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Abstract

Treating ventilator-associated pneumonia in me-
chanically ventilated patients in intensive care
units is seen as a clinical challenge. In this pa-
per, we develop a dynamic-decision model that
explicitly captures the development of the dis-
ease over time. To represent the dependencies
between the variables involved in a compact way
we use a dynamic Bayesian network and com-
bine it with the framework of partially observ-
able Markov decision processes to choose opti-
mal antimicrobial therapy for respiratory tract in-
fections. We discuss implementation issues and
modelling advantages of our model and demon-
strate its use for a number of real patients.

1 Introduction
Many patients admitted to an intensive care unit (ICU) need
respiratory support by a mechanical ventilator, which pro-
motes the development of ventilator-associated pneumonia
(VAP) in these patients. Effective and fast treatment of VAP
is seen as an issue of major significance. The difficulty in
diagnosing VAP is in the lack of an accurate, non-invasive
(that is, patient-friendly) gold standard; VAP is therefore
diagnosed by taking a number of different clinical features
into account[9; 14].

A prominent role in the development of VAP is played
by two stochastic processes:colonisationof the laryngotra-
cheobronchial tree by pathogens and the onset and develop-
ment ofpneumonia. A dynamic Bayesian network, called
dVAP was developed that explicitly captures the temporal
relationships between the variables involved[5]. This net-
work takes into account the patient’s characteristics from
earlier days when performing diagnosis. The numerical
part of the network was constructed from estimations by
infectious-disease experts and from the literature. In a later
stage these probabilities were updated through machine
learning using collected patient data, which resulted in a
better diagnostic performance of the model.

The treatment of VAP is seen as a significant problem
by ICU doctors. Firstly, many of the patients suffering
from VAP are severely ill. Secondly, the presence of multi-
resistant bacteria in clinical wards, in particular the ICU,
makes prescription of antibiotics with a spectrum as narrow

as possible essential; the description of broad-spectrum an-
tibiotics promotes the development of antimicrobial resis-
tance, and should therefore be avoided when possible. In
this paper, we address optimal therapy selection using the
dVAP model. For this purpose, we focus on the frame-
work of partially observable Markov decision processes
(POMDPs)[1; 7; 12; 15] for sequential decision making.

Although the standard POMDP framework in essence al-
lows us to capture the main elements of choosing a therapy
of VAP, it cannot be used directly, mainly because: (1) the
number of parameters required can be huge, and (2) ex-
act methods for solving the problem are computationally
very demanding and only small problems can be solved ex-
actly. In view of these considerations, we extend the dVAP
network and construct a dynamic-decision model that in-
corporates the uncertainty included in the treatment proce-
dure. We then use the Perseus algorithm for its evaluation
[16]. Perseus is a point-based approximate value-iteration
algorithm for POMDPs that achieves competitive perfor-
mance both in terms of solution and speed comparing to
alternative (and more complex) algorithms in the literature
[3]. Perseus can moreover be easily implemented in prac-
tice [13]. Perseus, however, is designed for problems with-
out any structure among the variables representing the state
of the process. We enhance the applicability of Perseus for
our structured domain to take advantage of the factorisa-
tions and independencies among the variables included in
the dVAP model.

We tested the resulting model on a group of patients
drawn from the files of the ICU of the University Medical
Center Utrecht in the Netherlands. The solutions obtained
indicate that our dynamic-decision model provides a use-
ful framework for solving and analysing complex decision
problems. Our results in fact advocate further application
of Perseus in structured domains of other medical therapy
problems.

The remainder of this paper is organised as follows. In
Section 2, we describe the dVAP network for the diagnosis
of VAP. In Section 3 we describe the basics of the POMDP
framework and of the Perseus algorithm; in Section 4 we
discuss modelling and computational issues related to ap-
plying Perseus to decision making for patients with VAP.
Section 5 presents and discusses the results from an evalu-
ation study. Finally, the paper ends with our conclusions in
Section 6.
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2 Diagnosing VAP
We begin by discussing the pathophysiology of VAP and
then describe the dVAP model that captures the develop-
ment of VAP.

