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We study both analytically and numerically the effect of presynaptic
noise on the transmission of information in attractor neural networks.
The noise occurs on a very short timescale compared to that for the
neuron dynamics and it produces short-time synaptic depression. This
is inspired in recent neurobiological findings that show that synaptic
strength may either increase or decrease on a short timescale depending
on presynaptic activity. We thus describe a mechanism by which fast
presynaptic noise enhances the neural network sensitivity to an external
stimulus. The reason is that, in general, presynaptic noise induces
nonequilibrium behavior and, consequently, the space of fixed points
is qualitatively modified in such a way that the system can easily
escape from the attractor. As a result, the model shows, in addition to
pattern recognition, class identification and categorization, which may
be relevant to the understanding of some of the brain complex tasks.

1 Introduction

There is multiple converging evidence (Abbott & Regehr, 2004) that
synapses determine the complex processing of information in the brain.
An aspect of this statement is illustrated by attractor neural networks.
These show that synapses can efficiently store patterns that are retrieved
later with only partial information on them. In addition to this time effect,

Neural Computation 18, 614–633 (2006) C© 2006 Massachusetts Institute of Technology



Effects of Fast Presynaptic Noise in Attractor Neural Networks 615

artificial neural networks should contain some synaptic noise. That is, actual
synapses exhibit short-time fluctuations, which seem to compete with other
mechanisms during the transmission of information—not to cause unre-
liability but ultimately to determine a variety of computations (Allen &
Stevens, 1994; Zador, 1998). In spite of some recent efforts, a full under-
standing of how brain complex processes depend on such fast synaptic
variations is lacking (see Abbott & Regehr, 2004, for instance). A specific
matter under discussion concerns the influence of short-time noise on the
fixed points and other details of the retrieval processes in attractor neural
networks (Bibitchkov, Herrmann, & Geisel, 2002).

The observation that actual synapses endure short-time depression or
facilitation is likely to be relevant in this context. That is, one may under-
stand some observations by assuming that periods of elevated presynaptic
activity may cause either a decrease or an increase in neurotransmitter re-
lease and, consequently, the postsynaptic response will be either depressed
or facilitated depending on presynaptic neural activity (Tsodyks, Pawelzik,
& Markram, 1998; Thomson, Bannister, Mercer, & Morris, 2002; Abbott &
Regehr, 2004). Motivated by neurobiological findings, we report in this ar-
ticle on the effects of presynaptic depressing noise on the functionality of
a neural circuit. We study in detail a network in which the neural activ-
ity evolves at random in time regulated by a “temperature” parameter.
In addition, the values assigned to the synaptic intensities by a learning
(e.g., Hebb’s) rule are constantly perturbed with microscopic fast noise. A
new parameter is involved by this perturbation that allows a continuum
transition from depression to normal operation.

As a main result, this letter illustrates that in general, the addition of fast
synaptic noise induces a nonequilibrium condition. That is, our systems
cannot asymptotically reach equilibrium but tend to nonequilibrium steady
states whose features depend, even qualitatively, on dynamics (Marro &
Dickman, 1999). This is interesting because in practice, thermodynamic
equilibrium is rare in nature. Instead, the simplest conditions one observes
are characterized by a steady flux of energy or information, for instance. This
makes the model mathematically involved, for example, there is no general
framework such as the powerful (equilibrium) Gibbs theory, which applies
only to systems with a single Kelvin temperature and a unique Hamiltonian.
However, our system still admits analytical treatment for some choices
of its parameters, and in other cases, we discovered the more intricate
model behavior by a series of computer simulations. We thus show that fast
presynaptic depressing noise during external stimulation may induce the
system to scape from the attractor: the stability of fixed-point solutions is
dramatically modified. More specifically, we show that for certain versions
of the system, the solution destabilizes in such a way that computational
tasks such as class identification and categorization are favored. It is likely
this is the first time such behavior is reported in an artificial neural network
as a consequence of biologically motivated stochastic behavior of synapses.
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Similar instabilities have been reported to occur in monkeys (Abeles et al.,
1995) and other animals (Miller & Schreiner, 2000), and they are believed to
be a main feature in odor encoding (Laurent et al., 2001), for instance.

