 illustrates how the dense tissue thickness is obtained.

In the implementation we use a thickness correction method developed previously
(Snoeren & Karssemeijer 2005) to obtain g. This is an iterative method, in which
anisotropic diffusion of the fatty tissue region is used to obtain a smooth surface rep-
resenting the shape of the breast. Dense tissue is interpolated along curves running in
parallel to the breast edge. The breast and the pectoral region are segmented using a
method described previously (Karssemeijer 1998). To determine the fatty tissue refer-
ence value gf we determine the maximum pixel value in the interior of the breast using a
large quantile (0.99) of the pixel value histogram. Only for extremely dense breasts, we
compute this quantile on the whole peripherally enhanced breast, because in those cases
the interior may not contain pixels in which only fatty tissue is mapped.
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8.2.3 Total breast volume

To compute relative breast density the total volume of the breast needs to be computed.
Using the exponential approximation (similar to approximation from Eq. 8.2 to Eq. 8.3)
and effective attenuation coefficients (see also Fig. 8.2), Eqs. 8.4 and 8.5 can be approx-
imated as

g (r)

g0
= e−µf,eff h(r)−(µd,eff−µf,eff ) hd(r), and (8.10)

g (r)

g0
= e−µf,eff H −(µd,eff−µf,eff ) hd(r). (8.11)

Using these equations the thickness of the breast h(r) follows from ln g(r)
g(r) , and the

total breast volume can be obtained as follows

V =

∫

B
h (r) d2

r =

∫

B
(H +

1

µf,eff
ln
g(r)

g(r)
) d2

r. (8.12)

However, in this study we use a geometric approach which has the advantage that it
does not depend on the effective attenuation coefficient of fatty tissue. In the geometric
approach, perpendicular cross sections of the peripheral zone of the breast are approx-
imated by semi-circles, and the interior by parallel planes. Then breast thickness as a
function of location is given by

h (r) =







2

√

(

(H/2)
2
− (H/2 − d (r))

2
)

, d (r) < H/2;

H, d (r) ≥ H/2,
(8.13)

where H is the compressed breast thickness and where d (r) is the Euclidean distance to
the edge between breast tissue and background in the mammogram. To compute this we
perform a distance transform of the segmented breast area (Borgefors 1986). In order to
avoid inaccuracies in larger breasts, where the skinline sometimes intersects the image
border, we extrapolate the segmented tissue region outside the image matrix before ap-
plying the distance transform. This is partly done by straight lines and partly by segments
of ellipses, depending on the location of the extrapolation and on the view.

8.3 Validation

To validate our method for volumetric density estimation from mammograms we col-
lected a series of cases in which both digital mammography and breast MRI had been
performed. For this series, volumes of dense breast tissue were determined in the 3D
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breast MRI exams and compared with the results of the mammographic density esti-
mation procedure. To determine volume of glandular tissue in MRI we used a semi-
automatic segmentation, which is outlined in Sec. 8.3.2. On a larger set of cases, we also
compared the amounts of glandular tissue determined from craniocaudal (CC) and medio
lateral oblique (MLO) projections of the same breast, which should be the same.

8.3.1 Data set

In our institute, breast MRI is used frequently for screening in a group of younger women
with high familial or genetic risk (Kriege et al. 2001). From this group of patients we
selected 22 cases for which both breast MRI data and a full field digital mammogram
were available. Time between the two exams was less than one year for all cases, and
two months on average. All exams had been performed between December 2000 and
September 2003.

The digital mammograms used in the study were acquired on a GE Senographe
2000D using standard clinical settings, including the use of an anti-scatter grid. Breast
MRI examinations were performed on a 1.5 T system (SIEMENS 1.5 T, MAGNETOM
VISION), with a dedicated breast coil (CP Breast Array, Siemens, Erlangen). A dynamic
contrast enhanced T1-weighted FLASH-3D sequence was used, with repetition time of
8.1 ms, an echo time of 4 ms, and a flip angle of 20 degrees. The pixel spacing was 1.25
mm x 1.25 mm, and the slice thickness 1.5 mm. Per series 108 slices were acquired,
without interslice gap. Patients were scanned in prone position. The pre-contrast series
was used for the segmentation of glandular tissue.

To compare the glandular tissue volumes determined from the CC and the MLO view
of the same breast we could use a much larger data set, since no corresponding MRI data
was required. For this comparison we used a series of 1820 mammograms, also acquired
on a GE Senographe 2000D, containing 910 CC/MLO pairs.

