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THE SPECIAL AUTOMORPHISM GROUP OF R[t]/(tm)[x1, · · · , xn]
AND COORDINATES OF A SUBRING OF R[t][x1, . . . , xn]

ARNO VAN DEN ESSEN, STEFAN MAUBACH AND STÉPHANE VÉNÉREAU

Abstract. Let R be a ring. The Special Automorphism Group SAutRR[x1, · · · , xn]
is the set of all automorphisms with determinant of the Jacobian equal to 1. It
is shown that the canonical map of SAutR[t]R[t][x1, · · · , xn] to SAutRmRm[x1, · · · , xn]

where Rm := R[t]/(tm) and Q ⊂ R is surjective. This result is used to study
a particular case of the following question: if A is a subring of a ring B and
f ∈ A[n] is a coordinate over B does it imply that f is a coordinate over A?
It is shown that if A = R[tm, tm+1, . . .] ⊂ R[t] = B then the answer to this
question is “yes”.

Also, a question on the Vénéreau polynomial is settled, which indicates
another “coordinate-like property” of this polynomial.

1. Introduction

Some notations: Let R be a commutative ring with one, as all the other rings
in this paper. We will denote individual variables by small letters, and lists of
variables by capitals: X := x1, . . . , xn. The polynomials in these variables with
coefficients in R form a ring, and even an algebra over R, that we will denote R[X],
R[x1, . . . , xn] or R[n] as well.

A coordinate in R[n] (also called “variable”1) is a polynomial f ∈ R[n] for which
one can find f2, . . . , fn ∈ R[n] such that R[f, f2, . . . , fn] = R[n]. One of the cen-
tral problems in affine algebraic geometry is the question under what conditions
a polynomial is a coordinate. One of the conjectures in regard to this problem is the

Abhyankar-Sathaye Conjecture (AS(n)): Let f ∈ C[n+1] and assume that
C[n+1]/(f) ∼= C[n]. Then f is a coordinate.

Notice that the converse of the conjecture is true. When f satisfies the condition
R[n+1]/(f) ∼= R[n], then f is called a hyperplane (resp. plane or line, according to
dimensions).

A lot of work has been done on attempts to solve this conjecture, and also on the
problem of classifying coordinates (see for example [1, 4, 6, 8, 11] and many others).
One of these works, [6], studied hyperplanes in C[x, y, z, u] with a prescribed form.
Some of them could be proved to be coordinates but some others could not; two of
the simplest examples of such polynomials with an indefinite status are the (now

1This can be somewhat confusing. Sometimes, the word “variable” is exclusively used for the
coordinate system that one is working with, i.e. if one writes R[x, y] then x and y are variables,
whereas x + y2 is a coordinate (and not a variable). But sometimes, especially from a geometric
viewpoint, it is natural to choose no coordinate system and view objects globally, and in these
cases “variable” is used synonymous with “coordinate”.
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called) Vénéreau polynomials y +xn[xz + y(yu+ z2)] where n = 1 or n = 2. At the
same time, independent of this work, Berson (in [1]) studied coordinates in 3 and
4 variables, but from the other side: he tried to classify which polynomials were
coordinates. The Vénéreau polynomials appeared in his work as polynomials that
he could not show to be a coordinate. So the Vénéreau polynomials are right in
the middle: maybe they are coordinates, by a (complicated?) transformation that
no one has found yet, or they are not, giving a counterexample to AS(3).

In the present paper, we describe a result which indicates that the Vénéreau
polynomial y + x[xz + y(yu + z2)] resembles a coordinate in another respect (see
below). As so very often in mathematics, perhaps even more important than this
result are the methods which we use to achieve this (the “main theorem” of this
paper comes from the methods). We study the following object:

Definition 1.1. The Special Automorphism Group of R[X], where R is a ring, is
the set

SAutRR[X] := {ϕ ∈ AutRR[X] | det( Jac(ϕ)) = 1}.
In section 3 we show our

Main Theorem. Let R be a ring containing the field of rational numbers Q, m a
positive integer and Rm := R[t]/(tm). Then the map

SAutR[t]R[X] −→ SAutRmRm[X]

induced by the canonical morphism R[t] → R[t]/(tm) = Rm is surjective.

This result is then used in section 4 to study coordinates in R[t≥m][X], where
R[t≥m] := R[tm, tm+1, . . .] = R[tm, tm+1, . . . , t2m−1]. It is shown that if f ∈
R[t≥m][X] is a coordinate in R[t][X], then f is a coordinate in R[t≥m][X].