2 Definition of Model

Our interest is in a neural network in which a local stochastic dynamics
is constantly influenced by (pre)synaptic noise. Consider a set of N binary
neurons with configurations S ≡ {si = ±1; i = 1, . . . , N}.1 Any two neurons
are connected by synapses of intensity:2

wij = wijx j ∀i, j. (2.1)

Here, wij is fixed, namely, determined in a previous learning process, and
xj is a stochastic variable. This generalizes the hypothesis in previous stud-
ies of attractor neural networks with noisy synapses (see, e.g., Sompolin-
sky, 1986; Garrido & Marro, 1991; Marro, Torres, & Garrido, 1999). Once
W ≡{wij} is given, the state of the system at time t is defined by setting S
and X ≡ {xi }. These evolve with time—after the learning process that fixes
W—via the familiar master equation:

∂ Pt(S, X)
∂t

= −Pt(S, X)
∫

X′

∑
S′

c[(S, X) → (S′, X′)]

+
∫

X′

∑
S′

c[( S′, X′) → (S, X)]Pt(S′, X′). (2.2)

We further assume that the transition rate or probability per unit time of
evolving from (S, X) to (S′, X′) is

c[(S, X) → (S′, X′)] = p cX[S → S′]δ(X − X′) + (1 − p) cS[X → X′]δS,S′ .

(2.3)

This choice (Garrido & Marro, 1994; Torres, Garrido, & Marro, 1997)
amounts to considering competing mechanisms. That is, neurons (S) evolve
stochastically in time under a noisy dynamics of synapses (X), the latter

1 Note that such binary neurons, although a crude simplification of nature, are known
to capture the essentials of cooperative phenomena, which is the focus here. See, for
instance, Abbott and Kepler (1990) and Pantic, Torres, Kappen, and Gielen (2002).

2 For simplicity, we are neglecting here postsynaptic dependence of the stochastic
perturbation. There is some claim that plasticity might operate on rapid timescales on
postsynaptic activity (see Pitler & Alger, 1992). However, including xij in equation 2.1
instead of xj would impede some of the algebra in sections 3 and 4.
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evolving (1 − p)/p times faster than the former. Depending on the value
of p, three main classes may be defined (Marro & Dickman, 1999):

1. For p ∈ (0, 1), both the synaptic fluctuation and the neuron activity
occur on the same temporal scale. This case has already been prelim-
inarily explored (Pantic et al., 2002; Cortes, Garrido, Marro, & Torres,
2004).

2. The limiting case p → 1. This corresponds to neurons evolving in the
presence of a quenched synaptic configuration, that is, xi is constant
and independent of i. The Hopfield model (Amari, 1972; Hopfield,
1982) belongs to this class in the simple case that xi = 1,∀i.

3. The limiting case p → 0. The rest of this article is devoted to this class
of systems.

Our interest for the latter case is a consequence of the following facts.
First, there is adiabatic elimination of fast variables for p → 0, which decou-
ples the two dynamics (Garrido & Marro, 1994; Gardiner, 2004). Therefore,
an exact analytical treatment—though not the complete solution—is then
feasible. To be more specific, for p → 0, the neurons evolve as in the pres-
ence of a steady distribution for X. If we write P(S, X) = P(X|S) P(S), where
P(X|S) stands for the conditional probability of X given S, one obtains
from equations 2.2 and 2.3, after rescaling time tp → t (technical details are
worked out in Marro & Dickman, 1999, for instance) that

∂ Pt(S)
∂t

= −Pt(S)
∑

S′
c̄[S → S′] +

∑
S′

c̄[S′ → S]Pt(S′). (2.4)

Here,

c̄[S → S′] ≡
∫

dX Pst(X|S) cX[S → S′], (2.5)

and Pst(X|S) is the stationary solution that satisfies

Pst(X|S) =
∫

d X′ cS[X′ → X] Pst(X′|S)∫
dX′ cS[X → X′]

. (2.6)

This formalism allows modeling fast synaptic noise, which, within the ap-
propriate context, will induce a sort of synaptic depression, as explained in
detail in section 4.

The superposition, equation 2.5, reflects the fact that activity is the result
of competition among different elementary mechanisms. That is, different
underlying dynamics, each associated with a different realization of the
stochasticity X, compete and, in the limit p → 0, an effective rate results
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from combining cX[S → S′] with probability Pst(X|S) for varying X. Each
of the elementary dynamics tends to drive the system to a well-defined
equilibrium state. The competition will, however, impede equilibrium, and
in general, the system will asymptotically go toward a nonequilibrium
steady state (Marro & Dickman, 1999). The question is whether such a
competition between synaptic noise and neural activity, which induces
nonequilibrium, is at the origin of some of the computational strategies in
neurobiological systems. Our study seems to indicate that this is a sensible
issue. In matter of fact, we shall argue below that p → 0 may be realistic a
priori for appropriate choices of Pst(X|S).

