The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/48414

Please be advised that this information was generated on 2017-06-20 and may be subject to change.
Dehydroepiandrosterone administration in humans: evidence based?

S.A. Bovenberg¹*, S.H.M. van Uum², A.R.M.M. Hermus³

¹Department of Internal Medicine, TweeSteden Hospital, PO Box 90107, 5000 LA Tilburg, the Netherlands, ²Division of Endocrinology and Metabolism, Department of Medicine, University of Western Ontario, 268 Grosvenor St., PO Box 5777, London, Ontario N6A 4V2, Canada, ³Department of Endocrinology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands, tel:+31 (0)13-465 56 39, fax: +31 (0)13-465 44 46, e-mail: sbovenberg@tsz.nl, *corresponding author

ABSTRACT

Dehydroepiandrosterone (DHEA) and its ester dehydroepiandrosterone sulphate (DHEAS) are produced by the adrenal glands. These hormones are inactive precursors that are transformed into active sex steroids in peripheral target tissues. After a peak in early adulthood, there is a marked decrease in plasma concentrations throughout adult life. These hormones are thought to affect mood and well-being, have neurosteroid effects and may influence the immune system. Animal experiments suggest that DHEA has many other effects, including anticancer, immune-enhancing, neurotropic and general antiageing effects, but information based on studies in humans is limited. In female patients with adrenal insufficiency, treatment with DHEA replacement doses of 20 to 50 mg results in improvements in mood and libido. These studies usually lasted only a few months, so the effect of chronic DHEA treatment or its effectiveness in male patients is not known. Some studies suggest a favourable effect of pharmacological doses of DHEA in the treatment of depression. DHEA may have a very limited effect on cognitive function in elderly people, and some studies suggest a beneficial immunomodulatory effect of DHEA in patients with autoimmune diseases, but further studies are warranted before introducing DHEA for these indications in clinical practice.

KEYWORDS

Adrenal insufficiency, autoimmune diseases, cognitive function, DHEA, mood, well-being

INTRODUCTION

Dehydroepiandrosterone (DHEA) and its ester dehydroepiandrosterone sulphate (DHEAS) are the main secretory products of the adrenal zona reticularis, and are known as ‘adrenal androgens’. DHEA is lipophilic, and can be converted to DHEAS by activity of the enzyme sulphotransferase in the liver and adrenal glands. DHEAS is the hydrophilic storage form that circulates in the blood, bound to albumin. DHEAS can be converted into DHEA by activity of the enzyme sulphatase in peripheral tissues. DHEA and DHEAS are inactive androgen precursors that are transformed into active sex steroids in peripheral target tissues, e.g. hair follicles, prostate, external genitalia, adipose tissue and the brain. These transformations depend on the tissue activity of metabolising enzymes and result in the production of active androgens (androstenedione, testosterone) and oestrogens (oestradiol and oestrone). In men, about 50% of androgens are derived from adrenal precursor steroids. In premenopausal women, about 75% of oestrogen synthesis occurs in peripheral target cells, and this is almost 100% in postmenopausal women.¹ The sex steroids that are derived from intracellular conversion of DHEA have their action mainly within the cells in which they are produced. The production of DHEA(S) shows a strong association with age. Serum concentrations of these androgens are low during the prepubertal period, and reach a peak in early adulthood. This is followed by a decline throughout adult life, at the 7th decade the concentrations are only 10 to 20% of the earlier individual peak concentrations.²³ In contrast, cortisol levels in men and women show a progressive increase (20% overall) with ageing.⁴ It has been suggested that the decrease in cortisol/DHEA ratio may cause a meta-
bolic shift towards a catabolic state during ageing and may negatively affect the cognitive function in the elderly.\(^4,5\) DHEA crosses the blood-brain barrier and may act in the brain as a neurosteroid via effects on neurotransmitter function. A specific nuclear hormone receptor for DHEA has not been identified, but DHEA may act on the N-methyl-D-aspartate (NMDA) receptor as a modulator of the response to NMDA or as an allosteric antagonist at the level of the \(\gamma\)-aminobutyric acid (GABA) receptor.\(^6\) DHEA increases neuronal excitability and initiates alterations in synaptic transmission in the hippocampus. Cognitive processes may therefore be influenced by DHEA.\(^7\) Animal experiments suggest that DHEA has many effects, including anticancer, immune-enhancing, neurotropic and general antiaging effects. However, most experiments with DHEA(S) have been performed in rodents, which have little circulating DHEA(S). Therefore, as DHEA physiology in humans is clearly different from that in nonprimate mammals, these experiments are of limited significance for humans.\(^1\) In the next paragraphs we focus on studies on the effects of DHEA administration in various conditions in humans.