It is worth mentioning that there exists an equivalent formulation of the Jacobian
Conjecture in terms of the automorphism group of Rm[X] (see [3]). Study of the
automorphism group of Rm[X] as in this paper and the paper [7] can help in giving
a good foundation for an attack on the Jacobian Conjecture.

2. Consequences of the main theorem

Let A ⊂ B be rings. Considering a polynomial f ∈ A[X] ⊂ B[X] the expression
over A resp. B will mean ”considered as a polynomial in A[X] resp. B[X]”.

Definition 2.1. Let A ⊂ B be rings. We will say that “B does not introduce new
coordinates over A” if for any n ∈ N∗:
f ∈ A[x1, . . . , xn] is a coordinate over B =⇒ f is a coordinate over A.

It is shown in [10] that B = Z[t] introduces new coordinates over A = Z[t2, t3, 3t],
so this does occur. Of course, an interesting general question is: under what con-
ditions does B not introduce new coordinates over A? With

A = R[t≥m] = R[tm, tm+1, . . .] = R[tm, tm+1, . . . , t2m−1] ⊂ B = R[t]

we get in section 4 the following

Corollary 2.2. Let R be a ring containing Q and m a positive integer. Then R[t]
does not introduce new coordinates over R[t≥m].
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This is a corollary of the following theorem, which in turn requires the main
result of this paper (see section 3). This theorem will also be proved in section 4.

Theorem 2.3. Let R be a ring containing Q and m a positive integer. Let f =
f(x, Y ) be a polynomial in R[t≥m][x, Y ] = R[t≥m][x, y1, · · · , yn] = R[t≥m][n+1] such
that

• f ≡ x mod tm ·R[t][x, Y ];
• f is a hyperplane over R[t].

Then f is a hyperplane over R[t≥m].

The above theorem has consequences for the Vénéreau polynomial, y + x[xz +
y(yu + z2)]: at the end of [9] (see also [5]) the following question is asked:

Question 2.4. Is A[y, z, u]/(y + x[xz + y(yu + z2)]− c) isomorphic to A[2] where
A = C[x, c]/(x2 − c3)?

An answer of “no” would settle this Vénéreau polynomial to not be a coordinate,
proving that it is a counterexample to the Abhyankar-Sathaye conjecture. Let us
shortly explain why this is the case, and see where this question came from:

Note that, when g ∈ C[n], “f ∈ C[n] is a g-coordinate” means that there exist
f3, . . . , fn ∈ C[n] such that C[f, g, f3, . . . , fn] = C[n]. As shown in [9, 5, 6, 11] (and
mentioned in the introduction), the “Vénéreau” polynomial y+x[xz+y(yu+z2)] ∈
C[x][y, z, u] fulfills a bunch of necessary conditions to be a coordinate and even an x-
coordinate of C[x][y, z, u] (e.g. it is an x-plane, meaning that C[x][y, z, u]/(f) ∼=C[x]

C[x][2]) however it is not yet known if it is a coordinate. In view of lemma 4.3 the
problem is to decide if the quotient C[x, c][y, z, u]/(y + x[xz + y(yu + z2)] − c) is
x, c-isomorphic to C[x, c][2] i.e. if y+x[xz+y(yu+z2)]−c is an x, c-plane. The idea
is to replace C[x, c] by quotients of the form A = C[x, c]/(p) where p ∈ C[x, c] and
to check if y +x[xz +y(yu+ z2)]− c is then an A-plane. If this is not the case, then
the Vénéreau polynomial is no coordinate. Now if x0 ∈ C and p = x− x0, then the
polynomial y +x0[x0z +y(yu+z2)]− c is an A-plane (since y +x0[x0z +y(yu+z2)]
is a coordinate of C[y, z, u]). Similarly, in the case that p = c− c0 for any c0 ∈ C,
the polynomial y + x[xz + y(yu + z2)]− c0 is an x-plane in the variables y, z, u. In
[9] one could find the answer for some other p’s. The simplest case that was not
settled was the “cusp” p = x2 − c3.

A consequence of theorem 2.3 is that the answer to the question is “yes”:

Corollary 2.5. A[y, z, u]/(y+x[xz+y(yu+z2)]−c) ∼= A[2] where A = C[x, c]/(x2−
c3).

