A SIMPLE SOLUTION OF HILBERT’S FOURTEENTH PROBLEM
IN DIMENSION FIVE

BY

ARNO VAN DEN ESSEN (Nijmegen)

Abstract. We give a short proof of a counterexample (due to Daigle and Freudenburg) to Hilbert’s fourteenth problem in dimension five.

Introduction. In 1900 at the International Congress of Mathematicians in Paris David Hilbert presented a list of 23 problems, intended to challenge the mathematicians of the new century. The fourteenth problem of this list can be stated as follows: let k be a field, $k[x] := k[x_1, \ldots, x_n]$ the polynomial ring, $k(x)$ its quotient field and L a subfield containing k.

Is $L \cap k[x]$ a finitely generated k-algebra?

A positive answer was given by Zariski ([7]) in case $\text{trdeg}_k L \leq 2$. However in 1958 Nagata ([5]) constructed a counterexample in dimension 32. Then in 1988 Roberts ([6]) found a new counterexample in dimension 7. Recently, in 1998 Freudenburg ([2]), studying Robert’s example, found a 6-dimensional counterexample, from which a 5-dimensional example was obtained in 1999 by Daigle and Freudenburg in [1]: they consider on $B := k[X, S, T, U, V]$ the derivation $D := X^3 \partial_S + S \partial_T + T \partial_U + X^2 \partial_V$ and show that $B^D := \ker D : B \to B$ is not finitely generated over k (then the quotient field L of B^D is a counterexample to Hilbert fourteen, since $L \cap B = B^D$).

The main aim of this note is to give a short proof of this result, by substantially simplifying the arguments given in [1] and [2].

Finally, I would like to mention that recently S. Kuroda has constructed new counterexamples to Hilbert fourteen in the missing dimensions 4 and 3 ([3], [4]).

1. The main result. Throughout this paper we use the following notations: k is a field of characteristic zero,

$$B := k[X, S, T, U, V], \quad D_0 := X^3 \partial_S + S \partial_T + T \partial_U, \quad D := D_0 + X^2 \partial_V.$$
Furthermore,
\[A := k[S, T, U], \quad D_1 := \partial_S + S\partial_T + T\partial_U. \]
Finally, for any \(0 \neq f \in B \), \(\deg f \) denotes the usual degree of \(f \). We also use another grading on \(A \) given by a vector \(w \in \mathbb{N}^3 \) and we write \(w\)-deg to denote the degree with respect to this grading. The main aim of this note is to give a short proof of

Theorem 1.1 (Daigle–Freudenburg). \(B^D \) is not a finitely generated \(k \)-algebra.

The proof is based on the following result which will be proved in the next section.

Proposition 1.2. Let \(e : \mathbb{N} \to \mathbb{N} \) be defined by \(e(3l) = 2l, e(3l + 1) = e(3l + 2) = 2l + 1 \) for all \(l \geq 0 \). There exist \(c_0 = 1, c_1, c_2, \ldots \) in \(A \) with \(D_1c_i = c_{i-1} \) and \(\deg c_i \leq e(i) \) for all \(i \geq 1 \).

Proof of Theorem 1.1. (i) Define
\[a_i := X^{2i+1}c_i\left(\frac{S}{X^3}, \frac{T}{X^3}, \frac{U}{X^3}\right) \quad \text{for} \quad i \geq 0. \]
Then one easily verifies that \(D_0a_i = X^2a_{i-1} \) for all \(i \geq 1 \) and that
\[F_n := \sum_{i=0}^{n} (-1)^i \frac{n!}{(n-i)!} a_iV^{n-i} \in B^D \quad \text{for all} \quad n \geq 1. \]

Suppose now that \(B^D \) is finitely generated by \(g_1, \ldots, g_s \) over \(k \). We may assume that \(g_i(0) = 0 \) for all \(i \). Write \(g_i = \sum g_{ij}V^j \) with \(g_{ij} \in k[X, S, T, U] \).

By (ii) below we find that \(g_{ij} \in (X, S, T, U) \) for all \(i, j \). Let \(d \) denote the maximum of the \(V \)-degrees of all \(g_i \). Consider \(F_{d+1} = XV^{d+1} \) \+ higher degree \(V \)-terms as above. So \(F_{d+1} \in B^D = k[g_1, \ldots, g_s] \). Looking at the coefficient of \(V^{d+1} \), we deduce that \(X \in (X, S, T, U)^2 \), a contradiction.

(ii) To prove that \(g_{ij} \in (X, S, T, U) \) for all \(i, j \) it suffices to show that if \(g = \sum g_{ij}V^j \in B^D \) satisfies \(g(0) = 0 \) then each \(g_j \in (X, S, T, U) \). First, clearly \(g_0 \in (X, S, T, U) \). So let \(j \geq 1 \). From \(Dg = 0 \) we get \(jg_jX^2 = D_0(-g_{j-1}) \in D_0(k[X, S, T, U]) \subset (X^3, S, T) \) for all \(j \geq 1 \). If \(g_j(0) \in k^* \), then \(X^2 \in (X^3, S, T, UX^2) \), contradiction. So \(g_j(0) = 0 \), i.e. \(g_j \in (X, S, T, U) \).