DHEA REPLACEMENT IN ADRENAL INSUFFICIENCY

In patients with adrenal insufficiency, health-related quality of life is impaired despite adequate glucocorticoid and mineralocorticoid replacement.\(^9\) As these patients are DHEA deplete, several studies have assessed the effects of DHEA administration in adrenal insufficiency. The most important are discussed below (see also table 1). In a double-blind, placebo-controlled, crossover study, 24 women with primary or secondary adrenal insufficiency received 50 mg of DHEA or placebo orally, each for four months. Psychological and sexual functioning were evaluated using several validated questionnaires. Treatment with DHEA for four months resulted in significant improvements as compared with placebo. The greatest improvements occurred in the scores for depression and anxiety, compatible with a neurosteroidal action of DHEA. Sexuality improved as well. This was accompanied by an increase in peripheral androgen synthesis, as serum concentrations of DHEA(S), and testosterone returned to the normal range, while serum concentrations of sex hormone-binding globulin, and total and high-density cholesterol decreased. Side effects were transient and mild. The same authors did not find an effect of DHEA on carbohydrate metabolism, body composition or serum insulin.\(^10\) DHEA administration did result in a significant increase in osteocalcin as compared with placebo, suggesting an osteoanabolic effect of DHEA. There was a nonsignificant improvement in physical capacity, and sense of well-being and self-perception improved significantly after four months of DHEA treatment.\(^11\)

In another blinded, crossover study in 39 patients with Addison’s disease, the effect of an oral daily dose of 50 mg DHEA for 12 weeks was evaluated. This was the only

<table>
<thead>
<tr>
<th>Study</th>
<th>Arlt et al.(^10)</th>
<th>Hunt et al.(^12)</th>
<th>Johannson et al.(^13)</th>
<th>Løvås et al.(^14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>24 women</td>
<td>24 women, 15 men</td>
<td>38 women</td>
<td>39 women</td>
</tr>
<tr>
<td>Age range (years)</td>
<td>23-59</td>
<td>25-69</td>
<td>25-65</td>
<td>18-70</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Primary and secondary AI</td>
<td>Primary AI</td>
<td>Secondary AI</td>
<td>Primary and secondary AI</td>
</tr>
<tr>
<td>Study design</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Duration of DHEA therapy</td>
<td>9 months</td>
<td>7 months</td>
<td>6 months</td>
<td>9 months</td>
</tr>
<tr>
<td>Daily DHEA dose</td>
<td>50 mg</td>
<td>50 mg</td>
<td>30 mg (<45 years)</td>
<td>25 mg</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body composition</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>Lipids</td>
<td>Decrease TC and HDL-C</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>Bone markers and BMD</td>
<td>Increase osteocalcin level</td>
<td>BMD no change</td>
<td>Osteocalcin level unchanged</td>
<td>Osteocalcin and deoxypyridinoline unchanged</td>
</tr>
<tr>
<td>Mood/well-being</td>
<td>Improvement in scores for depression and anxiety</td>
<td>Self-esteem improved</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>Sexuality</td>
<td>Improved</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
</tr>
</tbody>
</table>

\(^1\) = double-blind, placebo-controlled, randomised, cross-over; \(^2\) = double-blind, placebo-controlled, parallel; AI = adrenal insufficiency; BMD = bone mineral density; DHEA = dehydroepiandrosterone; HDL-C = high-density lipoprotein cholesterol; TC = total cholesterol.

SEPTEMBER 2005, VOL. 63, NO. 8
study that also included men. DHEA administration resulted in significant improvement in some aspects of psychological functioning, such as self-esteem, and in improvements in mood and fatigue, especially in the evening. DHEA had no effect on libido and sexual function, memory or cognition. Further, no effect on bone metabolism was found, the authors attributed this to the short duration of treatment.

