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Abstract. Bracket abstraction is an algorithm that transforms lambda
expressions into combinator terms. There are several versions of this al-
gorithm depending on the actual set of combinators that is used. Most
of them have been proven correct with respect to the operational seman-
tics. In this paper we focus on typability. We present a fully machine
verified proof of the property that bracket abstraction preserves types;
the types assigned to an expression before and after performing bracket
abstraction are identical. To our knowledge, this is the first time that
(1) such proof has been given, and (2) the proof is verified by a theorem
prover. The theorem prover used in the development of the proof is PVS.

1 Introduction

Pioneer functional programming languages used combinators [1], such as S, K,
and I, originally developed by Schönfinkel [2], to define the semantics of expres-
sions. The function definitions are translated via lambda expressions to combi-
nators, this last step has become known as bracket abstraction. The first imple-
mentations of interpreters and compilers, e.g., SASL [3], also used combinators
to evaluate or compile untyped functional programs. Designing the ‘best’ set of
combinators has temporarily been a competitive sport. The race to construct
the fastest evaluators has spawned dozens of additional combinators and com-
plex bracket abstraction algorithms, e.g., Abdali [4], Turner [5], Diller [6], and
Bunder [7]. Super combinators, cf. Peyton Jones [8], were later introduced and
program optimizations were defined using extensible super combinators instead
of a fixed set of combinators. Eventually, combinators were discarded in favor
of generating efficient native machine code. Nowadays, compilers for strongly
typed functional languages generate code comparable in efficiency to C.

Using one such strongly typed functional programming language, Clean [9],
the authors have written an interactive shell [10] that can type check functional
command-line expressions before executing them. The translation of command-
line expressions, which support all basic functional language constructions, uses
a variant of bracket abstraction. We wanted to show that this is possible using
merely Dynamics with their apparently limited set of operations. This forced us
to do the type inference after bracket abstraction. We are convinced that the



algorithm used is sound with respect to the operational semantics, since it has
been used innumerably as an implementation of functional languages. However,
to our knowledge, nobody has ever shown that this variant of bracket abstraction
preserves the principal type.

In this paper we give a formal proof, using the theorem prover PVS [11], which
indicates that Diller–algorithm–C [6] without η-conversion preserves typability.
One would never attempt such a proof entirely by hand as it contains too many
cases, while its reasonable complexity allows it to be rigorously specified in a
formal way. All the proofs presented in this paper can be downloaded from the
following website: http://www.cs.ru.nl/A.vanWeelden/bracket/.

Further on in this paper, we proceed to explain a few things about Dynamics
(Sect. 2), the translation from functional expressions to combinators (Sect. 3),
and the theorem prover PVS (Sect. 4). We also share some interesting issues of
the proof itself (Sect. 5). Related work is discussed in Sect. 6, and we conclude
and mention future work in Sect. 7.

2 Dynamics in Clean and the Shell Written in Clean

Clean [9] is a strongly typed, pure, and lazy functional programming language,
much like Haskell [12], and not entirely unlike strict functional languages. Such
languages are based on the concept of functions and consist of expressions (usu-
ally without side effects), function definitions, algebraic data type definitions,
pattern matching, and (data) recursion. They usually feature complex static
type systems and checkers, including type inference.

Clean features a hybrid type system, where run-time type checking is inte-
grated into the static (compile-time) type system. The system is based on the
theories of Abadi [13] and Pil [14]. Any expressions can be wrapped, together
with their static (polymorphic) type, into an object with the static type Dy-
namic. Those expressions are, as usual, compiled and statically type checked
with respect to the functions and types of the program that defines them. The
example below shows the definition of the factorial function, which is wrapped
in a dynamic and extracted again using a type pattern match.

fac 0 = 1 // factorial function

fac n = fac (n - 1) * n

dynamicFac = dynamic fac :: Int → Int // wrap in a dynamic

matchDynamic (f :: Int → Int) = f // unwrap by matching

example = matchDynamic dynamicFac 10 // apply; yields 3628800

Dynamics can be serialized (written to disk or over a network) while pre-
serving sharing and cycles. The expressions inside those dynamics contain data
and code, i.e., functions and closures. Therefore, their serialization will often
contain references to the compiled code of the defining program. Dynamics can



also be deserialized (read from disk) in other programs. Any necessary code will
be automatically and lazily linked into the reading program as implemented by
Vervoort [15]. Once the Dynamic object exists inside a running program, the pro-
gram can pattern match on the original static type of the expression contained
within the Dynamic.