Proof. Let us change notation to match notations of theorem 2.3: replace x, c, y, z, u
by t2, t3, x, y1, y2, thus replace C[x, c]/(x2 − c3) by C[t2, t3] = C[t≥2] and replace
y +x[xz + y(yu+ z2)]− c by x+ t3[t3y1 +x(xy2 + y2

1)]− t2. As required in theorem
2.3 (with R = C,, Y = (y1, y2), m = 2 and f = x + t3[t3y1 + x(xy2 + y2

1)] − t2 )
one has f ≡ x mod t2 · C[t][x, Y ]. The condition “f is an hyperplane over C[t]” is
not obvious to check but can be retrieved from e.g. [6]. Then we get the desired
conclusion that f is a (hyper)plane of C[t2, t3][x, y1, y2]. ¤

3. Surjectivity of the Special Automorphism Group

The following notations and assumptions are fixed throughout the rest of the
article:
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• R is a ring containing Q i.e. R is a Q-algebra;
• m is a positive integer and Rm := R[t]/(tm);
• if f ∈ R[t][X] then f mod tm denotes the polynomial in Rm[X] obtained

from f by reduction modulo tm;
• if no confusion (about the value of m) is possible, we will denote this poly-

nomial by f̄ ;
• similarly, if F = (F1, . . . , Fn) ∈ R[t][X]n we define F̄ := (F̄1, . . . , F̄n).

In this section we prove the

Main Theorem. The map

SAutR[t]R[t][X] −→ SAutRm
Rm[X]

F 7−→ F̄

is surjective.

Note that without the ”S” in SAut the corresponding map is not surjective
anymore. The reason is that the map R[t][X]× → Rm[X]×, where × denotes the
set of invertible elements, is not surjective. For example there is no p ∈ R[t][X]×

such that p̄ = 1 + t̄ ∈ Rm[X]× and consequently there is no F ∈ AutR[t]R[t][X]
such that F̄ = ((1 + t̄)x1, x2, · · · , xn) ∈ AutRmRm[X].
Before we can prove the Main Theorem we need some preparations.

Lemma 3.1. Let H = (H1, . . . , Hn) ∈ R[X]n and G = (G1, . . . , Gn) ∈ R[X]n. Put
h := X + εm−1H and g := X + εm−1G, where ε = t̄ ∈ Rm.Then

(1) h ◦ g = X + εm−1(H + G)
(2) h ∈ AutRmRm[X] (with inverse X − εm−1H)
(3) h ∈ SAutRmRm[X] iff ∂

∂x1
H1 + . . . + ∂

∂xn
Hn = 0

Proof. (1) and (2) are immediate. To see (3) just observe that det( Jac(h)) =
1 + εm−1( ∂

∂x1
H1 + . . . + ∂

∂xn
Hn). ¤

Lemma 3.2. Let (H1, H2) ∈ R[x, y]2 and f = (x, y)+εm−1(H1,H2) ∈ SAutRmRm[x, y].
Then there exists G ∈ SAutR[t]R[t][x, y] such that Ḡ = f .

Proof. (i) Since det( Jac(f)) = 1 we get ∂
∂xH1 + ∂

∂y H2 = 0 (by 3.1(3)). So there
exists P ∈ R[x, y] with H1 = Py and H2 = Px (see [2], 1.3.53). So f = (x, y) +
εm−1(Py,−Px). Since P is a sum of monomials, it follows from 3.1(1) that we may
assume that P = rxiyj for some r ∈ R and i, j ≥ 0. It is well-known that each
monomial xiyj is a Q-linear combination of polynomials of the form Ld, where
d = i + j and L = x + qy with q ∈ Q (see for example Exercise 1, paragraph 5.2 in
[2]). Therefore, again by 3.1(1), we may assume that P = rLd for some r ∈ R and
q ∈ Q.
(ii) Finally consider the derivation D = tm−1((rLd)y∂x − (rLd)x∂y)
(= tm−1rdLd−1(q∂x − ∂y)). Then D is a locally nilpotent derivation on R[t][x, y].
So G = exp(D) = (x, y)+tm−1(Py,−Px) ∈ AutR[t]R[t][x, y]. From the special form
of P it follows that det( Jac(G)) = 1. So G ∈ SAutR[t]R[t][x, y]. Since H1 = Py

and H2 = −Px it follows that Ḡ = f , as desired. ¤
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Corollary 3.3. Let F = X + tm−1H ∈ EndR[t]R[t][X] with H ∈ R[X]n. If
F̄ ∈ SAutRmRm[X], then there exists F∗ ∈ SAutR[t]R[t][X] such that F̄∗ = F̄ .