8.3.2 Segmentation of dense tissue in MRI

To segment glandular tissue in the MRI data we used a semi-automatic approach. Seen in
the axial view, we used a plane perpendicular to the breasts to separate the breasts from
the chestwall. In Fig. 8.3(a) an example is given of the selected breast volume seen in
an axial slice of the MRI examination. This approach is bound to underestimate the total
breast volume. However, selecting voxels closer to the chest increases the risk of making
large errors, because part of the pectoral muscle might then be segmented along with the
glandular tissue. As our goal was to estimate the glandular tissue volume, underestima-
tion of the total breast volume in the MRI volume was not a disadvantage. In practice,
when estimating relative breast density the total breast volume from the mammogram
will be used. Therefore, we chose this relatively simple approach, and did not select
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cases where the glandular tissue distribution did not allow separation from the chest us-
ing a single plane. An example of a case that was not included is shown in Fig. 8.3(b).
Here it is obvious that our MRI segmentation method would miss a large part of the
glandular tissue. The following paragraphs describe the method to segment the glandular
tissue in the MRI volume in detail.

(a) (b)

Figure 8.3: Selected breast volume indicated on an axial slice of the MRI volume (a).
Axial slice of an MRI examination that was not included in the data set because of the
distribution of the glandular tissue (b).

The MRI examinations consisted of 108 coronal slices. To find the first slice contain-
ing breast tissue (near the nipple), for every slice the average gray value was determined
in a horizontal band of 2 cm (see Fig. 8.4). This first slice S0 was selected by searching
for the maximum of the second derivative of the average gray value. The last slice of in-
terest SN , at the chestwall, was determined in a similar way by thresholding the average
gray value in a vertical band in between both breasts.

For every coronal slice between S0 and SN the outline of each breast was determined
separately using a dynamic programming segmentation algorithm (Timp & Karssemeijer
2004). This algorithm requires a seed point near the center of the region to be segmented.
Seed points were determined by taking the maximum pixel value in the central zone of
each breast, after heavily smoothing the image.

Because of the inhomogeneity of the breast coil sensitivity, the signal intensity in the
breast region was not uniform across the field of view. We corrected for this by using
a first order bias-field correction. We assumed a linear bias-field in the axial direction.
The parameters for this function were estimated by minimizing the peak widths of both
the fatty and glandular tissue peaks (Full-Width-at-Half-Maximum) by using Powell op-
timization (Press et al. 1992).

For determination of the volume of glandular tissue from the MRI data we used an
interactive image display environment in which the user could visualize the 3D MRI
data sets with the segmented glandular tissue projected as a color overlay. Thresholding
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Figure 8.4: A coronal slice of a breast MRI volume. Horizontal and vertical bands are
used to automatically determine the first slice (near the nipple) and the last slice (near
the chest) of a volume of interest for glandular tissue segmentation.

was used to segment glandular from fatty tissue. The users could interactively adapt the
threshold value and check the selected pixels by going through the coronal slices. For
each case, an optimal threshold value was determined by two observers independently,
without having access to the mammograms or the outcome of mammographic density
estimation. For all slices between S0 and SN the pixels inside the breast area were
classified as glandular tissue when the gray value of these pixels was lower than the
determined threshold. The glandular tissue volume was estimated by using pixel spacing
and slice distance obtained from the DICOM headers of the data sets. For the final result,
the volumes of glandular tissue obtained using the two thresholds determined by the
observers were averaged.

8.3.3 Comparison of MRI and FFD mammogram estimates

To validate our volumetric breast density estimation from digital mammograms, a num-
ber of comparisons with MRI results were made. First, for every available mammo-
graphic view (n = 88) the estimated dense tissue volume was compared with the cor-
responding MRI volume. Second, for each patient (n = 22) average glandular tissue
volumes were calculated and compared. Third, to compare the fraction of dense tissue
per patient, the dense tissue volume of each patient was divided by the total breast vol-
ume. As our approach to segment glandular tissue from the MRI data is bound to give an
underestimation of the total breast volume, for both ratios the breast volume determined
from the mammogram was used.