dynamicApply dynf dynx = case (dynf , dynx) of
(f :: a→ b , x :: a)→ dynamic f x :: b
(g , y)→abort ”Cannot unify formal and actual argument”

In the example above, we show a more complex example where we apply
one Dynamic to another at run time in a type-safe way. The type checker can
statically check the usage of type pattern variables a and b in the application of a
function that matches the type pattern a → b on an argument that matches type
a. Obviously, this results in something that matches some type b. At run time an
attempt is made to unify the type of the argument of f (from the first Dynamic)
with the type of x (from the second Dynamic). If it succeeds, the substitution
required for that unification is also applied to the type of the result of f, which
is used as the resulting type of the application. The result after application can
only be stored in a Dynamic again, since the actual type at run-time is unknown
to the static type checker.

Using Dynamics to type only applications, in the manner done in the exam-
ples above, our shell [10] is capable of type checking/inferring any expression of
a simple functional language. This is enabled by existing translation schemes,
cf. Peyton Jones [8], that can transform any language construct in a functional
programming language to lambda expressions with explicit letrec-sharing, cf.
Hindley [16]. The source language used throughout this paper contains, there-
fore, only applications, lambda expressions, variables and letrec expressions.

Expr ::= Expr Expr | λ V ar . Expr | V ar | letrec V ar = Expr in Expr
V ar ::= x | y | z | · · ·
Using a syntax tree, we can infer the types of applications and constants:

:: Expr = Con Dynamic | App Expr Expr | Lam Var Expr | Var Var
:: Var = Identifier String

type (Con dyn) = dyn
type (App e1 e2) = case (type e1 , type e2) of

(f :: a→ b , x :: a)→ dynamic f x :: b
type (Lam v b) = case type b of (e :: a)→ dynamic λx.e :: ?
type (Var v) = abort ”cannot type a single variable”

However, static type inference of lambda expressions is problematic. The type
of the body of the lambda expression (b in the code above) cannot be inferred
because it is an open expression (contains the variable v). To infer the type using
Dynamics, we need the run-time value of the variable, which is not available at
compile time. We solved this problem using bracket abstraction, which removes
all variables from an expression. This forced us to do type inference after bracket
abstraction.



I x ⇒ x : α → α
K x y ⇒ x : α → β → α

S f g x ⇒ f x (g x) : (α → β → γ) → (α → β) → α → γ
B f g x ⇒ f (g x) : (α → β) → (γ → α) → γ → β
C f g x ⇒ f x g : (α → β → γ) → β → α → γ

S′ h f g x ⇒ h (f x) (g x) : (α → β → γ) → (δ → α) → (δ → β) → δ → γ
B′ h f g x ⇒ h f (g x) : (α → β → γ) → α → (δ → β) → δ → γ
C′ h f g x ⇒ h (f x) g : (α → β → γ) → (δ → α) → β → δ → γ

Y f ⇒ f (Y f) : (α → α) → α

Fig. 1. Combinator reduction rules and their types.

3 From Expression to Combinators

The combinators used in our target language, both in this paper and in the
shell1, are from the algorithm–C by Diller [6] and are shown in Fig. 1. The
target language consists of variables, applications, and constants, which are the
combinators and Dynamics. Of course, bracket abstraction should remove all
variables from a closed expression. The implementation of the shell uses only
Dynamics as constants. The combinators can easily be expressed using lambda
expressions and be put in a Dynamics with their static types. In contrast, the
algorithm used in the proof does not use Dynamics as constants. This does not
influence typability because Dynamics are already typed and not altered in any
way by bracket abstraction. One could easily add any Dynamic to the set of
combinator constants, much like the super-combinator approach.