2. The proof of Proposition 1.2.

Put
\[T_1 := T - \frac{1}{2} S^2, \quad U_1 := U - ST + \frac{1}{3} S^3. \]
Then \(A = k[T_1, U_1][S] \). Since \(D_1T_1 = D_1U_1 = 0 \) and \(D_1S = 1 \) we get \(A_1^D = k[T_1, U_1] \). Consider on \(A \) the grading defined by \(w(S) = 1, w(T) = 2 \) and \(w(U) = 3 \). Then \(D_1(A_n) \subset A_{n-1} \) for all \(n \geq 1 \), where \(A_n \) is the \(k \)-span of all monomials of \(A \) of \(w \)-degree \(n \). By induction on \(n \) we construct \(c_n \in A \).
So assume that c_n is already constructed. Write $c_n = \sum_{i=0}^{n} H_{n-i}S_i$ with $H_{n-i} \in A_{n-i} \cap A^{D_1}$ (this is possible since $A = A^{D_1}[S]$ and $c_n \in A_n$). Then
\[
\tilde{c}_{n+1} := \sum_{i=0}^{n} \frac{1}{i+1} H_{n-i}S^{i+1} \in A_{n+1}
\]
and $D_1(\tilde{c}_{n+1}) = c_n$. Finally, by Lemma 2.1 below, there exists $h \in A_{n+1} \cap A^{D_1}$ such that $\tilde{c}_{n+1} := c_{n+1} - h$ satisfies $\deg c_{n+1} \leq e(n+1)$.

Lemma 2.1. If $f \in A_{n+1}$ is such that $\deg D_1f \leq e(n)$, then there exists $h \in A_{n+1} \cap A^{D_1}$ such that $\deg(f - h) \leq e(n+1)$.

Proof. (i) Let $n = 3l$ (the cases $n = 3l + 1$ and $n = 3l + 2$ are treated similarly) and let M be the k-span of all $f \in A_{n+1}$ such that $\deg D_1f \leq 2l$ ($= e(3l)$). Write $f = \sum \alpha_{ijk}S^{i}T^{j}U^{k}$ with $i + 2j + 3k = 3l + 1$ and $\alpha_{ijk} \in k$. Then
\[
D_1f = \sum_{i+2j+3k=3l+1} (i\alpha_{ijk} + (j+1)\alpha_{i-2,j+1,k} + (k+1)\alpha_{i-1,j-1,k+1})S^{i-1}T^{j}U^{k}.
\]
So
\[(*) \ \ \deg D_1f \leq 2l \ \ \text{iff} \ \ i\alpha_{ijk} + (k+1)\alpha_{i-1,j-1,k+1} + (j+1)\alpha_{i-2,j+1,k} = 0
\]
for all i, j, k satisfying $i + 2j + 3k = 3l + 1$ and $(i - 1) + j + k \geq 2l + 1$, i.e. $i + j + k \geq 2l + 2$. For such a triple we have $i > 0$. Hence by $(*)$ each α_{ijk} is a linear combination of certain α_{pqr}’s with $p + q + r < i + j + k$. Consequently, each α_{ijk} is a linear combination of the α_{pqr}’s satisfying $p + q + r = 2l + 2$. Since there are $[(l - 1)/2] + 1$ of them (just solve the equations $p+2q+3r = 0$ and $p + q + r = 2l + 2$) it follows that $\dim \pi(M) \leq [(l - 1)/2] + 1$, where for any $g \in A$, $\pi(g)$ denotes the sum of all monomials of g of degree $\geq 2l + 2$.

(ii) Put $N := A^{D_1} \cap A_{n+1}$. Then N is the k-span of all “monomials”
\[
n_p := T_1^{3p+2}U_1^{l-(2p+1)}, \ \ \text{where} \ 0 \leq p \leq [(l - 1)/2].
\]

Claim. The $\pi(n_p)$ are linearly independent over k.

It then follows from (i) and the inclusion $\pi(N) \subset \pi(M)$ that $\pi(N) = \pi(M)$, which proves the lemma.

(iii) To see the claim put
\[
w_p := (-2)^{3p+2}T^{l-(2p+1)}(n_p)|_{T=0,U=\frac{1}{2}S} = \pi((S^2)^{3p+2}(S + S^3)^{l-(2p+1)}).
\]
Observe that
\[
(S^2)^{3p+2}(S + S^3)^{l-(2p+1)} = \sum_{j=0}^{l-(2p+1)} \binom{l-(2p+1)}{j} S^{3l+1-2j}.
\]
Since $3l + 1 - 2j \geq 2l + 2$ iff $0 \leq j \leq [(l - 1)/2]$ we get

$$w_p = \sum_{j=0}^{[(l-1)/2]} \binom{l - (2p + 1)}{j} S_{3l+1-2j}.$$

Then the linear independence of the w_p (and hence of the $\pi(n_p)$) follows since

$$\det \left(\binom{l - (2p + 1)}{j} \right)_{0 \leq p, j \leq [(l-1)/2]} \neq 0.$$

REFERENCES