In another study, 38 women with adrenal insufficiency due to hypopituitarism were treated with oral DHEA for six months in a randomised, placebo-controlled, double-blind study, followed by a six-month open treatment period. The DHEA dose was 50 mg/day when <45 years, and 20 mg/day when >45 years. The primary goal was to study the effect on quality of life, well-being and behaviour. Treatment with DHEA did not result in a change in general well-being as compared with baseline, but the partner questionnaire did reveal an overall improvement in the DHEA-treated group. Compared with placebo, DHEA treatment did not influence sexual interest and activity, whereas during the open phase most women reported an increase. No changes in glucose metabolism, lipoproteins, IGF-1, coagulation parameters, body composition or bone metabolism were observed.

Lovás et al. treated 19 women with adrenal insufficiency with either placebo or DHEA, 25 mg/day for nine months. In the DHEA group the levels of DHEAS, androstenedione and testosterone significantly increased as compared with baseline. Health status or sexuality did not improve in the DHEA group as compared with the placebo group. Several side effects, including sweating, hirsutism, acne and itching occurred more often in the DHEA group than in the placebo group. To define a suitable replacement dose, nine patients with Addison’s disease were randomised to oral DHEA 50 mg (n=5) or 200 mg (n=4) daily for three months. Oral doses of 50 mg/day increased circulating levels of DHEA from subnormal to the upper part of the reference range for young individuals, the 200 mg dose resulted in supra-normal to the upper part of the reference range for young individuals, the 200 mg dose resulted in supra-normal to the upper part of the reference range for young individuals.

In conclusion, trials on DHEA replacement in patients with adrenal insufficiency have mainly been performed in female patients and usually lasted only a few months. Improvements in mood, health-related quality of life and libido were seen in some but not all studies and only if DHEA doses of 50 mg were administered. No convincing effects on bone density, body composition or serum lipid levels were found, and no long-term studies have been carried out to assess the possible effect of DHEA in either replacement or pharmacological dose on the incidence of cancer or cardiovascular disease.

EFFECT OF DHEA REPLACEMENT ON MOOD, WELL-BEING AND COGNITION

Ageing results in a decline in concentrations of DHEA, which may have physiological significance. Morales et al. demonstrated an improvement in self-reported physical and psychological well-being in middle-aged and elderly men and women after administration of a daily dose of 50 mg DHEA for three months. The same group also did a study on the effects of a DHEA 100 mg/day, but in this report the effect of this higher DHEA dose on well-being was not mentioned. In a double-blind cross-over study, 22 healthy male volunteers received four months of DHEA (50 mg/day) and four months placebo treatment. In these healthy men with age-related physiological decline of DHEA secretion, no obvious benefit of DHEA replacement was found. Wolkowitz et al. randomised 22 subjects with a major depression to receive either DHEA (30-90 mg/day) or placebo for six weeks. They concluded that patients treated with DHEA showed a greater antidepressant response (an overall enhancement of mood scores by 30.5%) than those who were treated with placebo. In a recently published study, six weeks of DHEA therapy in a pharmacological dose (50 mg/day for three weeks and 450 mg/day for three weeks), was compared with placebo for six weeks in men (n=23) and women (n=23) aged 45 to 65 years with midlife-onset major or minor depression. DHEA administration in a pharmacological dose was associated with a significant improvement compared with both baseline (p<0.01) and placebo treatment (p<0.01). The mechanism of the possible antidepressant effect of DHEA is unclear. DHEA crosses the blood-brain barrier and may interact directly with brain function by affecting serotonin and/or GABA receptors. Secondly, in brain cells DHEA is a precursor for testosterone and oestrogen formation, and increases in the levels of these hormones can enhance mood. Another theory suggests that a normal DHEA/cortisol ratio is required for a good balance between anabolic and catabolic steroid effects. Cortisol levels are increased in major depression, so DHEA administration may restore this ratio.