[[ e1 e2 ]] = [[ e1 ]][[ e2 ]] (application)
[[ λx.e ]] = [[ [[ e ]] ]]x (abstraction)

[[ x ]] = x (variable)
[[ let x = e1 in e2 ]] = [[ λx.e2 ]] [[ e1 ]] (non-recursive let)

[[ letrec x = e1 in e2 ]] = [[ λx.e2 ]] (Y [[ λx.e1 ]]) (monomorphic let)
[[ letrec x = e1 in e2 ]] = [[ e2 ]][Y [[ λx.e1 ]]/x] (polymorphic let)

Fig. 2. Translation from expressions to combinators via lambda expressions.

Translation from the source language to combinators uses lambda expressions
as an intermediate step. The translation [[ e ]] of an expression e in the source
language is shown in Fig. 2. We show translations for both non-recursive let and
recursive letrecs, for which there is a monomorphic and a polymorphic variant.
The shell implements the monomorphic letrec and it writes polymorphic function
definitions to disk using Dynamics. By reading them back in when they are used

1 The shell written in Clean actually implements the fix-point combinator by the
recursive binding l e t x = f x in x to construct efficient cycles.



in other expression, it achieves the same effect as the polymorphic letrec. The
expression inside a Dynamic is shared, not substituted, but the (polymorphic)
type can be instantiated multiple times.

[[ x ]]x = I
[[ e ]]x = K e if x /∈ FV (e)

[[ (e1 e2) e3 ]]x = B′ e1 e2 [[ e3 ]]x if x /∈ FV (e1) ∧ x /∈ FV (e2)
[[ (e1 e2) e3 ]]x = C′ e1 [[ e2 ]]x e3 if x /∈ FV (e1) ∧ x /∈ FV (e3)
[[ (e1 e2) e3 ]]x = S′ e1 [[ e2 ]]x [[ e3 ]]x if x /∈ FV (e1)

[[ e1 e2 ]]x = B e1 [[ e2 ]]x if x /∈ FV (e1)
[[ e1 e2 ]]x = C [[ e1 ]]x e2 if x /∈ FV (e2)
[[ e1 e2 ]]x = S [[ e1 ]]x [[ e2 ]]x

Fig. 3. Our variant of bracket abstraction, based on priority from the top down.

The bracket abstraction algorithm [[ · ]]x, over a variable x used in the shell and
throughout this paper is defined in Fig. 3. It is almost the same as algorithm–C
and also very similar to Abs/Dash/4 by Joy et al. [17], who show that it produces
good code and that improvements are hard and yield little effect. In contrast to
algorithm–C, we do not use η-conversion because it obviously does not preserve
the principal type, as indicated by the following example:

λx.λy.x y : (α → β) → α → β  η λx.x : α → α  [[ ]] I : α → α.

4 PVS

As a short introduction to PVS, we will briefly recall the basics (see also [11]).
PVS (Prototype V erification Systems) offers an interactive environment for the
development and analysis of formal specifications. The system consists of a spec-
ification language and a theorem prover. The specification language of PVS is
based on classical, typed higher-order logic. Both the use of basic types, like inte-
gers, booleans and reals, and compound types (built with type constructors such
as records, tuples, and function types) are permitted. New, possibly recursive,
data types can be introduced via algebraic data type definitions. As an example
of a user defined data type, consider the following parameterized definition of a
binary tree:

BinTree[V : TYPE] : DATATYPE BEGIN

leaf : leaf?
node(el:V, left, right: BinTree) : node?

END BinTree

The data type has two constructors, leaf and node, with which trees can be
built. In addition, two recognizers leaf? and node? are defined (observe that
PVS allows question marks as constituents of identifiers), which can be used as



predicates to test whether or not a tree object starts with the corresponding
constructor. The field names el, left and right can be used as accessors to
extract these components from a node. However, for extraction purposes, it is
often more convenient to use the built-in pattern matching viaCASES expressions.
Consider, for example, the following function tree2List that collects all elements
of a tree and places them in a list.

tree2List(t:BinTree) : RECURSIVE list[V] =
CASES t OF

leaf: null,
node(e,l,r): append(tree2List(l) ,cons(e,tree2List(r)))

ENDCASES

MEASURE size(t)