We investigated to what extent use of a model to adaptively compute attenuation coef-
ficients based on the acquisition settings and breast thickness contributed to the accuracy
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of the results. For that purpose, we also computed results using a simple monochromatic
model with fixed values of the attenuation coefficients for µf,eff and µd,eff . These fixed
values were obtained by averaging the coefficients of the individual cases in our data set.
Comparison with MRI results is presented using the per patient analysis. We also in-
vestigated if it is possible to apply our method to processed mammograms, using the for
presentation images prepared by the GE Senographe. It appeared that the processing ap-
plied by GE allows application of our method, because in the interior of the breast a fixed
conversion is used by the manufacturer to transform raw pixel values to pixel values in
the processed image. We used the transformation experimentally determined by Burgess
(2004) for this purpose.

8.4 Results

The results of the comparison between dense tissue volumes determined from mammo-
grams and from MRI data are presented in Fig. 8.5. In Fig. 8.5(a) the results are presented
of the comparison of the glandular tissue volume determined for every available mammo-
graphic view with the corresponding MRI volume. Figure 8.5(b) presents the results per
patient. Here the glandular tissue volume per patient was calculated by averaging over
the CC and MLO view and over the left and right breast. Figure 8.6 presents the glandu-
lar tissue ratios as determined from the mammograms and from the MRI data, also per
patient. Both ratios were calculated by dividing by the total breast volume as determined
from the FFD mammograms. We computed the relative error in the estimated dense
tissue volume for each patient by dividing the absolute value of the difference between
volumes obtained with MRI and mammography by the dense tissue volume determined
with MRI. The average relative error was 13.6 %.

The results show that there is a high correlation between the dense tissue volumes
determined from the mammograms and the MRI volumes. For the comparison of the
volumetric density determined for every available mammographic view and the corre-
sponding volumetric density from MRI (see Fig. 8.5(a)) the correlation coefficient is
0.94. When determined per patient, the correlation between the volume of glandular tis-
sue from the mammograms and from the MRI data is 0.97 (see Fig. 8.5(b)). The graph
in Fig. 8.7(a) shows the results per patient determined with fixed attenuation coefficients.
Figure 8.7(b) shows the results obtained by using processed mammograms. When com-
paring density volumes with the MRI volumes the method performed significantly better
using the raw images (paired t-test one-tailed on differences between volumetric amount
of glandular tissue from MRI and FFD mammogram, P = 0.02). The average relative
error was 27.8 % and 17.8 %, respectively, when using fixed attenuation coefficients and
processed images.

To compare the glandular tissue volumes determined on the digital mammograms for
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Figure 8.5: Comparison of dense tissue volumes from MRI and FFD mammograms for
individual views, both CC and MLO, (a) and per patient (b).
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Figure 8.6: Comparison of average dense tissue fractions per patient, taken relative to
breast volumes determined from the mammograms.

CC and MLO views a much larger data set could be used. Figure 8.8 shows the glandular
tissue volumes determined from CC and MLO views of the same breast for 910 CC/MLO
pairs. Figure 8.8(a) shows a high correlation between the volumes determined from CC
and MLO views (correlation coefficient 0.92). The volume of dense tissue determined
from MLO views appears to be slightly lower than the volume determined from CC views
(paired t-test one-tailed, p << 0.001, see also Fig. 8.8(b)).

Some examples of mammograms with corresponding breast density volumes are
shown in Fig. 8.9. All images are MLO views of the right breast. The mammogram
on the right was from the most dense case in our study sample, which was the only case
in which our method failed to estimate breast density volume accurately.

8.5 Discussion & conclusions

Results in Fig. 8.5 show that our method provides reliable estimates of the volume of
dense tissue in the breast from unprocessed digital mammograms. In particular when
evaluation is performed on a per patient basis, where the average breast density volume
over four mammographic views is taken, correlation with the MRI ground truth values
is high. In practice, interest in breast density is mostly related to breast cancer risk as-
sessment. For that purpose, per patient estimates are more relevant than estimates from
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Figure 8.7: Average dense tissue volumes per patient obtained by using fixed values
of the linear attenuation coefficients for fatty and glandular tissue (a), and by using
processed instead of raw digital mammograms (b).
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Figure 8.8: Comparing glandular tissue volume from CC and MLO views for the large
data set with raw images (a). Histogram of the difference between volumetric density
from MLO and from CC views (b).
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separate mammographic views. The average relative error of the per patient measure-
ments we obtained was 13.6 %, using dense tissue volumes estimated from MRI data as
the gold standard.