For simplicity, we shall be concerned in this article with sequential up-
dating by means of single neuron, or “spin-flip,” dynamics. That is, the
elementary dynamic step will simply consist of local inversions si → −si

induced by a bath at temperature T. The elementary rate cX[S → S′] then
reduces to a single site rate that one may write as �[u X(S, i)]. Here,
uX(S, i) ≡ 2T−1si hX

i (S), where hX
i (S) = ∑

j �=i wijx j s j is the net (pre)synaptic
current arriving at (or local field acting on) the (postsynaptic) neuron i.
The function �(u) is arbitrary except that for simplicity, we shall assume
�(u) = exp(−u)�(−u), �(0) = 1 and �(∞) = 0 (Marro & Dickman, 1999).
We report on the consequences of more complex dynamics in Cortes, et al.
(2005).

3 Effective Local Fields

Let us define a function Heff(S) through the condition of detailed balance,
namely,

c̄[S → Si ]
c̄[Si → S]

= exp
{
−

[
Heff(Si ) − Heff(S)

]
T−1

}
. (3.1)

Here, Si stands for S after flipping at i , si → −si . We further define the
effective local fields heff

i (S) by means of

Heff(S) = −1
2

∑
i

heff
i (S) si . (3.2)

Nothing guarantees that Heff(S) and heff
i (S) have a simple expression and

are therefore analytically useful. This is because the superposition 2.5, un-
like its elements �(u X), does not satisfy detailed balance in general. In
other words, our system has an essential nonequilibrium character that
prevents one from using Gibbs’s statistical mechanics, which requires a
unique Hamiltonian. Instead, here there is one energy associated with each
realization of X ={xi }. This is in addition to the fact that the synaptic weights
wij in equation 2.1 may not be symmetric.
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For some choices of both the rate � and the noise distribution Pst(X|S),
the function Heff(S) may be considered a true effective Hamiltonian (Gar-
rido & Marro, 1989; Marro & Dickman, 1999). This means that Heff(S) then
generates the same nonequilibrium steady state as the stochastic time evo-
lution equation, which defines the system (see equation 2.4), and that its
coefficients have the proper symmetry of interactions. To be more explicit,
assume that Pst(X|S) factorizes according to

Pst (X|S) =
∏

j

P
(
xj |s j

)
(3.3)

and that one also has the factorization

c̄[S → Si ] =
∏
j �=i

∫
dxj P(xj |s j ) �(2T−1siwijx j s j ). (3.4)

The former amounts to neglecting some global dependence of the fac-
tors on S = {si } (see below), and the latter restricts the possible choices
for the rate function. Some familiar choices for this function that satisfy
detailed balance are the one corresponding to the Metropolis algorithm,
that is, �(u) = min[1, exp(−u)]; the Glauber case �(u) = [1 + exp(u)]−1; and
�(u) = exp(−u/2) (Marro & Dickman, 1999). The last fulfills �(u + v) =
�(u)�(v), which is required by equation 3.4.3 It then ensues after some
algebra that

heff
i = −T

∑
j �=i

[
α+

ij s j + α−
ij

]
, (3.5)

with

α±
ij ≡ 1

4
ln

c̄(βij;+) c̄(±βij;−)
c̄(−βij;∓) c̄(∓βij;±)

, (3.6)

where βij ≡ 2T−1wij, and

c̄(βij; s j ) =
∫

dxj P(xj |s j ) �(βijx j ). (3.7)

3 In any case, the rate needs to be properly normalized. In computer simulations, it is
customary to divide �(u) by its maximum value. Therefore, the normalization happens
to depend on temperature and the number of stored patterns. It follows that this normal-
ization is irrelevant for the properties of the steady state; it just rescales the timescale.
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This generalizes a case in the literature for random S-independent fluctua-
tions (Garrido & Munoz, 1993; Lacomba & Marro, 1994; Marro & Dickman,
1999). In this case, one has c̄(±κ;+) = c̄(±κ;−) and, consequently, α−

ij = 0
∀i, j. However, we are concerned here with the case of S-dependent disor-
der, which results in a nonzero threshold, θi ≡ ∑

j �=i α−
ij �= 0.