TheMEASURE specification is mandatory when defining a recursive function, such
as the tree2List function shown above. In PVS, it is required that all functions
are total. This measure is used to show that the function terminates. This is
realized by generating a proof obligation (a so-called TCC, Type Correctness
Condition) indicating that the measure strictly decreases at each recursive call.
Obviously, in this case the size of the tree fulfills this property. But how can
an appropriate measure be given for the function size itself? A solution is to
have data type definitions, which cause PVS to generate a number of functions
and axioms, which can be used freely in a theory importing that data type.
Among them, one example is the ordering << on trees indicating whether the
first argument tree is a subtree of second one. In a measure specification, << can
be used as follows:

size(t:BinTree) : RECURSIVE int =
CASES t OF

leaf: 0,
node(e,l,r): size(l) + size (r) + 1

ENDCASES

MEASURE t BY <<

PVS specifications are organized into parameterized theories that may contain
declarations of functions, axioms, theorems, etc.. The PVS language provides
the customary arithmetic and logical operators, function application, lambda
abstraction, and quantifiers. Names may be overloaded, including those of built-
in operators such as < and +.

Higher-order logic forms the base for the theorem prover of PVS, i.e., PVS
admits to quantify over predicates. For example, consider the following lemma
that enables the use of course–of–values induction on the size of trees in a proof.

tree_size_induction : LEMMA

(∀ (p:pred[BinTree] ): (∀ (g:BinTree): (∀ (s:BinTree):
size(s) < size(g) ⇒ p(s)) ⇒ p(g)) ⇒ (∀ (c:BinTree): p(c)))

This lemma can be proven with the predefined induction principle NAT_induction.
In order to facilitate the development of proofs, PVS provides a collection of
proof commands and predefined combinations of proof commands, so-called proof



strategies. During the construction of a proof, PVS constructs and maintains a
proof tree. The goal of a proof is to apply proof commands/strategies such that
all the leaves of the proof tree are recognized as true. Therefore, the proof itself
is just a sequence of proof strategies that converts the initial proof tree into a
complete one. Such proof sequences are available in textual form making them
easy to edit or display, or even to rerun. Usually, they are kept in a separate
proof file and can be inspected at any time during a proof session.

5 The Proof in PVS

In this section we will use PVS to prove that bracket abstraction preserves
typability. We will first concentrate on the monomorphic case.

5.1 Bracket Abstraction

We initiate by introducing two data types to represent the source language FUNC
and destination language COMB of our translation.

Our source language is essentially the lambda calculus enriched with a letr

construct to specify single recursive definitions. The addition of multiple re-
cursion and pattern matching is straightforward, but is left out for reasons of
simplicity.

FUNC [V : TYPE] : DATATYPE BEGIN

vari (id:V) : vari?
appl (fun, arg:FUNC) : appl?
lamb (l_var:V, l_body:FUNC) : lamb?
letr (b_var:V, b_def, b_body:FUNC): letr?

END FUNC

The destination language consists of combinator expressions. Our representation
is parametric in both variables and combinators.

COMB[V:TYPE, C:TYPE] : DATATYPE BEGIN

c_var (v_id: V) : c_var?
c_const (c_id: C) : c_const?
c_appl (c_fun, c_arg: COMB) : c_appl?

END COMB

The concrete combinators are introduced via an enumeration type (see Fig. 1).

SKI: TYPE = {S,K,I,Y,B,C,S1,B1,C1}

We shall now present the bracket abstraction algorithm lam2Ski (see Fig. 2):

lam2Ski(e:FUNC) : RECURSIVE COMB =
CASES e OF

vari(v) : c_var(v) ,
appl(f, a) : c_appl(lam2Ski(f) ,lam2Ski(a)) ,
lamb(v,e) : abstr(lam2Ski(e) ,v) ,
letr (v,d,e) : c_appl(abstr(lam2Ski(e) ,v) ,



c_appl(c_const(Y) ,abstr(lam2Ski(d) ,v)))
ENDCASES

MEASURE e BY <<

where abstr is a recursive function that builds up the combinator expression for
the distribution of a parameter v (see Fig. 3). CAppl2 and CAppl3 are just helper
functions introduced to improve readability.