2.1 Pathophysiology of VAP
Ventilator-associated pneumonia is, when looking at a daily
level, a low-prevalence disease occurring in mechanically-
ventilated patients in critical care and involves infection of
the lower respiratory tract[2]. In contrast to infections of
more frequently involved organs (such as the urinary tract),
for which mortality is low, ranging from 1 to 4%, the mor-
tality rate for VAP ranges from 24 to 50% and can reach
76% for some high-risk pathogens. Variables that change
due to the development of VAP, among others, are an in-
creasedbody temperature, an abnormal amount of coloured
sputum, signson the chest X-ray, the duration ofmechani-
cal ventilation, and an abnormal number ofleukocytes.

The relationship between thecolonisationby pathogens
and the development ofpneumoniais captured as follows.
Periodically, a sample of the patient’s sputum is cultured
at the laboratory. When the culture shows a number of
colonies of a particular bacterium that is above a partic-
ular threshold, the patient is said to be colonised by this
bacterium. The seven groups of microorganisms that occur
most frequently in critically ill patients and cause colonisa-
tion, are modelled in thediagnostic partof the network.
Information about which bacterium or bacteria are cur-
rently present in a patient and the current signs and symp-
toms constitute the basis for choosing optimal antimicro-
bial treatment.

2.2 A dynamic model for diagnosis
A dynamic Bayesian network(DBN) is a graphical model
that encodes a joint probability distribution on a set of
stochastic variables, explicitly capturing the temporal re-
lationships between them. More formally, letVn =
(V 1

n , . . . , V m
n ), m ≥ 1, denote the set of variables at time

n. Then, a dynamic Bayesian network is a tuple(B1, B2),
whereB1 is a Bayesian network that represents the prior
distribution for the variables in the first time sliceV1, and
B2 defines the transitional relationships between the vari-
ables for two consecutive time slices, so that for everyn≥2

p(Vn | Vn−1) =
m∏

i=1

p(V i
n | π(V i

n))

whereπ(V i
n) denotes the set of parents ofV i

n, for i =
1, . . . ,m.

DBNs are usually assumed to be time invariant, which
means that the topology and the parameters of the network
per time slice and across time slices do not change. More-
over, the Markov property for transitional dependence is
assumed, which means thatπ(V i

n) can include variables ei-
ther from the same time slicen or from the previous slice
n − 1, but not from earlier time slices[10]. Then, by un-
rolling B2 for N time slices, a joint probability distribution
p(V1, . . . ,VN ) is defined for which the following decom-
position property holds:

p(V1, . . . ,VN ) =
N∏

n=1

m∏

i=1

p(V i
n | π(V i

n))

Figure 1: The dVAP network for the diagnosis of VAP;
clear variables are hidden, shaded variables are observable.
The dashed boxes indicate the hidden processes.

Monitoring in a DBN is the task of computing the proba-
bility distribution for a set of variables of interestXn ⊂ Vn

at timen given the observations that are available up to and
including timen.

2.3 Modelling and computational issues
An overview of the structure of the dynamic network con-
structed for the diagnosis of VAP[5] is depicted in Figure 1.
The dVAP network includes two interacting dynamic hid-
den processes, modelled by the compound variablescoloni-
sation(7 variables) andpneumonia(8 variables). The pro-
cess of colonisation is influenced by three input variables:
hospitalisation, mechanical ventilationand previous an-
tibiotics, and one hidden variableaspirationthat in essence
controls its dynamics. We note that the variableshospital-
isation andmechanical ventilationare observed for a pe-
riod that is longer than the transition interval of the model.
The variables thus are modelled as affecting adjacent time
slices. The variableprevious antibioticsrepresents the ef-
fect of previous medication to the patient on the process of
colonisation. The symptoms and signs of pneumonia are
depicted in Figure 2. These variables are included in the
diagnostic partof the network.

The practicability of the dVAP network depends to a
large extent on the computational burden of inference with
the network. For diagnosing patients with VAP, monitor-
ing is performed at each time. For this purpose, theinter-
face algorithmcan be applied[10]. This algorithm is an
extension of thejunction-tree algorithmfor inference with
Bayesian networks in general[6] and efficiently exploits
the forward interface of a dynamic network. Recall that the
forward interface is the set of variables at time slicen that
affect some variables at time slicen + 1 directly. Note that
the interface algorithm is linear in the total number of time
slices and for large time scopes, the computation time can
prove to be prohibitive in practice.