Our method is based on a polychromatic model. Per image the following parameters
are required: Tube voltage, anode and filter materials, and breast thickness. Depending
on these parameters, effective attenuation coefficients for fatty and dense tissue are com-
puted, which are subsequently used in a monochromatic computation of dense tissue vol-
ume. It was investigated if this approach was more accurate than a simple non-adaptive
estimation method, in which fixed values of the attenuation coefficients were used. Re-
sults were found to be significantly worse (Fig. 8.7(a)), with an average relative error
increasing from 13.6 % to 27.8 %, demonstrating the need for an adaptive approach.
This is not surprising, as the variation of the attenuation difference of fatty and dense
tissue with the exposure settings and with breast thickness is rather large, as can be ob-
served in Table 8.1. It is noted that filtration thickness was not included as a parameter
in our method, due to the fact that this thickness is fixed in the mammography system we
used.

To apply the breast density estimation method presented in this paper pixel values
must be proportional to exposure. This requirement may exclude the possibility to ap-
ply the method to images processed by the manufacturer. Especially if the processing
involves some kind of adaptive contrast enhancement, breast density estimation will be
severely hampered or rendered impossible. This is not the case with mammograms pro-
cessed by the GE Senographe 2000D used in this study. The GE processing consists of
a peripheral enhancement algorithm and a fixed pixel-to-pixel transform. The latter can
be inverted to obtain the original raw pixel values in regions that were not touched by the
peripheral enhancement. We used this inverted transform to apply our density estimation
method to mammograms processed for presentation, motivated by the fact that mammo-
grams are usually archived in this form. It was found that results were significantly worse
than those obtained from the raw images. This is due to the peripheral enhancement al-
gorithm applied by GE. Two effects were found. In the first place it was observed that
the GE processed images still had a small breast thickness decrease in the periphery of
the breast. This can lead to some underestimation of breast density volume, which can
be observed in Fig. 8.7. However, for some cases it may also increase estimated breast
density, when the fatty tissue location used for calibration lies in the breast periphery. A
second effect was found in some very dense breasts, where the peripheral enhancement
algorithm of GE appeared to affect fatty tissue regions in the interior of the breast, which
also leads to inaccurate calibration of our method.

For a series of 910 pairs of CC and MLO views we compared fibro-glandular tis-
sue volumes determined in both views (Fig. 8.8). It was found that the measurements
correlated well, but that volume estimates were somewhat higher on average in the CC
views. Possible causes were investigated. It turned out that it frequently occurred that
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Figure 8.9: Some examples with increasing breast density from left to right. All im-
ages are MLO views of the right breast. Dense tissue volume fractions of these cases
determined from MRI are, respectively, 0.08, 0.20, 0.28, and 0.45.

a small part of the pectoral muscle was projected in the CC views. Our segmentation
method only segments the pectoral muscle in MLO views. Therefore, we were not able
to exclude the pectoral muscle area when determining the density in CC views. This may
explain the small deviation we found.

In our data set we had one outlier, which turned out to be a very dense mammogram.
In Fig. 8.6 it is shown that the volume fraction of dense tissue in this case was approx-
imately 45 %. An image of the right MLO view of this case is displayed in Fig. 8.9.
Because it is very hard to obtain a reliable calibration location with only fatty tissue, the
dense tissue content is underestimated. Our method has to rely on pixel values near the
projected skinline for calibration, and these are susceptible for inaccuracy of the periph-
eral enhancement procedure, which itself is also more difficult to carry out in very dense
mammograms. Fortunately, only few mammograms are extremely dense. In another ex-
ample of a dense breast shown in Fig. 8.9, with a volume fraction of dense tissue of 28 %,
a reliable estimate could be obtained with our method.

To our knowledge, no other studies have been published that investigate volumetric
breast density estimation from FFD mammograms. In previous studies, digitized mam-
mograms were used and breast density was most often measured in qualitative categories
or as the size of the projected dense tissue area. Our work resembles the approach pro-
posed by Highnam & Brady (1999), who proposed a standardized mammogram form
in which pixel values represent dense tissue thickness. Application of their method is
complicated, however, as it takes many aspects of the image formation process into ac-
count in a physics based model. Consequently, it requires many parameters related to the
acquisition procedure to be known. A major difference between our method and SMF
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is the internal calibration we use by obtaining a fatty tissue reference. In this way, our
method gets less dependent on breast thickness, for which accurate measurements are
hard to obtain in practice. Without internal calibration, small errors in breast thickness
have a strong effect on density estimates. The SMF approach has been used for volumet-
ric breast density estimation in digitized mammograms in a study by Marias et al. (2004).
In their work performance was evaluated by assessing agreement with the opinion of a
clinician, without further quantitative validation.