CAppl2(c:SKI, a1,a2: COMB) : COMB =
c_appl(c_appl(c_const(c) ,a1) ,a2) CAppl3(c:SKI, a1,a2,a3: COMB) :
COMB = c_appl(CAppl2(c,a1,a2) ,a3)

abstr(e:COMB,v:V) : RECURSIVE COMB =
IF fvs(e)(v)
THEN CASES e OF

c_var(w) : c_const(I) ,
c_appl(f,a) :

IF c_appl?(f) ∧ ¬fvs(c_fun(f))(v)
THEN LET g = c_fun(f) , b = c_arg(f) IN

IF ¬fvs(b)(v)
THEN CAppl3 (B1, g, b, abstr(a,v))
ELSIF ¬fvs(a)(v)
THEN CAppl3 (C1, g, abstr(b,v) , a)
ELSE CAppl3 (S1, g, abstr(b,v) , abstr(a,v))
ENDIF

ELSIF ¬fvs(f)(v)
THEN CAppl2 (B, f, abstr(a,v))
ELSIF ¬fvs(a)(v)
THEN CAppl2 (C, abstr(f,v) ,a)
ELSE CAppl2 (S,abstr(f,v) ,abstr(a,v))
ENDIF

ENDCASES

ELSE c_appl(c_const(K) ,e)
ENDIF

MEASURE e BY <<

The standard subterm order of FUNC and COMB are used as measures in lam2Ski

and in abstr, respectively. In both cases these orders are denoted by <<. The
predicate fvs indicates whether a given variable freely occurs in an expression.
It is defined using the reduce function for the COMB data type. This (fold-like)
operation is internally generated by PVS and can often be used as a substitute
for recursion.

fvs:[COMB → PRED[V ] ] = reduce(singleton, λ(c:C):∅ ,
∪)

The equivalence between lam2Ski and abstr and the specifications of these trans-
formations in Sect. 3, is self-evident.



5.2 Typing

In order to represent types for both combinators and lambda expressions, we
introduce the following data type.

TYPES[V : TYPE]: DATATYPE BEGIN

t_var (t_var:V) : t_var?
t_arr (t_arg, t_res:TYPES) : t_arr?

END TYPES

This definition is self-explanatory, as well as the definitions of substitution and
(substitution) instance. The latter is denoted as a binary predicate ≤ on types.
Here subst is the customary lifting of substitutions to types. It can be easily
expressed in terms of reduce.

Substitution : TYPE = [V → TYPES] subst(s:Substitution): [TYPES →
TYPES] = reduce(s,t_arr) ;

t1, t2: VAR TYPES ≤(t1, t2) : bool = ∃(s:Substitution) : t2 =
subst(s)(t1)

The type system for FUNC terms is a straightforward extension of simple Curry
typing. We make use of the possibility in PVS to define inductive predicates. The
expression typableE(b)(e,t) should be read as “In the context of a base b, the
expression e has type t”.

BASE : TYPE = [X → TYPES] typableE(b:BASE)(e:FUNC, tr:TYPES) :
INDUCTIVE bool =

CASES e OF

vari(v) : b(v) = tr,
appl(f, a) : ∃(ta:TYPES): typableE(b)(f,t_arr(ta,tr)) ∧

typableE(b)(a,ta) ,
lamb(v,e) : t_arr?(tr) ∧

typableE(b WITH [v := t_arg(tr) ] )(e,t_res(tr)) ,
letr (v,d,e): ∃(ft:TYPES): LET nb = b WITH [v := ft] IN

typableE(nb)(d,ft) ∧ typableE(nb)(e,tr)
ENDCASES

Observe that the type system is monomorphic: in the term letr (v,d,e), all
occurrences of v in e should have identical types. In Sect. 5.3 we describe how
to extend the system with polymorphic letr constructs.