In order to obtain a true effective Hamiltonian, the coefficients α±
ij in

equation 3.5 need to be symmetric. Once �(u) is fixed, this depends on
the choice for P(xj |s j ), that is, on the fast noise details. This is studied in
the next section. Meanwhile, we remark that the effective local fields heff

i
defined above are very useful in practice. That is, they may be computed, at
least numerically, for any rate and noise distribution. As far as �(u + v) =
�(u)�(v) and Pst(X|S) factorizes,4 it follows an effective transition rate as

c̄[S → Si ] = exp
( − si heff

i /T
)
. (3.8)

This effective rate may then be used in computer simulation, and it may also
serve to be substituted in the relevant equations. Consider, for instance, the
overlaps defined as the product of the current state with one of the stored
patterns:

mν(S) ≡ 1
N

∑
i

siξ
ν
i . (3.9)

Here, ξ ν = {ξν
i = ±1, i = 1, . . . , N} are M random patterns previously

stored in the system, ν = 1, . . . , M. After using standard techniques (Hertz,
Krogh, & Palmer, 1991; Marro & Dickman, 1999; see also Amit, Gutfreund,
& Sompolinsky, 1987), it follows from equation 2.4 that

∂tmν = 2N−1
∑

i

ξν
i sinh

(
heff

i /T
) − si cosh

(
heff

i /T
)
, (3.10)

which is to be averaged over both thermal noise and pattern realizations.
Alternatively, one might perhaps obtain dynamic equations of type 3.10 by
using Fokker-Planck-like formalisms as, for instance, in Brunel and Hakim
(1999).

4 Types of Synaptic Noise

The above discussion and, in particular, equations 3.5 and 3.6, suggest that
the system emergent properties will importantly depend on the details

4 The factorization here does not need to be in products P(xj |s j ) as in equation 3.3. The
same result (see equation 3.8) holds for the choice that we introduce in the next section,
for instance.
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of the synaptic noise X. We now work out the equations in section 3 for
different hypotheses concerning the stationary distribution, equation 2.6.

Consider first equation 3.3 with the following specific choice:

P(xj |s j ) = 1 + s j Fj

2
δ(xj + 
) + 1 − s j Fj

2
δ(xj − 1). (4.1)

This corresponds to a simplification of the stochastic variable xj . That is,
for Fj = 1 ∀ j , the noise modifies wij by a factor −
 when the presynap-
tic neuron is firing, s j = 1, while the learned synaptic intensity remains
unchanged when the neuron is silent. In general, wij = −wij
 with prob-
ability 1

2 (1 + s j Fj ). Here, Fj stands for some information concerning the
presynaptic site j such as, for instance, a local threshold or Fj = M−1 ∑

ν ξ ν
j .

Our interest for case 4.1 is twofold: it corresponds to an exceptionally
simple situation and reduces our model to two known cases. This becomes
evident by looking at the resulting local fields:

heff
i = 1

2

∑
j �=i

[(1 − 
) s j − (1 + 
)Fj ]wij. (4.2)

That is, exceptionally, symmetries here are such that the system is described
by a true effective Hamiltonian. Furthermore, this corresponds to the Hop-
field model, except for a rescaling of temperature and the emergence of a
threshold θi ≡ ∑

j wij Fj (Hertz et al., 1991). It also follows that, concern-
ing stationary properties, the resulting effective Hamiltonian, equation 3.2,
reproduces the model as in Bibitchkov et al. (2002). In fact, this would
correspond in our notation to heff

i = 1
2

∑
j �=i wijs j x∞

j , where x∞
j stands for

the stationary solution of certain dynamic equation for xj . The conclusion
is that (except perhaps concerning dynamics, which is something worth
investigating) the fast noise according to equation 3.3 with equation 4.1
does not imply any surprising behavior. In any case, this choice of noise
illustrates the utility of the effective field concept as defined above.

Our interest here is in modeling the noise consistent with the observation
of short-time synaptic depression (Tsodyks et al., 1998; Pantic et al., 2002).
In fact, equation 4.1 in some way mimics that increasing the mean firing
rate results in decreasing the synaptic weight. With the same motivation, a
more intriguing behavior ensues by assuming, instead of equation 3.3, the
factorization

Pst(X|S) =
∏

j

P(xj |S) (4.3)
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with

P(xj |S) = ζ ( 
m) δ(xj + 
) + [1 − ζ ( 
m)] δ(xj − 1). (4.4)

Here, 
m = 
m(S) ≡ (m1(S), . . . , mM(S)) is the M-dimensional overlap vector,
and ζ ( 
m) stands for a function of 
m to be determined. The depression
effect here depends on the overlap vector, which measures the net current
arriving to postsynaptic neurons. The nonlocal choice, equations 4.3 and 4.4,
thus introduces nontrivial correlations between synaptic noise and neural
activity, which is not considered in equation 4.1. Note that therefore we
are not modeling here the synaptic depression dynamics in an explicit way
as, for instance, in Tsodyks et al. (1998). Instead, equation 4.4 amounts to
considering fast synaptic noise, which naturally depresses the strength of
the synapses after repeated activity, namely, for a high value of ζ ( 
m).