Recent results show that, in case consecutive similar ob-
servations are obtained, the probability distribution of the
hidden process converges to a limit distribution within a
given level of accuracy[4]. After some number of time
slices, therefore, there is no need for further inference as
long as similar observations are obtained. The phenomenon
of consecutive similar observations was evident for several
patients in the ICU files. For example, for these patients
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Figure 2: Symptoms and signs of pneumonia.

it was found that the same combination of values was ob-
served for all or almost all of the observable variables for a
number of consecutive days. On a set of ICU patients, test
results indicated that representing time explicitly and tak-
ing into consideration the history of the patient increased
diagnostic performance[5].

3 Therapy planning
In this section we describe our approach to solving the
dynamic-decision model for patients with VAP. We begin
with the theoretical background of POMDPs.

3.1 Basics of POMDPs
Partially Observable Markov Decision Processes
(POMDPs) constitute a common framework for deci-
sion making about complex dynamic processes where the
state of the process cannot be fully observed[1; 7; 15;
16]. A POMDP more specifically describes a stochastic
process of which the states are hidden and for which
decisions can only be based on observations seen and past
actions performed.

Formally, a POMDP is a 6-tuple(S, Θ, A, P, O,R)
whereS is a finite set of states of the hidden process;Θ
is a finite set of observations (findings, results of diagnostic
tests);A is a finite set of actions;P : S × A × S → [0, 1]
is a set ofMarkovian transition models, one for each action
α, such thatpα(s′ | s) represents the probability of going
from states to s′ with actionα; O : S×A×Θ → [0, 1] is a
set ofobservation models, one for each actionα, such that
pα(o | s′) represents the probability of making observation
o after taking actionα and transitioning to states′; andR
is a reward functionR : S × A × S × Θ → R, such that
R(s, α) represents the expected reward received in states
after taking actionα.

Given a POMDP, the goal is to construct acontrol policy
that maximizes anobjective (value) function. The objec-
tive function combines rewards over multiple time slices,
and typically is the expectation of the cumulative sum of
rewardsrn at each timen over afinite-horizonof N slices,
that isE(

∑N
n=1 rn), or over adiscounted infinite-horizon,

that isE(
∑∞

n=1 γnrn), where0 < γ < 1 is a discount rate.
In this paper we focus on the discounted infinite-horizon
model as in previous applications of POMDPs in medicine
[7].

A belief stateb assigns a probabilityb(s) to every possi-
ble states ∈ S. There thus are an infinite number of possi-

ble belief states over S. An optimal policy forb has avalue
functionthat satisfies the Bellman optimality equation

V ∗(b)=max
α∈A

[
r(b, α) + γ

∑

o∈Θ

p(o | b, α)V ∗(τ(b, α, o))
]

(1)
where

• r(b, α) =
∑

s∈S b(s)R(s, α);
• p(o |b, α)=

∑
s′∈S p(o |s′, α)

∑
s∈S p(s′ |s, α)b(s);

• τ(b, α, o)∝p(o |s, α)
∑

s′∈S p(s |s′, α)b(s′);

in whichr(b, α) represents the expected reward for a belief
stateb and current actionα, p(o | b, α) represents the prob-
ability of making observationo one time slice ahead under
current actionα for a belief stateb, andτ(b, α, o) is the
update of the belief state given a previous belief stateb and
actionα, and a current observationo. The optimal policy
µ∗ : b → A now selects the value-maximizing action

µ∗(b)=argmax
α∈A

[
r(b, α)+γ

∑

o∈Θ

p(o | b, α)V ∗(τ(b, α, o))
]

In order to compute the value functionV ∗(b) in equation
(1) we can use thevalue iteration algorithm[15], which
guarantees that the sequence of value function approxima-
tionsVi defined as

Vi(b)=max
α∈A

[
r(b, a)+γ

∑

o∈Θ

p(o |b, α)Vi−1(τ(b, α, o))
]

(2)
converges to the optimal solution. An important prop-
erty of this approximation sequence is that the value func-
tionsVi(b) in equation (2) are piecewise linear and convex,
which allows for computing the update in finite time for the
complete belief space[1]. However, the computational cost
of doing so is high for all but trivial problems, and thus sev-
eral methods have been proposed in the literature that try to
approximate the optimal value functionV ∗ [8].