For typing COMB expressions, we assume that combinator symbols are supplied
with a type (or actually a type scheme) by a so-called type environment. The
type system is defined as a PVS theory parameterized with that environment.

typingCOMB [V, X, C:TYPE, % type and term variables, and combinator symbols
(IMPORTING TYPES[V] ) env:[C → TYPES[V ] ] ]: THEORY% type environment

BEGIN

typableC(b:BASE)(e:COMB, t:TYPES) : INDUCTIVE bool =
CASES e OF

c_var(w) : b(w) = t,
c_const(c) : env(c) ≤ t,



c_appl(f, a) : ∃(t1:TYPES):
typableC(b)(f,t_arr(t1,t)) ∧ typableC(b)(a,t1)

ENDCASES

END typingCOMB

We can now formulate our main theorem that relates the typing of FUNC to
the typing of COMB.

type_preserving : THEOREM ∀(e:FUNC,b:BASE,t:TYPES):
typableE(b)(e,t) ⇔ typableC(b)(lam2Ski(e) ,t)

In order to be able to prove this theorem, it is necessary to have a concrete type
environment for SKI. We simply choose natural numbers as names for the type
variables appearing in the type schemes .

alp : TYPES = t_var(0)
bet : TYPES = t_var(1)
gam : TYPES = t_var(2)
del : TYPES = t_var(3)

TArr2(t1,t2,t3: TYPES) : TYPES = t_arr(t1,t_arr(t2,t3))
TArr3(t1,t2,t3,t4: TYPES) : TYPES = t_arr(t1,t_TArr2(t2,t3,t4))
TArr4(t1,t2,t3,t4,t5: TYPES) : TYPES = t_arr(t1,t_TArr3(t2,t3,t4,t5))

env_ski(c:SKI): TYPES =
CASES c OF

I : t_arr(alp,alp) ,
K : TArr2(alp,bet,alp) ,
S : TArr3(t_arr(alp,t_arr(bet,gam)) ,t_arr(alp,bet) ,gam,bet) ,
Y : t_arr(t_arr(alp,alp) ,alp) ,
B : TArr3(t_arr(alp,bet) ,t_arr(gam,alp) ,gam,bet) ,
C : TArr3(t_arr(alp,t_arr(bet,gam)) ,bet,alp,gam) ,
S1: TArr4(t_arr(alp,t_arr(bet,gam)) ,t_arr(del,alp) ,

t_arr(del,bet) ,del,gam) ,
B1: TArr4(t_arr(alp,t_arr(bet,gam)) ,alp,t_arr(del,bet) ,del,gam) ,
C1: TArr4(t_arr(alp,t_arr(bet,gam)) ,t_arr(del,alp) ,bet,del,gam)

ENDCASES

It is not difficult to show that each combinator written as a lambda expression
is typable according to the typableE predicate, using an arbitrary base and the
type given by env_ski. For example, the following properties can be proven in
merely a few steps.

kterm: FUNC = lamb(0 ,lamb(1 ,vari(0))) yterm: FUNC = lamb(0 , letr
(1 ,appl(vari(0) ,vari(1)))) ,vari(1)) K_typable: LEMMA

∀(bas:Base): typableE(bas)(kterm,env_ski(K)) Y_typable: LEMMA

∀(bas:Base): typableE(bas)(yterm,env_ski(Y))

The proof of our main theorem takes more effort. It requires the following prop-
erty concerning the typing of abstractions.

type_abstr : LEMMA ∀(e:COMB,b:BASE,ta,tr:TYPES,v:V):
typableC(b WITH [v:=ta] ) (e,tr) ⇔ typableC(b)(abstr(e,v) ,t_arr(ta,tr))



This lemma is proven by course-of-values induction on the size of e. The proof
itself is actually not difficult, but its size is quite extensive. It requires approxi-
mately 500 proof steps, as can be seen in the PVS proof files. This example also
clearly shows that it is almost impossible to perform such a proof without the
assistance of a theorem prover.

5.3 A Polymorphic Type System

In order to express letr polymorphism we need quantified types, also known as
type schemes. These type schemes are of the form ∀α1, . . . , αn : σ in which the
αi are type variables and σ is a type. Instead of formalizing a type scheme as
a pair consisting of a set of type variables and a type, we use a more explicit
representation as for instance can be found in Naraschewski and Nipkow [18]. As
such, the type scheme is formalized as an algebraic data type containing separate
constructors for free and bound variables.

SCHEME[V : TYPE]: DATATYPE BEGIN

ts_bv (bv:V): ts_bv?
ts_fv (fv:V): ts_fv?
ts_arr (arg, res:SCHEME): ts_arr?