Several further comments on the significance of equations 4.3 and 4.4,
which is here a main hypothesis together with p → 0, are in order. We first
mention that the system time relaxation is typically orders of magnitude
larger than the timescale for the various synaptic fluctuations reported to
account for the observed high variability in the postsynaptic response of
central neurons (Zador, 1998). On the other hand, these fluctuations seem to
have different sources, such as, for instance, the stochasticity of the opening
and closing of the vesicles (S. Hilfiker, private communication, April 2005),
the stochasticity of the postsynaptic receptor, which has its own causes,
variations of the glutamate concentration in the synaptic cleft, and differ-
ences in the potency released from different locations on the active zone
of the synapses (Franks, Stevens, & Sejnowski, 2003). This is the complex
situation that we try to capture by introducing the stochastic variable x
in equation 2.1 and subsequent equations. It may be further noticed that
the nature of this variable, which is microscopic here, differs from the one
in the case of familiar phenomenological models. These often involve a
mesoscopic variable, such as the mean fraction of neurotransmitter, which
results in a deterministic situation, as in Tsodyks et al. (1998). The depres-
sion in our model rather naturally follows from the coupling between the
synaptic noise and the neurons’ dynamics via the overlap functions. The
final result is also deterministic for p → 0 but only, as one should perhaps
expect, on the timescale for the neurons. Finally, concerning also the reality
of the model, it should be clear that we are restricting ourselves here to
fully connected networks for simplicity. However, we have studied similar
systems with more realistic topologies such as scale-free, small-world, and
diluted networks (Torres, Munoz, Marro, & Garrido, 2004), which suggests
one can generalize the present study in this sense.

Our case (see equations 4.3 and 4.4) also reduces to the Hopfield model
but only in the limit 
 → −1 for any ζ ( 
m). Otherwise, the competition
results in rather complex behavior. In particular, the noise distribution
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Pst(X|S) lacks with equation 4.4 the factorization property, which is required
to have an effective Hamiltonian with proper symmetry. Nevertheless, we
may still write

c̄[S → Si ]
c̄[Si → S]

=
∏
j �=i

∫
dxj P(xj |S) �(si x j s jβij)∫

dxj P(xj |Si ) �(−si x j s jβij)
. (4.5)

Then, using equation 4.4, we linearize around wij = 0, that is, βij = 0 for
T > 0. This is a good approximation for the Hebbian learning rule (Hebb,
1949), wij = N−1 ∑

ν ξ ν
i ξν

j , which is the one we use hereafter, as far as this rule
stores only completely uncorrelated, random patterns. In fact, fluctuations
in this case are of order

√
M/N for finite M—of order 1/

√
N for finite α—

which tends to vanish for a sufficiently large system, for example, in the
macroscopic (thermodynamic) limit N → ∞. It then follows the effective
weights,

weff
ij =

{
1 − 1 + 


2
[ζ ( 
m) + ζ ( 
mi)]

}
wij, (4.6)

where 
m = 
m(S), 
mi ≡ 
m(Si) = 
m − 2si 
ξi/N, and 
ξi = (ξ 1
i , ξ 2

i , ..., ξ M
i ) is the

binary M–dimensional stored pattern. This shows how the noise modifies
synaptic intensities. The associated effective local fields are

heff
i =

∑
j �=i

weff
ij s j . (4.7)

The condition to obtain a true effective Hamiltonian, that is, proper symme-
try of equation 4.6 from this, is that 
mi = 
m − 2si 
ξi/N � 
m. This is a good
approximation in the thermodynamic limit, N → ∞.

Otherwise, one may proceed with the dynamic equation 3.10 after substi-
tuting equation 4.7, even though this is not then a true effective Hamiltonian.
One may follow the same procedure for the Hopfield case with asymmetric
synapses (Hertz et al., 1991), for instance. Further interest in the concept of
local effective fields as defined in section 3 follows from the fact that one
may use quantities such as equation 4.7 to importantly simplify a computer
simulation, as we do below.