3.2 The Perseus algorithm
Perseus is an efficient point based approximate value itera-
tion algorithm for POMDPs[16]. The main idea is to use
a set of reachable belief statesB that are sampled from
the belief simplex to perform value function updates, en-
suring that in each iteration the new value function is an
upper bound to the previous value function, as estimated
on the sampled set of belief states. The intuition behind
this approach is that in most practical problems the belief
simplex is sparse, in the sense that only a limited number of
belief states can ever be reached by letting the hidden pro-
cess interact with its environment. The algorithm performs
value function updates, making sure that in each step the
new value function estimateVi+1(b) is an upper bound for
Vi(b) for all b ∈ B. The major advantage of Perseus is that
in each iterationi it uses only a (random) subset of states
in B until the valueVi(b) of everyb ∈ B has improved or
remained the same. This property makes the algorithm effi-
cient even in problem domains with large state spaces com-
pared to other approximate methods[8]. We note, however,
that the Perseus algorithm has been designed for POMDPs
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Figure 3: The dynamic-decision network for therapy selec-
tion of VAP. Action choice is represented as a rectangle and
the reward function as a diamond. The observable variables
are excluded for clarity.

with flat belief state, that is, for states without any type of
internal structure. To incorporate Perseus into our approach
to solving the dynamic-decision model for VAP, we have to
enhance its applicability to more structured domains. We
discuss such modifications in the next section.

4 Decision making for VAP
The aim of our dynamic-decision model is to aid clinicians
in dealing with patients with suspected VAP. Optimal an-
timicrobial therapy for VAP is selected by balancing the
expected efficacy of treatment, which is related to the num-
ber of pathogens causing the infection, against the spec-
trum of antimicrobial treatment. Each of the seven mod-
elled groups of pathogens are susceptible to particular an-
tibiotics. Some of these pathogens are easy to cover. For
these pathogens, a narrow or even very narrow antimicro-
bial spectrum is sufficient. Some pathogens, however, are
more difficult to eradicate. Here, we need broader spec-
trum antibiotics. The problem of prescribing unnecessarily
broad-spectrum antibiotics is the occurrence of antibiotic
resistance, which means that pathogens are no longer sus-
ceptible to a particular antibiotic. Antibiotic resistance is
a well-known problem in health-care[2]. Our dynamic-
decision model now incorporates the idea of prescribing
antibiotic spectra as narrow as possible. The narrower
the spectrum, the higher the preference. How well the
pathogen is covered by an antibiotic times the preference of
the broadness of its spectrum gives the final utility of pre-
scribing this antibiotic[9]. The prescribed treatment thus
is a trade-off between maximising coverage and narrowing
broadness of spectrum.

To incorporate for decision making in the dVAP model,
we add a decision-theoretic part that represents the effect of
selected therapy on the probability distribution of VAP. Fig-
ure 3 depicts the resulting model. The dynamic-decision
model includes the hidden compound variablesusceptibil-
ity (8 variables) that represents the susceptibility of the sus-
pected pathogens to particular antibiotics. A causal in-
dependence model, known as the noisy-AND gate[9], is
used to model the conjunctive effect of antibiotics on the
susceptibility of pathogens. The model thus includes 24 bi-

nary hidden variables with224 possible configurations. The
therapyvariable includes 26 different antibiotics or combi-
nations of antibiotics and the value ”none” indicating that
the clinician does not prescribe any antibiotic to the patient.
These antibiotics have been further classified into four dif-
ferent groups from very narrow to very broad, according to
their spectrum. The reward function is thus based on these
four spectrum groups and has been assessed by a domain
expert[14]. Insight into the potential efficacy of treatment
can be obtained by entering symptoms and signs of a pa-
tient. In total, the model contains 13 observable variables
with 1382400 possible configurations.

At first sight, it seems impossible for Perseus or for any
other algorithm to solve our model since both|S| and|Θ|
are extremely large. However, an important feature of our
model is that its state and observation sets are not flat, but
structured in a factored way. More specifically, the states
and the observations of the model are not represented enu-
meratively but via hidden and observation variables respec-
tively. We further note that although the hidden state of our
model consists of 24 variables, only the variables pneumo-
nia and susceptibility are important for decision making.
Now, to make efficient use of the Perseus algorithm, we
compute the joint probability distribution of just these two
variables, which can be done in a similar manner to moni-
toring in the dVAP model. Our implementation of Perseus
in addition takes into account that some variables in the
forward interface are observable. Since, for example,im-
munological statusis always observed andcolonisationcan
be observed for some days, the belief state is modelled as
a hybrid state with an observed and a hidden component
[7]. Finally, we observe from Figure 2 that we have to con-
sider just six observable variables that are probabilistically
affected by pneumonia.