END SCHEME

discard(x:V): PRED[V] = ∅

bvs:[SCHEME → PRED[V ] ] = reduce(singleton,discard,∪)
fvs:[SCHEME → PRED[V ] ] = reduce(discard,singleton,∪)

The predicates bvs and fvs determine the set of bound and free type variables for
a given scheme, respectively. We will use several conversions between types and
type schemes. A type can be obtained from a scheme by means of instantiation.
This operation replaces the bound variables of a scheme with types and leaves
the free variables unaltered.

inst(s:Substitution): [SCHEME → TYPES] =
reduce(s,λ(v:V):t_var(v) ,t_arr)

A type can be converted into a scheme via generalization. The result of a gen-
eralization step depends on the context in which this operation is performed, in
particular on the type variables appearing in the used base: only type variables
not appearing free in a base can be universally quantified. Observe that in the
polymorphic case a base associates term variables with schemes rather than with
types.

BASE : TYPE = [X → SCHEME]

fvs(b:BASE): PRED[V] = { v:V | ∃(x:X) : fvs(b(x))(v) }
gen(b:BASE): [TYPES → SCHEME] =

reduce(λ(v:V):IF fvs(b)(v)THEN ts_fv(v) ELSE ts_bv(v) ENDIF,ts_arr)

The adjustment of the typableE predicate leads to a type system almost equiv-
alent to the system presented by Naraschewski and Nipkow [18]. There is only



one small difference: in the term letr(v,b,e) we distinguish between two cases
depending on whether or not v occurs in e. If v is present in e then the whole
term is treated as usual. If not, the subterm b is ignored. It doesn’t matter
whether b is typable or not if it is not used in e. We will explain the reason for
this refinement later. The test for the presence of v in e is done via fvs.

fvs:[FUNC → PRED[V ] ] = reduce(singleton, ∪, remove,
λ(v:V,b,e:PRED[V] ):IF e(v) THEN remove(v,∪(b,e)) ELSE e ENDIF)

type2Scheme: [TYPES → SCHEME] = reduce(ts_fv,ts_arr)

typableE(b:BASE)(e:FUNC, tr:TYPES) : INDUCTIVE bool =
CASES e OF

vari(v) : ∃(s:Substitution): inst(s)(b(v)) = tr,
appl(f, a) : ∃(ta:TYPES): typableE(b)(f,t_arr(ta,tr)) ∧

typableE(b)(a,ta) ,
lamb(v,e) : t_arr?(tr) ∧ typableE(b

WITH [v := type2Scheme(t_arg(tr)) ] )(e,t_res(tr)) ,
letr(v,d,e): IF fvs(e)(v)

THEN ∃(t:TYPES) :
typableE(b WITH [v := type2Scheme(t) ] )(d,t) ∧
typableE(b WITH [v := gen(b)(t) ] )(e,tr)

ELSE typableE(b)(e,tr)
ENDIF

ENDCASES

The operation type2Scheme converts a type into a fully monomorphic scheme,
i.e., a scheme with no bound variables.

The question remains of how to change the type system for combinators such
that it can handle multiple occurrences of a recursive function introduced by a
letr. Normally, (the combinator version of) this function is distributed over the
corresponding expression via the S combinator. However, the polymorphic usage
of arguments requires polymorphism of a higher rank. Observe that the schemes
we have introduced are essentially of rank 1, as well as the types provided by the
type environment, which is used for assigned types to combinators. Instead of
allowing universal quantifiers at arbitrary levels, we adjust the transformation
rule for letr expressions in the following way:

lam2Ski(e:FUNC) : RECURSIVE COMB =
CASES e OF

vari(v) : c_var(v) ,
appl(f, a) : c_appl(lam2Ski(f) ,lam2Ski(a)) ,
lamb(v,e) : abstr(lam2Ski(e) ,v) ,
letr(v,d,e): subst(single(v,c_appl(c_const(Y) ,

abstr(lam2Ski(d) ,v)))) (lam2Ski(e))
ENDCASES

MEASURE e BY <<

single(v:V,e:COMB) : [V → COMB] =
λ(w:V): IF v = w THEN e ELSE c_var(v) ENDIF



subst(s:[V → COMB] ) : [COMB → COMB] = reduce(s,c_const,c_appl)

Here single and subst are substitutions on combinator terms. The disadvantage
of the transformation is of course, that if the function is used more than once,
it will be duplicated.