To proceed further, we need to determine the probability ζ in equa-
tion 4.4. In order to model activity-dependent mechanisms acting on the
synapses, ζ should be an increasing function of the net presynaptic current
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or field. In fact, ζ ( 
m) simply needs to depend on the overlaps, besides
preserving the ±1 symmetry. A simple choice with these requirements is

ζ ( 
m) = 1
1 + α

∑
ν

[mν (S)]2
, (4.8)

where α = M/N. We describe next the behavior that ensues from
equations 4.6 to 4.8 as implied by the noise distribution, equation 4.4.

5 Noise-Induced Phase Transitions

Let us first study the retrieval process in a system with a single stored
pattern, M = 1, when the neurons are acted on by the local fields, equation
4.7. One obtains from equations 3.8 to 3.10, after using the simplifying
(mean field) assumption 〈si 〉 ≈ si , that the steady solution corresponds to
the overlap,

m = tanh{T−1m[1 − (m)2(1 + 
)]}, (5.1)

m ≡ mν=1, which preserves the symmetry ±1. Local stability of the solutions
of this equation requires that

|m| > mc(T) = 1√
3

(
Tc − T

 − 
c

) 1
2

. (5.2)

The behavior of equation 5.1 is illustrated in Figure 1 for several values of

. This indicates a transition from a ferromagnetic-like phase (i.e., solutions
m �= 0 with associative memory) to a paramagnetic-like phase, m = 0. The
transition is continuous or second order only for 
 > 
c = −4/3, and it then
follows a critical temperature Tc = 1. Figure 2 shows the tricritical point at
(Tc,
c) and the general dependence of the transition temperature with 
.

A discontinuous phase transition allows much better performance of the
retrieval process than a continuous one. This is because the behavior is sharp
just below the transition temperature in the former case. Consequently,
the above indicates that our model performs better for large negative 
,

 < −4/3.

We also performed Monte Carlo simulations. These concern a network
of N = 1600 neurons acted on by the local fields, equation 4.7, and evolving
by sequential updating via the effective rate, equation 3.8. Except for some
finite-size effects, Figure 1 shows good agreement between our simulations
and the equations here; in fact, the computer simulations also correspond
to a mean field description given that the fields 4.7 assume fully connected
neurons.
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 0

 0.5

 1

 0.4  0.8  1.2

m

T

Figure 1: The steady overlap m(T), as predicted by equation 5.1, for different
values of the noise parameter, namely, 
 = −2.0, −1.5, −1.0, −0.5, 0, 0.5, 1.0,

1.5, 2.0, from top to bottom, respectively. (
 = −1 corresponds to the Hopfield
case, as explained in the text.) The graphs depict second-order phase transitions
(solid curves) and, for the most negative values of 
, first-order phase transitions
(the discontinuities in these cases are indicated by dashed lines). The sym-
bols stand for Monte Carlo data corresponding to a network with N = 1600
neurons for 
 = −0.5 (filled squares) and −2.0 (filled circles).

6 Sensitivity to the Stimulus

As shown above, a noise distribution such as equation 4.4 may model
activity-dependent processes reminiscent of short-time synaptic depres-
sion. In this section, we study the consequences of this type of fast noise
on the retrieval dynamics under external stimulation. More specifically, our
aim is to check the resulting sensitivity of the network to external inputs.
A high degree of sensibility will facilitate the response to changing stimuli.
This is an important feature of neurobiological systems, which continuously
adapt and quickly respond to varying stimuli from the environment.

Consider first the case of one stored pattern, M = 1. A simple external
input may be simulated by adding to each local field a driving term −δξi ,
∀i , with 0 < δ � 1 (Bibitchkov et al., 2002). A negative drive in this case of
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-3

-2.5

-2

-1.5

-1

 0.8  1.2  1.6  2

Φ

T

F

P

Figure 2: Phase diagram depicting the transition temperature Tc as a function
of T and 
. The solid (dashed) curve corresponds to a second- (first-) order
phase transition. The tricritical point is at (Tc, 
c) = (1,−4/3). F and P stand
for the ferromagnetic-like and paramagnetic-like phases, respectively. The best
retrieval properties of our model system occur close to the lower-left quarter of
the graph.

a single pattern ensures that the network activity may go from the attractor,
ξ , to the “antipattern,” −ξ . It then follows the stationary overlap,

m = tanh[T−1 F (m,
, δ)], (6.1)

with

F (m,
, δ) ≡ m[1 − (m)2(1 + 
) − δ]. (6.2)

Figure 3 shows this function for δ = 0 and varying 
. This illustrates
two types of behavior: (local) stability (F > 0) and instability (F < 0) of the
attractor, which corresponds to m = 1. That is, the noise induces instability,
resulting in this case in switching between the pattern and the antipattern.
This is confirmed in Figure 4 by Monte Carlo simulations.