To decrease the computational burden of applying
Perseus, we further do not take all observable variables into
account when computing the summation in equation (2).
That is, upon applying Perseus we sample belief states re-
flecting realistic data settings only. For example, VAP by
definition may be initiated after a patient has been venti-
lated for more than two days. The state of the mechanical
ventilation variable can thus be selected in every iteration
of equation (2), from among just the states in which the
duration of the ventilation is greater than two days.

As a result of the above modifications, the setΘ in-
cludes to 768 possible combinations, and thus is smaller
in size than the original set by a factor 1800. The afore-
mentioned considerations were used initially to create a set
of reachable belief statesB and then to apply Perseus with
γ = 0.95. In our experiments on a 2.4 GHz Intel(R) Pen-
tium computer, creatingB took1.5 seconds per belief state,
while computing an optimal policy took approximately one
minute using a total of10000 sampled belief states.

5 Evaluation
We examined the performance of our dynamic-decision
model on5 patients diagnosed with VAP randomly selected
from a prospectively collected database of ICU patients.
Using the dVAP network we monitored these patients and
computed their belief state per day for a total of10 days.
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day p(VAP) + colon.path. antibiotic

2 0.2295
- none
- meropenem (b)

3 0.0049
Enterobacteria2 cotrimoxazol (n)

- none

4 0.0052
- cotrimoxazol (n)
- none

5 0.0848
- cotrimoxazol (n)
- none

6 0.3401
- none
- cotrimoxazol (n)

7 0.0363
- none
- erythromycin (vn)

8 0.0017
P.aeruginosa cotrimoxazol (n)

Enterobacteria2 none

9 0.0012
P.aeruginosa cotrimoxazol (n)

Enterobacteria2 none

10 0.0046
- cotrimoxazol (n)
- none

(a) patient A

day p(VAP) + colon.path. antibiotic

2 0.028
- none
- cotrimoxazol (n)

3 0.0344
- none
- cotrimoxazol (n)

4 0.1905
Enterobacteria2 cotrimoxazol (n)

S.aureus erythromycin (vn)

5 0.5929
- cotrimoxazol (n)
- erythromycin (vn)

6 0.5445
- cotrimoxazol (n)
- erythromycin (vn)

7 0.9823
- cotrimoxazol (n)
- erythromycin (vn)

8 0.9791
Acinetobacter ceftazidim (i)

- aztreonam (i)

9 0.9459
Acinetobacter cotrimoxazol (n)

S.aureus, S.pneumoniae meropenem (b)

10 0.9918
- cotrimoxazol (n)
- meropenem (b)

(b) patient B

Table 1: The best two recommendations (and their spectrum in parenthesis) at each time slice for two patients. Abbrevia-
tions for antibiotic spectrum: vn=very narrow; n=narrow; i=intermediate; b=broad.

Contrary to an earlier evaluation of the diagnostic perfor-
mance of the dVAP network[5], we took into account the
sparse colonisation data that existed in the datasets of some
patients. In contrast to the data for the observable variables
that were readily available, the colonisation data were pro-
vided by the laboratory from sputum cultures and took on
average 48 hours to become available. Also, these data con-
cerned only a (small) subset of colonisation pathogens and
were observed for a few days (maximum 3). To process the
colonisation data, we assumed that whenever there was a
positive culture for a specific pathogen on a specific day,
then the values of the other non-observed pathogens were
set to negative. We are aware that this assumption should
be used with care. More specifically, the transition matrices
estimated by the expert[5] suggested that, under particular
conditions, if a pathogen is positive (negative) on one day
then it cannot be negative (positive) on the next day. For
one patient for example, we noticed upon processing the
available data, that on day 8 we assumed the presence of
S.aureus and S.pneumoniae to be negative while these two
pathogens were actually observed to be positive on day 9.
To resolve this issue, we made no assumption about these
two pathogens on day 8 and left their value as unobserved.