If the function is not used at all, it will disappear due to the substitution.
For this reason we made the case distinction in typableE for the letr construct.
In this way we are able to preserve typability in all cases and are not obliged to
make an exception for cases that probably rarely occur.

The only part of the type system for combinators, typableC, that needs to be
adjusted is the rule for variables. Instead of using the base type of the variable, we
now allow instantiation of the scheme provided by the base. Since this adjustment
is self-evident we do not show it here.

The main goal of this section is to prove the following theorem again:

type_preserving : THEOREM ∀(e:FUNC,b:BASE,t:TYPES):
typableE(b)(e,t) ⇔ typableC(b)(lam2Ski(e) ,t)

At first sight, the extension of our system with type schemes seems to have
low impact. However, as already has been noticed by Naraschewski and Nip-
kow [18], reasoning about type schemes is much more subtle than reasoning
about (monomorphic) types. The proof of the theorem depends on the following
two properties concerning term substitutions:

type_subst1 : LEMMA ∀(e1,e2:COMB,b:BASE,t1,t2:TYPES, v:V):
typableC(b)(e1,t1) ∧ typableC(b WITH [v := gen(b)(t1) ] )(e2, t2)

⇒ typableC(b)(subst(single(v,e1))(e2) ,t2)

type_subst2 : CONJECTURE

∀(e1,e2:COMB,b:BASE,t2:TYPES,v:(fvs(e2))):
typableC(b)(subst(single(v,e1))(e2) ,t2) ⇒

∃(t1:TYPES): typableC(b)(e1,t1) ∧
typableC(b WITH [v := gen(b)(t1) ] )(e2, t2)

The first one is used to prove the ⇒ part of the theorem; the second one to prove
the ⇐ part. Momentarily we have finished the proof of type_subst1. This proof
is performed by induction on the structure of the term e2, see the proof files.
Currently we are working on a full formal proof of type_subst2.

6 Related Work

In his book, Hindley [19] writes about strong type-invariance and shows that
certain sets of combinators form a typable basis. He informally proves that a set
of lambda expressions imitating combinators preserves typability. This is done by
construction, using small variations on common bracket abstraction algorithms.
This approach is not unlike ours. However, we use a larger set, a more complex
algorithm, and Hindley’s proof is neither formal nor are all the details shown.

The type inference algorithm W by Damas and Milner [20] has been for-
mally and mechanically proven by Nazareth and Nipkow [21] (monomorphic),



Naraschewski and Nipkow [18] (polymorphic), bot;h using Isabelle/HOL, and
by Dubois and Ménissier-Morain [22] (polymorphic) using Coq. Although we
prove equivalence of type inference before and after bracket abstraction in PVS
instead of type inference itself, the process of proving has a lot in common.
Everybody runs into issues with alpha conversion. Furthermore, using a proof
assistant/checker forces one to formalize everything explicitly and prove every
minute detail, where one may adversely use hand-waving to sweep it under the
rug in an informal proof.

Hindley [23] and, almost simultaneously, Curry [24] showed that one can
derive a principal type inference algorithm on a system of combinators, using
reduction on type combinators. This already shows that one can do type inference
using only application, since the combinators can be imitated using lambda
calculus. Their (informal) proof is based on the S and K combinator, while we
needed proof that it works for algorithm-C and that it infers the exact same
types as functional languages usually do (using variants of algorithm W).

7 Conclusions

We have shown how to specify type derivation and complex bracket abstraction
in a rigorously formal way using PVS, at least for the monomorphic case. This
enabled us to formally prove that Diller–algorithm–C without η-conversion pre-
serves typability. Our approach to derive types after bracket abstraction in a
type checking command-line shell, requires this property. This proof also con-
firms that we were correct to assume that a type checker/inferrer can really
be constructed using merely Dynamics of the functional programming language
Clean. We now conclude that the seemingly limited interface of Dynamics is
powerful enough for type inference such as done by our shell.

For future aspirations, it rests to complete the component pertaining to the
⇐ part of the proof for the polymorphic case.
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