Proof. By induction on n. The case n = 1 is obvious, so let n ≥ 2. Put x := x1, y =
x2 and A := R[x3, . . . , xn]. (So A = R if n = 2.) Choose K2 ∈ R[X] = A[x, y]
such that ∂

∂xH1 + ∂
∂y K2 = 0. Then by 3.1(3), (x, y) + εm−1(H1,K2) satisfies the

hypothesis of 3.2 (with A instead of R). So there exists G ∈ SAutA[t]A[t][x, y] with
Ḡ = (x, y)+εm−1(H1,K2). Obviously G defines an element of SAutR[t][x1, . . . , xn],
which we also denote by G. Then by 3.1(1) we get

G−1 ◦ F = Ḡ−1 ◦ F̄ = X + εm−1(0, H̃2, . . . , H̃n)

for some H̃i ∈ R[X]. Now the result follows from the induction hypothesis. ¤

Proof (of the main theorem) By induction on m. The case m = 1 is obvious, so
let m ≥ 2 and assume that the theorem holds for m− 1. Let f ∈ SAutRmRm[X].
So f = F̄ where F = F0 + tF1 + . . . + tm−1Fm−1 for some Fi ∈ R[X]n. Re-
ducing F̄ modulo the element t̄m−1 (∈ Rm) it follows that f∗ := F∗ mod tm−1

belongs to SAutRm−1Rm−1[X], where F∗ = F0 + tF1 + . . . + tm−2Fm−2. (Use
that Rm/(t̄m−1) ∼= R[t]/(tm−1) = Rm−1.) By the induction hypothesis there ex-
ists G ∈ SAutR[t]R[t][X] such that G = F∗ mod tm−1. So G−1 ◦ F ≡ X + tm−1H

mod tm for some H ∈ R[X]n. Finally, by 3.3 there exists G̃ ∈ SAutR[t]R[t][X] such
that G̃ ≡ X + tm−1H mod tm ≡ G−1 ◦ F mod tm. So G ◦ G̃ ∈ SAutR[t]R[t][X]
has the desired property that G ◦ G̃ ≡ F mod tm.

4. Hyperplanes and coordinates of R[t2, t3][x, Y ]

In this section we will prove the results announced in section 2. Recall that
R[t≥m] denotes R[tm, tm+1, · · · ] = R[tm, tm+1, · · · , t2m−1].

Remark 4.1. One has
R[t≥m] ⊂ R[t] ³ Rm

and ∀a ∈ R[t], a ∈ R[t≥m] if and only if ā ∈ R.

The following two lemmas are well-known:

Lemma 4.2. Let S be any ring. A polynomial f = f(X) ∈ S[X] is a hyperplane
resp. a coordinate if and only if its canonical image in (S/ν)[X] is, where ν is the
nilradical of S.

Lemma 4.3. Let S be any ring. A polynomial f ∈ S[X] = S[n] is a coordi-
nate if and only if S[X] is S[f ]-isomorphic to S[f ][n−1] (the prefix ‘S[f ]’ means
‘as S[f ]-algebras’). This condition is equivalent to the following: f − c is a S[c]-
hyperplane of S[c][X] where c is an additional indeterminate (here again the prefix
‘S[c]’ means that the isomorphism required in the definition of ‘hyperplane’ is a
S[c]-isomorphism: S[c][X]/(f − c) 'S[c] S[c][n−1] ).

In the proof of theorem 2.3 we will need the following easy lemma.

Lemma 4.4. Let Z = (Z1, · · · , Zn) ∈ R[X]n = R[x1, · · ·xn]n be such that

R[X]/(Z1) = R[Z̃2, · · · , Z̃n] ' R[n−1]

where ˜ denotes the image by the canonical epimorphism : R[X] → R[X]/(Z1).
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Then the jacobian determinant of Z with respect to X, j̃X(Z), i.e. the determi-

nant of the jacobian matrix, (̃∂Zi

∂xj
), is an invertible element of R[X]/(Z1).