We compared the recommended decisions from the
model with an expert opinion as to the most appropriate
antibiotics to cover the likely pathogens. The results were
not entirely satisfactory in the opinion of the expert. For
one patient, for whom no colonisation data were available,
we found that the decisions recommended by the model
were acceptable; for two patients the model recommended
too broad a spectrum antibiotics, while for the other two
patients the recommended antibiotics did not cover the ob-

served pathogens. A possible explanation of this subop-
timal performance of the model is that its decisions are
strongly affected by the probability of VAP at each time
and less by the colonising pathogens; that is, the prescrip-
tion of antibiotics is heavily dominated byp(VAP), while
less weight is given to the presence of colonisation data.
For example, if on a specific day a patient has a very small
p(VAP) but a positive colonising pathogen, then the model
will abstain from prescribing antibiotics and will not use
a narrow spectrum antibiotics as would be expected. An-
other reason is that the influence of the colonisation data
on the recommended decision diminished with time ac-
cording to the specification of the model. More precisely,
since colonisation data are sparsely observed, a colonisa-
tion pathogen found to be positive on one day will have
minor effect on the decision taken two days later because
of the Markov assumption underlying the dVAP network.

In view of the above considerations, we enhanced our
decision model to incorporate the influence of the colonisa-
tion data on the recommended decision in a more appropri-
ate fashion. For each colonisation (group of) pathogen(s)
found to be positive on a given day, we force the model to
prescribe antibiotics to cover this pathogen. In this way
our model considers a conglomeration of different deci-
sion plans that are influenced by the presence of positive
pathogens in the patient’s dataset. To cope with the spar-
sity of the colonisation data, we use the enhanced model
for the following two days as well. As a result, the clin-
ician is presented with a therapy plan that aims to cover
positive observed pathogens for at least three days. For the
remaining days for which no colonisation data were avail-
able, the original decision model was used. The evalua-
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tion now showed now that the new recommendations better
comply with the expert’s recommendations.

We discuss the results for two patients in order to convey
how our dynamic-decision model might be employed clin-
ically, and to point out some of its limitations. For patient
A, the dVAP network assigns a small probability to VAP
for almost all the days. As a consequence, the decision
not to prescribe any antibiotic is always recommended by
the model. However, positive cultures of pathogens are ob-
served for the days 3, 8 and 9. For these days (and for the
next two days) the antibiotic cotrimoxazol (narrow spec-
trum) is recommended first. This recommendation reflects
the ability of the model to prescribe an antibiotic even if the
probability of VAP is very small. We note, however, that
on day 2, the model suggests the antibiotic meropenem.
This recommendation is far too broad for this patient, and
raises the question whether alternative utility models might
alleviate this problem. For patient B, the dVAP network
assigns quite early (day 5) a relatively high probability to
VAP which even further increases in the following days.
In addition, positive cultures of pathogens are observed for
the days 4, 8 and 9. Our dynamic-decision model takes into
account both the high probability of VAP and the positive
cultures to recommend appropriate antibiotics that belong
to a narrow spectrum whenever possible. This is evident in
the recommendations for days 4 to 7, while for days 8 to 10
the recommendation belongs to the intermediate or broad
spectrum. The predictions made and the therapy suggested
by the model for both patients are shown in Table 1.

6 Conclusions

We have described the development of a dynamic-decision
model that is able to assist clinicians in the clinical man-
agement of ventilator-associated pneumonia. For the pur-
pose of computing appropriate decisions from the model,
we applied the framework of partially observable Markov
decision processes for modelling the action-outcome un-
certainty and partial observability. The application and po-
tential of the POMDP framework to medical planning has
been discussed in[12] and successfully explored in[7]; in
the latter work, a hierarchical Bayesian network was used
to represent the disease dynamics and to decrease the com-
putational burden involved. Since exact computation in
a POMDP is intractable, we discussed the application of
the Perseus algorithm to our problem, in which the belief
state of the hidden process is structured. The solutions ob-
tained for a small set of patients from an initial evaluation
of our model showed that POMDPs could provide a useful
framework for solving complex decision problems. We feel
that the promising results justify further refinement and ex-
tension of our current model as well as application of our
framework to other complex structured decision problems
[11].
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