The simulations correspond to a network of N = 3600 neurons with one
stored pattern, M = 1. This evolves from different initial states, correspond-
ing to different distances to the attractor, under an external stimulus −δξ 1
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Figure 3: The function F as defined in equation 6.2 for δ = 0 and, from top to
bottom, 
 = −2, −1, 0, 1, and 2. The solution of equation 6.1 becomes unstable
so that the activity will escape the attractor (m = 1) for F < 0, which occurs for

 > 0 in this case.

for different values of δ. The two left graphs in Figure 4 show several
independent time evolutions for the model with fast noise, namely, for

 = 1; the two graphs to the right are for the Hopfield case lacking the
noise (
 = −1). These, and similar graphs one may obtain for other param-
eter values, clearly demonstrate how the network sensitivity to a simple
external stimulus is qualitatively enhanced by adding presynaptic noise to
the system.

Figures 5 and 6 illustrate similar behavior in Monte Carlo simulations
with several stored patterns. Figure 5 is for M = 3 correlated patterns
with mutual overlaps |mν,µ| ≡ |1/N

∑
i ξν

i ξ
µ

i | = 1/3 and |〈ξν
i 〉| = 1/3. More

specifically, each pattern consists of three equal initially white (silent neu-
rons) horizontal stripes, with one of them colored black (firing neurons)
located in a different position for each pattern. The system in this case be-
gins with the first pattern as initial condition, and, to avoid dependence on
this choice, it is let to relax for 3 × 104 Monte Carlo steps (MCS). It is then
perturbed by a drive −δξ ν , where the stimulus ν changes (ν = 1, 2, 3, 1, . . .)
every 6 × 103 MCS. The top graph shows the network response in the Hop-
field case. There is no visible structure of this signal in the absence of fast
noise as far as δ � 1. In fact, the depth of the basins of attraction is large
enough in the Hopfield model to prevent any move for small δ, except
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Figure 4: Time evolution of the overlap, as defined in equation 3.9, between
the current state and the stored pattern in Monte Carlo simulations with
3600 neurons at T = 0.1. Each graph, for a given set of values for (δ ,
), shows
different curves corresponding to evolutions starting with different initial states.
The two top graphs are for δ = 0.3 and 
 = 1 (graphs A and C) and 
 = −1
(graphs B and D), the latter corresponding to the Hopfield case lacking the fast
noise. This shows the important effect noise has on the network sensitivity to
external stimuli. The two bottom graphs illustrate the same for a fixed initial
distance from the attractor as one varies the external stimulation, namely, for
δ = 0.1, 0.2, 0.3, 0.4, and 0.5 from top to bottom.

when approaching a critical point (Tc = 1), where fluctuations diverge. The
bottom graph depicts a qualitatively different situation for 
 = 1. That is,
adding fast noise in general destabilizes the fixed point for the interesting
case of small δ far from criticality.

Figure 6 confirms the above for uncorrelated patterns, for example,
mν,µ ≈ δν,µ and 〈ξν

i 〉 ≈ 0. This shows the response of the network in a sim-
ilar simulation with 400 neurons at T = 0.1 for M = 3 random, othogonal
patterns. The initial condition is again ν = 1, and the stimulus is here +δξ ν

with ν changing every 1.5 × 105 MCS. Thus, we conclude that the switching
phenomenon is robust with respect to the type of pattern stored.

7 Conclusion

The set of equations 2.4 to 2.6 provides a general framework to model
activity-dependent processes. Motivated by the behavior of neurobiological
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Figure 5: Time evolution during a Monte Carlo simulation with N = 400 neu-
rons, M = 3 correlated patterns (as defined in the text), and T = 0.1. The system
in this case was let to relax to the steady state and then perturbed by the stim-
ulus −δξ ν , δ = 0.3, with ν = 1 for a short time interval and then with ν = 2,
and so on. After suppressing the stimulus, the system is again allowed to relax.
The graphs show as a function of time, from top to bottom, the number of the
pattern used as the stimulus at each time interval; the resulting response of the
network, measured as the overlap of the current state with pattern ν = 1, in
the absence of noise, that is, the Hopfield case 
 = −1; and the same for the
relevant noisy case 
 = 1.