Proof. By assumption

R[X] = R[Z2, · · · , Zn] + (Z1) = R[Z2, · · · , Zn] + Z1 ·R[X]
= R[Z2, · · · , Zn] + Z1 · (R[Z2, · · · , Zn] + Z1 ·R[X])
= R[Z] + (Z2

1 )

hence there exists P = (P1, · · · , Pn) ∈ R[X]n such that

X = P (Z) + Z2
1 ·R[X]n

but then

Id = JacX(X) = JacX(P (Z)) + Z1 ·M ( for some M ∈ Matn×n(R[X]))
Id = JacX(P )(Z) · JacX(Z) + Z1 ·M

and the conclusion follows. ¤

Now we can give the proof of 2.3. Notice that in this lemma, the Main Theorem
is used.

Proof (of theorem 2.3). In view of lemma 4.2 one may assume that R[t] and hence
R is reduced. By assumptions there exists G = (G1, . . . , Gn) ∈ R[t][x, Y ]n such
that

R[t][x, Y ]/(f) = R[t][G̃1, . . . , G̃n] ' R[t][n]

where ˜ denotes the image by the canonical epimorphism : R[t][x, Y ] → R[t][x, Y ]/(f).
By lemma 4.4,

˜jx,Y (f, G) ∈ R[t][x, Y ]/(f)×

but since R[t][x, Y ]/(f) ' R[t][n] and R[t][n]× = R× (R is reduced!) we have

˜jx,Y (f, G) ∈ R× .

Up to multiplying G1 by the inverse of this latter scalar (which does not modify
R[t][G̃1, . . . , G̃n]) one may therefore assume that

˜jx,Y (f, G) = 1.

Now remark that since f = x one may identify

R[t][x, Y ]/(f) = Rm[x, Y ]/(f) = Rm[x, Y ]/(x)

with Rm[Y ] = R
[n]
m by taking x to 0. So we have

Rm[G(0, Y )] = Rm[Y ]

with

1̃ = ˜jx,Y (f, G) = ˜jx,Y (x,G) = j̃Y (G) = jY (G(0, Y )).

Hence G(0, Y ) ∈ SAutRmRm[Y ] and by the Main Theorem there exists H ∈
SAutR[t]R[t][Y ] such that H = G(0, Y ). This automorphism extends naturally to
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R[t, x][Y ] and we get R[t][G̃] = R[t][H−1(G̃)] with H−1(G̃) = H
−1 ◦G(0, Y ) = Y .

Hence with G′ := H−1(G) instead of G one has

R[t][x, Y ]/(f) = R[t][G̃′]

with G′ = Y mod (x) = Y mod (f). Up to adding to G′ some multiple of f ,
which does not affect R[t][G̃′] one can hence assume that G′ = Y and, in view of
remark 4.1, G′ ∈ R[t≥m][x, Y ]n. Let (p,Q1, · · · , Qn) = (p,Q) ∈ R[t][x1, · · · , xn]n+1

be such that x̃ = p(G̃′) and Ỹ = Q(G̃′). One has then 0 = p(G′(0, Y )) = p(Y ) and
Y = Q(G′(0, Y )) = Q(Y ) therefore (p,Q) ∈ R[t≥m][X]n+1 (again by 4.1). Hence
we have

R[t≥m][x, Y ]/(f) = R[t≥m][G̃′] ' R[t≥m][n]

i.e. f is an hyperplane of R[t≥m][x, Y ]. ¤

Now we prove corollary 2.2:

proof (of corollary 2.2). In order to fit the notations of theorem 2.3 we replace Y
by x, Y which is harmless. Let p ∈ R[t≥m][x, Y ] be a variable over R[t]. We
have to show that p is a variable over R[t≥m] i.e. a variable in R[t≥m][x, Y ]. In
view of lemma 4.3 this amounts to show that p − c is a R[t≥m][c]-hyperplane of
R[t≥m][c][x, Y ].

By assumptions p is a coordinate of R[t][x, Y ] hence p− c is a R[t, c]-coordinate
of R[t, c][x, Y ] and p− c mod (t) is a R[c]-coordinate of R[c][x, Y ] i.e. there exists
α ∈ AutR[c]R[c][x, y] such that α(x) = p− c mod (t) i.e α−1(p− c) = x mod (t).
This automorphism has a natural extension to R[t≥m][c][x, Y ]. It is now sufficient
to prove that f := α−1(p − c) is an R[t≥m][c]-hyperplane of R[t≥m][c][x, Y ]. We
have f = x mod (t) i.e. f − x ∈ (t) but f and x are in R[t≥m][c][x, Y ] hence
f − x ∈ (t) ∩ R[t≥m][c][x, Y ] = (tm) i.e. f = x and theorem 2.3 (with R[c] instead
of R) concludes. ¤
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