Several sources of error can be identified to explain fluctuations in Fig. 8.5 and 8.6
apart from inaccuracy of the ground truth. As mentioned above, one source of error
lies in the calibration measurement, in particular when the breast is very dense. Other
sources of errors are due to neglecting scattered radiation and to errors in the attenuation
coefficients. With respect to the effect of scatter it is remarked that it is common to use
anti-scatter grids in mammography, which effectively decrease influence of scatter. It
will be worthwhile though to study the effect of the remaining scatter on our method in
detail. The same holds for the effect of patient variability of the attenuation coefficients.

Our method uses two tissue types, namely fatty and dense tissue. One might argue
that the skin, with attenuation coefficient closer to dense than to fatty tissue influences
our results. However, the contribution due to the skin will also be present in the fatty
tissue reference value. Therefore, the attenuation term related to the skin will cancel out
in Eq. 8.7, when assuming that the skin thickness is constant over the breast area.

In this study we used MRI data and an interactive segmentation method to establish
a ground truth measure for fibro-glandular tissue volume. This approach has been used
before by Stoutjesdijk & Karssemeijer (2000) and Wei et al. (2004), who both determined
the projected dense tissue area from digitized mammograms and found a good correlation
between the mammogram area density and the volumetric density from MRI data. It is
likely, however, that breast cancer risk is more strongly related to the volume of dense
tissue than to the projected area of dense tissue on a mammogram. Our study suggests
that by using FFD mammography accurate estimation of dense tissue volume becomes
feasible.
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Summary

Computer-aided Detection (CAD) and image processing techniques for mammography
are being developed to aid radiologists during screening and to increase the detection rate.
During interpretation, radiologists use information from all available views, i.e. previous
examinations and projections from different angles. Most current CAD systems, on the
other hand, use information from only one view at the time. The research described in
this thesis concerns the development of multiple view CAD techniques to increase the
performance of CAD for the detection of masses in mammograms. The first part of
this thesis addresses the comparison of temporal mammogram pairs. The second part
concerns the combination of information from two projections of the same breast. The
final chapter describes a method for accurate quantitative estimation of the dense tissue
volume from mammograms. Such a measure for breast density can be used for instance
for comparisons of the left and right breast.

Mammogram registration is an important technique to optimize the display of cases
on a digital viewing station. In order to compare two mammographic views they need
to be correctly registered, ensuring that a (possible) lesion is displayed at about the same
location on the screen for both views. It was investigated which method is the most ap-
propriate for the registration of temporal mammogram pairs. The performance of four
registration methods was measured by comparing the distance between annotations of
abnormalities in the previous and current view before and after registration. Registra-
tion by mutual information outperformed alignment based on nipple location, alignment
based on center of mass of breast tissue and warping. In addition to being useful for
displaying, a mammogram registration technique can also be used for the development
of CAD algorithms that use temporal information.

Growth of lesions is an important clue to detect lesions and to discriminate between
benign and malignant abnormalities. It was investigated whether it is possible to improve
the detection of lesion growth by using image processing. Two ways of presenting prior
and current mammograms on a mammography workstation were compared: (1) display
next to each other and (2) alternating at the same display (toggle). In an observer ex-
periment, 420 trials with prior-current mammogram pairs were displayed on a dedicated
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mammography workstation. In a two-alternative forced-choice experiment, observers
were asked to select the image containing the largest lesion. The stimuli were created by
pasting extracted lesions into normal mammograms. Results showed that the observers
performed more accurate in selecting the largest lesion when using the toggle option.

Separate parts of relatively large lesions are sometimes detected as individual lesions
by the CAD software. The development of multiple view techniques is hampered by
this phenomena. To facilitate the final classification of suspicious regions, a technique
to regroup initial candidate regions of our CAD scheme was developed. This regrouping
technique identifies candidate regions that belong to the same structure, taking into ac-
count the distance between the regions and the image structure along a path between the
regions. When correspondence is found, the two regions are replaced by a new region in
between the initial candidate regions. The regrouping technique correctly regrouped the
candidate regions in 48 percent of the masses initially detected by multiple regions. Of
the false positive regions two percent were combined, and the percentage of true positive
- false positive combinations was one.