systems, we adapted this to study the consequences of fast noise acting on
the synapses of an attractor neural network with a finite number of stored
patterns. We presented in this letter two different scenarios corresponding
to noise distributions fulfilling equations 3.3 and 4.3, respectively. In partic-
ular, assuming a local dependence on activity as in equation 4.1, one obtains
the local fields, equation 4.2, while a global dependence as in equation 4.4
leads to equation 4.7. Under certain assumptions, the system in the first of
these cases is described by the effective Hamiltonian, equation 3.2. This re-
duces to a Hopfield system—the familiar attractor neural network without
any synaptic noise—with rescaled temperature and a threshold. This was
already studied for a gaussian distribution of thresholds (Hertz et al., 1991;
Horn & Usher, 1989; Litinskii, 2002). Concerning stationary properties, this
case is also similar to the one in Bibitchkov et al. (2002). A more intriguing
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Figure 6: The same as in Figure 5 but for three stored patterns that are or-
thogonal (instead of correlated). The stimulus is +δξν , δ = 0.1, with ν = ν(t),
as indicated at the top. The time evolution of the overlap mν is drawn with a
different color (black, dark gray, and light gray, respectively) for each value of ν

to illustrate that the system keeps jumping between the patterns in this case.

behavior ensues when the noise depends on the total presynaptic current
arriving at the postsynaptic neuron. We studied this case both analytically,
by using a mean field hypothesis, and numerically, by a series of Monte
Carlo simulations using single-neuron dynamics. The two approaches are
fully consistent with and complement each other.

Our model involves two main parameters. One is the temperature T ,
which controls the stochastic evolution of the network activity. The other
parameter, 
, controls the depressing noise intensity. Varying this, the sys-
tem describes the route from normal operation to depression phenomena.
A main result is that the presynaptic noise induces the occurrence of a
tricritical point for certain values of these parameters, (Tc,
c) = (1,−4/3).
This separates (in the limit α → 0) first from second-order phase transitions
between a retrieval phase and a nonretrieval phase.

The principal conclusion in this letter is that fast presynaptic noise may
induce a nonequilibrium condition that results in an important intensifica-
tion of the network sensitivity to external stimulation. We explicitly show
that the noise may turn the attractor or fixed-point solution of the retrieval
process unstable, and the system then seeks another attractor. In particular,
one observes switching from the stored pattern to the corresponding an-
tipattern for M = 1 and switching between patterns for a larger number of
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stored patterns, M. This behavior is most interesting because it improves
the network ability to detect changing stimuli from the environment. We
observe the switching to be very sensitive to the forcing stimulus, but rather
independent of the network initial state or the thermal noise. It seems sensi-
ble to argue that besides recognition, the processes of class identification and
categorization in nature might follow a similar strategy. That is, different
attractors may correspond to different objects, and a dynamics conveniently
perturbed by fast noise may keep visiting the attractors belonging to a class
that is characterized by a certain degree of correlation among its elements
(Cortes et al., 2005). In fact, a similar mechanism seems to be at the basis of
early olfactory processing of insects (Laurent et al., 2001), and instabilities
of the same sort have been described in the cortical activity of monkeys
(Abeles et al., 1995) and other cases (Miller & Schreiner, 2000).

Finally, we mention that the above complex behavior seems confirmed by
preliminary Monte Carlo simulations for a macroscopic number of stored
patterns, that is, a finite loading parameter α = M/N �= 0. On the other
hand, a mean field approximation (see below) shows that the storage ca-
pacity of the network is αc = 0.138, as in the Hopfield case (Amit et al.,
1987), for any 
 < 0, while it is always smaller for 
 > 0. This is in agree-
ment with previous results concerning the effect of synaptic depression in
Hopfield-like systems (Torres, Pantic, & Kappen, 2002; Bibitchkov et al.,
2002). The fact that a positive value of 
 tends to shallow the basin, thus
destabilizing the attractor, may be understood by a simple (mean field)
argument, which is confirmed by Monte Carlo simulations (Cortes et al.,
2005). Assume that the stationary activity shows just one overlap of order
unity. This corresponds to the condensed pattern; the overlaps with the
rest, M − 1 stored patterns, is of order of 1/

√
N (non-condensed patterns)

(Hertz et al., 1991). The resulting probability of change of the synaptic in-
tensity, namely, 1/(1 + α)

∑M
ν=1(mν)2, is of order unity, and the local fields,

equation 4.7, follow as heff
i ∼ −
hHopfield

i . Therefore, the storage capacity,
which is computed at T = 0, is the same as in the Hopfield case for any

 < 0, and always lower otherwise.
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