DHEA ADMINISTRATION TO IMPROVE COGNITIVE FUNCTION IN ELDERLY PEOPLE

Serum levels of DHEA(S) decrease during ageing, resulting in a progressive decrease in the serum DHEA(S)/cortisol
ratio. It has been hypothesised that this may impair cognitive function. DHEA administration may restore the DHEA(S)/cortisol ratio, thus potentially improving cognitive function and preventing neurotoxic effects of cortisol. This hypothesis resulted in four placebo-controlled clinical trials that investigated the effect of DHEA administration on cognitive function in elderly people. These studies were reviewed by Huppert et al. All four studies used a daily oral DHEA dose of 50 mg, for periods lasting less than three months. Few significant changes were found. In one study DHEA improved immediate and delayed recall in a visual memory test compared with placebo, while no improvement in a verbal memory test, nor in four other cognitive tests was seen. Another study found a deterioration in a test following a psychological stressor in the placebo group, which was not seen in the DHEA group. The other studies did not demonstrate any beneficial effects of DHEA administration. The overall conclusion of Huppert et al. was that there is very limited evidence for a beneficial effect of a daily oral dose of 50 mg DHEA on cognitive function in elderly people. Using a higher dose of 100 mg DHEA a day for three months, Flynn et al. did not find clinically meaningful changes in 39 healthy elderly men either.

DHEA Administration in Postmenopausal Women

In women the synthesis of DHEA occurs mainly in the adrenal cortex and DHEA serves as the main precursor of active oestrogens in postmenopausal women. The reduction in DHEA(S) formation by the adrenals during ageing results in a reduction in the formation of androgens and oestrogens in peripheral tissues. It has been suggested that this could influence well-being and the occurrence of osteoporosis, obesity and insulin resistance in postmenopausal women. In the last few years several trials have assessed whether administration of DHEA would be beneficial in the treatment of depression. So far, no consistent beneficial effect of DHEA administration on mood, general well-being and on cognitive function in elderly people has been found. DHEA administration in postmenopausal women needs to be assessed in larger and longer-lasting studies before therapy with DHEA is used for these purposes. Pharmacological therapy with DHEA in autoimmune diseases, such as SLE, may prove to be beneficial for these patients. More and longer-term studies are required to demonstrate the immunomodulatory effects of DHEA administration in patients with SLE. Because of its immunomodulatory effects in animal studies, DHEA administration has been studied as a potential pharmacological tool in the treatment of human autoimmune diseases. In 21 patients with severe systemic lupus erythematosus (SLE), DHEA administration (200 mg/day vs placebo for six months) was added to conventional treatment. DHEA administration had a beneficial effect on lupus outcomes and protected against steroid-induced osteopenia. This effect on bone density could not be confirmed by Hartkamp et al. Chang et al. investigated 120 adult women with active lupus, who were treated with DHEA, 200 mg/day or placebo, for 24 weeks. They found a reduction in disease flares and the patients perceived a decrease in disease activity. Side effects (acne, hirsutism) were mild.

Conclusion

DHEA is an adrenal androgen for which many effects in different clinical situations have been postulated. Many studies have been performed to assess the importance of DHEA administration. In most studies in patients with adrenal insufficiency, oral DHEA replacement is biochemically effective, well tolerated and associated with some improvement in well-being, mood and fatigue. This may at least partly be mediated by neurosteroid effects of DHEA. However, all studies have been small and short term, and studies in adrenal insufficiency have mainly been carried out in women. So far no studies have compared the effects of DHEA administration with those of other anabolic steroid hormones in patients with adrenal insufficiency. Side effects of treatment with DHEA were mild and androgen related. Some studies suggest a favourable effect of DHEA in pharmacological doses in treatment of depression. So far, no consistent beneficial effect of DHEA administration on mood, general well-being and on cognitive function in elderly people has been found. DHEA administration in postmenopausal women needs to be assessed in larger and longer-lasting studies before therapy with DHEA is used for these purposes. Pharmacological therapy with DHEA in autoimmune diseases, such as SLE, may prove to be beneficial for these patients. More and longer-term studies are required to demonstrate the immunomodulatory effects of DHEA administration in patients with SLE. Further, long-term studies would also need to assess if long-term treatment with DHEA in either pharmacological or physiological doses will have any effect on the incidence of cardiovascular or malignant disease.
REFERENCES

SEPTEMBER 2005, VOL. 63, NO. 8

304