During screening, the mediolateral oblique (MLO) and the cranio-caudal (CC) views
are the most often used projections. For the development of CAD algorithms that use
combined information from these views, corresponding regions in both views need to be
found. To this end, we have developed a method in which for all possible combinations
of candidate regions, features are calculated. These features describe the difference in
the radial distance from the regions to the nipple, gray scale correlation between the two
regions and the ’mass likelihood’ of both regions. Linear Discriminant Analysis is used
to discriminate between correct and incorrect correspondences. The method was tested
on an annotated set of 412 cases. Results showed that in 82 % of the image pairs a correct
link between the true positive regions in both views was established.

Using the established correspondences between regions in MLO and CC views, a
technique was developed to improve mass detection results. To this end, our CAD
scheme was extended by including another classifier that uses two view features. These
two view features describe the resemblance of two corresponding regions. The perfor-
mance of the two view classifier was compared with the detection performance of our
original CAD scheme using Free-response Receiver Operating Characteristic analysis.
The image based evaluation showed an improvement of 15 % in sensitivity at a false
positive rate of 0.1 FP/image.

Most CAD schemes use local features. There is a lot of interest in developing CAD
methods that use context, asymmetry, and multiple view information. It was expected
that the use of this extra information would improve CAD results. Concluding from
studies described in literature so far, however, the improvements of CAD results are either
small or not clear. Therefore, it was investigated to what extend human readers make use
of context information derived from the whole breast area and from asymmetry for the
tasks of mass detection. The results from this study showed that context information
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can be used to improve CAD programs for mass detection. However, there is still a lot
to be gained from improvement of local feature extraction and classification. This was
demonstrated by the fact that the observers did much better in classifying true positive
and false positive regions than the CAD program, even when only local information was
presented to the reader. These results can guide further development of CAD schemes.

The final chapter of this thesis describes a method for the estimation of dense breast
tissue volume from mammograms obtained with full field digital mammography. Auto-
matic determination of breast tissue density is important since breast tissue density has
been identified as an important risk factor for breast cancer development. In addition,
such a measure for breast density might be used for instance for the comparison of the
left and the right breast, and for CAD methods that use context information. The thick-
ness of dense tissue mapping to a pixel was determined by using a physical model of
image acquisition. This model is based on the assumption that the breast is composed of
two types of tissue, fat and parenchyma. Effective linear attenuation coefficients of these
tissues were derived from empirical data as a function of tube voltage, anode material,
filtration, and compressed breast thickness. By employing these, tissue composition at a
given pixel was computed after performing breast thickness compensation, using a ref-
erence value for fatty tissue determined by the maximum pixel value in the breast tissue
projection. Validation was performed using 22 cases by comparing the volume estimates
with volumes obtained by semi-automatic segmentation of breast Magnetic Resonance
Imaging (MRI) data. The correlation between MRI and mammography volumes was
high, 0.94 on a per image basis and 0.97 on a per patient basis.





Samenvatting

Voor de vroege opsporing van borstkanker zijn er in veel landen bevolkingsonderzoeken
opgestart (borstkankerscreening). Hierbij worden vrouwen in een bepaalde leeftijds-
categorie periodiek uitgenodigd om röntgenfoto’s van beide borsten (mammogram) te
laten maken. Om radiologen tijdens de beoordeling deze mammogrammen te onder-
steunen bij de opsporing van tumoren zijn nieuwe methoden in ontwikkeling, zoge-
naamde Computer-aided Detection (CAD) methoden. Hierbij wordt de computer ge-
bruikt om met beeldherkenningstechnieken verdachte gebieden in mammogrammen aan
te wijzen. Tot nu toe zijn vooral methoden ontwikkeld waarbij de computer slechts naar
een enkele opname van de borst ’kijkt’. Hiermee is het mogelijk om het grootste deel
van de tumoren correct aan te wijzen. In de praktijk maken radiologen echter gebruik
van veel meer informatie. Zo vergelijken zij opnames van de linker en de rechter borst,
opnames van dezelfde borst gemaakt onder verschillende hoeken, en opnames die tijdens
eerdere screeningsronden gemaakt zijn.

Het werk dat in dit proefschrift beschreven is betreft de ontwikkeling van computer
detectiemethoden die meer overeenkomen met de beoordelingswijze van radiologen. Het
uiteindelijke doel hierbij is het verminderen van het aantal gemiste tumoren en het ver-
minderen van het aantal onterecht (fout positief) als verdacht aangewezen gebieden. De
eerste twee hoofdstukken hebben betrekking op het vergelijken met mammogrammen
die tijdens een eerdere screeningsronde gemaakt zijn. Daarna volgen vier hoofdstukken
over het combineren van twee verschillende opnames van dezelfde borst gemaakt tijdens
dezelfde screeningsronde. Het laatste hoofdstuk beschrijft een methode voor de automa-
tische bepaling van de klierweefseldichtheid uit een mammogram. Dit kan bijvoorbeeld
gebruikt worden bij het vergelijken van de linker en de rechter borst.

Voor het presenteren van digitale mammogrammen is het van belang dat mammo-
grammen goed zijn geregistreerd. Dit zorgt ervoor dat twee verschillende opnames van
dezelfde borst beter met elkaar vergeleken kunnen worden. Twee opnames zijn goed
geregistreerd als de (mogelijke) tumor voor zowel de voorgaande als de huidige opname
op ongeveer dezelfde positie op het beeldscherm wordt weergegeven. Om de voorgaande
opname zo goed mogelijk op de huidige opname te doen lijken wat betreft positionering,
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kan de voorgaande opname bijvoorbeeld getransleerd, geroteerd en geschaald worden.
Er zijn vier methoden voor het registreren van mammogrammmen van de voorgaande en
de huidige screeningsronde (temporele mammogram paren) getest. Voor de evaluatie zijn
de afstanden tussen de tumoren op de voorgaande opname en de huidige opname voor
en na registratie vergeleken. Registratie met ’mutual information’, een registratiemaat
die gebaseerd is op grijswaarde combinaties in twee beelden, gaf de beste resultaten. De
andere methoden die getest zijn waren; uitlijnen op basis van de tepel locatie, uitlijnen
op basis van het zwaartepunt van de borst en een methode waarbij op basis van punten op
de borstcontour een ’mapping’ is gemaakt van de voorgaande opname naar de huidige.
Het registreren van mammogrammen kan ook gebruikt worden bij het ontwikkelen van
CAD algoritmen waarbij temporele informatie gebruikt wordt.

Groei van een verdichting op een mammogram is een belangrijke aanwijzing bij het
opsporen van borstkanker. Daarnaast is het herkennen van groei van belang bij het
maken van onderscheid tussen goedaardige en kwaadaardige afwijkingen. Twee tem-
porele opnames kunnen op twee manieren gepresenteerd worden, naast elkaar en achter
elkaar (toggle-mode) op het scherm. Beide methoden zijn vergeleken met het oog op
de herkenbaarheid van groei van verdichtingen. Tijdens een perceptie-experiment met
vijf waarnemers is 420 keer een afwijking gepresenteerd in opnames van twee op elkaar
volgende tijdsmomenten. Tijdens het experiment is de waarnemers gevraagd een keuze
maken in welk plaatje de grootste verdichtingen te zien was. Het bleek dat de waarne-
mers beter waren in het aanwijzen van de grootste verdichting wanneer de toggle-mode
werd gebruikt.

Soms gebeurt het dat afzonderlijke delen van grote tumoren als losse tumoren her-
kend worden door de CAD software. Dit verschijnsel bemoeilijkt de ontwikkeling van
detectietechnieken waarbij informatie uit meerdere opnames tegelijk gebruikt wordt.
Om de uiteindelijke classificatie van verdachte gebieden makkelijker te maken, is een
techniek ontwikkeld die verdachte kandidaatgebieden hergroepeert. Deze hergroepe-
ringsmethode zoekt naar kandidaatgebieden die tot dezelfde structuur behoorden. Daar-
voor is gekeken naar de afstand tussen de kandidaatgebieden en de beeldstructuur langs
een pad tussen de twee gebieden. Wanneer wordt gevonden dat beide gebieden tot
dezelfde structuur behoorden, worden deze vervangen door een nieuwe kandidaatge-
bied tussen de oorspronkelijke gebieden in. Met deze methode is het gelukt om in 48
procent van de tumoren, die initieel gedetecteerd werden door meerdere kandidaatge-
bieden, de gebieden succesvol te hergroeperen. Van de door het CAD programma fout
positief aangemerkte gebieden is twee procent gerecombineerd en het percentage terecht
positieve - fout positieve combinaties was een.

De twee opnamerichtingen gebruikt bij de screening zijn de mediolateral oblique
(MLO) en cranio-caudal (CC) opnames. Voor CAD algoritmen die gecombineerde in-
formatie uit deze opnames gebruiken is het nodig overeenkomstige gebieden in beide
projecties te vinden. Hiervoor is een methode ontwikkeld, waarbij voor alle mogeli-
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jke combinaties van verdachte gebieden uit beide opnames, is een aantal features (ken-
merken) berekend. Deze features hebben betrekking op het verschil in afstand van het
gebied tot de tepel, de grijswaarde correlatie tussen de twee gebieden en de ’tumor-
waarschijnlijkheid’ van beide gebieden. Lineaire Discriminanten Analyse is gebruikt om
onderscheid te maken tussen correcte en incorrecte combinaties. Deze methode is getest
op een set van 412 cases. De resultaten laten zien dat in 82 % van de MLO/CC op-
name paren een terecht positief gebied in de ene opname correct werd gekoppeld aan een
terecht positief gebied in de andere opname.

Door gebruik te maken van corresponderende gebieden in MLO en CC opnames is
een techniek ontwikkeld om de tumordetectie verder te verbeteren. Daartoe is het CAD
programma uitgebreid met een derde ’classifier’, een automatische leertechniek afkom-
stig uit de kunstmatige intelligentie. De invoer voor deze classifier zijn combinatie fea-
tures, kenmerken die afhangen van de mate waarin de gekoppelde gebieden op elkaar
lijken. De resultaten van deze classifier zijn vergeleken met die van het oorspronke-
lijke CAD programma met behulp van ’Free-response Receiver Operating Character-
istic’ analyse, waarbij een afweging wordt gemaakt van de detectie-waarschijnlijkheid
tegen het aantal onterecht aangegeven fout positieve gebieden. Voor 0.1 fout positief per
opname leidt dit tot een verbetering van 15 % in sensitiviteit.

De meeste CAD software gebruikt lokaal bepaalde beeldkenmerken. Er is veel be-
langstelling voor het ontwikkelen van CAD methoden die contextinformatie, asymmetrie
en de informatie uit meerdere opnames tegelijk gebruiken. Echter uit meerdere studies in
de literatuur blijkt dat deze extra informatie niet leidt tot een duidelijke verbetering van
de detectie resultaten. Daarom is er onderzocht in welke mate menselijke waarnemers
gebruik maken van contextinformatie afgeleid uit de hele opname van de borst en asym-
metrie voor tumordetectie. De resultaten laten zien dat contextinformatie de waarnemers
inderdaad helpt bij het detecteren van tumoren. Het is echter ook gebleken dat er voor
CAD programma’s nog veel winst valt te behalen uit de verbetering van lokale feature ex-
tractie. Dit is afgeleid uit het feit dat de waarnemers duidelijk beter waren in het classifi-
ceren van gebieden in echte abnormaliteiten en fout positieven dan het CAD programma.
Deze resultaten kunnen gebruikt worden voor het sturen van de verdere ontwikkeling van
CAD software.

Het laatste hoofdstuk van dit proefschrift gaat over de bepaling van de hoeveelheid
klierweefsel uit een direct digitaal verkregen mammogram. Het automatisch vaststellen
van deze klierweefseldichtheid is van belang omdat een verhoogde klierweefseldichtheid
is erkend als een belangrijke risicofactor voor het ontwikkelen van borstkanker. Verder
is een dergelijke klierweefseldichtheidsmaat goed te gebruiken bij het vergelijken van de
linker en rechter borst en bij CAD methoden die contextinformatie gebruiken. Er is een
fysisch model gebruikt om voor elke pixel in het mammogram de hoeveelheid klierweef-
sel te berekenen. Dit model gaat ervan uit dat de borst bestaat uit twee typen weefsel,
klierweefsel en vet. Door de effectieve lineaire verzwakkingscoefficienten van zowel
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klier- als vetweefsel en een borstdikte-correctie toe te passen in het model, is de weef-
selsamenstelling op een gegeven locatie bepaald. De effectieve lineaire verzwakkingsco-
efficienten van de twee weefsels types zijn bepaald uit empirische data als functie van
de buisspanning, anode en filter materiaal, en de dikte van de gecomprimeerde borst.
De methode voor het automatisch bepalen van de klierweefseldichtheid is gevalideerd
voor 22 voorbeeld gevallen. Hierbij zijn de klierweefsel volumeschattingen vergeleken
met de volumeschattingen afkomstig van semi-automatische segmentatie van klierweef-
sel verkregen door middel van Magnetic Resonance Imaging (MRI). De correlatie tussen
de uit MRI data en de uit mammografie bepaalde volumes was hoog.
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