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Abstract

We study both analytically and numerically the ef-
fect of presynaptic noise on the transmission of in-
formation in attractor neural networks. The noise
occurs on a very short–time scale compared to that
for the neuron dynamics and it produces short–
time synaptic depression. This is inspired in recent
neurobiological findings that show that synaptic
strength may either increase or decrease on a short–
time scale depending on presynaptic activity. We
thus describe a mechanism by which fast presynap-
tic noise enhances the neural network sensitivity to
an external stimulus. The reason for this is that,
in general, the presynaptic noise induces nonequi-
librium behavior and, consequently, the space of
fixed points is qualitatively modified in such a way
that the system can easily scape from the attrac-
tor. As a result, the model shows, in addition to
pattern recognition, class identification and catego-
rization, which may be relevant to the understand-
ing of some of the brain complex tasks.

1 Introduction

There is multiple converging evidence
[Abbott and Regehr, 2004] that synapses de-
termine the complex processing of information in

the brain. An aspect of this statement is illustrated
by attractor neural networks. These show that
synapses can efficiently store patterns that are af-
terwards retrieved with only partial information on
them. In addition to this long–time effect, artificial
neural networks should contain some “synaptic
noise”, however. That is, actual synapses exhibit
short–time fluctuations, which seem to compete
with other mechanisms during the transmission
of information, not to cause unreliability but to
ultimately determine a variety of computations
[Allen and Stevens, 1994, Zador, 1998]. In spite
of some recent efforts, a full understanding of
how the brain complex processes depend on such
fast synaptic variations is lacking —see below
and [Abbott and Regehr, 2004], for instance—.
A specific matter under discussion concerns the
influence of short–time noise on the fixed points
and other details of the retrieval processes in
attractor neural networks [Bibitchkov et al., 2002].

The observation that actual synapses endure
short–time depression and/or facilitation is likely
to be relevant in this context. That is, one
may understand some observations by assuming
that periods of elevated presynaptic activity may
cause either decrease or increase of the neuro-
transmitter release and, consequently, that the
postsynaptic response will be either depressed or
facilitated depending on presynaptic neural ac-
tivity [Tsodyks et al., 1998, Thomson et al., 2002,
Abbott and Regehr, 2004]. Motivated by the neu-
robiological findings, we report in this paper on ef-
fects of presynaptic depressing noise on the func-
tionality of a neural circuit. We study in detail a
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network in which the neural activity evolves at ran-
dom in time regulated by a “temperature” param-
eter. In addition, the values assigned to the synap-
tic intensities by a learning (e.g., Hebb’s) rule are
constantly perturbed with microscopic fast noise.
A new parameter is involved by this perturbation
that allows for a continuum transition from depres-
sion to normal operation.

As a main result, this paper illustrates that,
in general, the addition of fast synaptic noise in-
duces a nonequilibrium condition. That is, our
systems cannot asymptotically reach equilibrium
but tend to nonequilibrium steady states whose
features depend, even qualitatively, on dynamics
[Marro and Dickman, 1999]. This is interesting be-
cause, in practice, thermodynamic equilibrium is
rare in nature. Instead, the simplest conditions
one observes are characterized by a steady flux of
energy or information, for instance. This makes
the model mathematically involved, e.g., there is
no general framework such as the powerful (equi-
librium) Gibbs theory, which only applies to sys-
tems with a single Kelvin temperature and a unique
Hamiltonian. However, our system still admits ana-
lytical treatment for some choices of its parameters
and, in other cases, we discovered the more intri-
cate model behavior by a series of computer simula-
tions. We thus show that fast presynaptic depress-
ing noise during external stimulation may induce
the system to scape from the attractor, namely,
the stability of fixed point solutions is dramatically
modified. More specifically, we show that, for cer-
tain versions of the system, the solution destabi-
lizes in such a way that computational tasks such as
class identification and categorization are favored.
It is likely this is the first time such a behavior is
reported in an artificial neural network as a con-
sequence of biologically–motivated stochastic be-
havior of synapses. Similar instabilities have been
reported to occur in monkeys [Abeles et al., 1995]
and other animals [Miller and Schreiner, 2000], and
they are believed to be a main feature in odor en-
coding [Laurent et al., 2001], for instance.

2 Definition of model

Our interest is in a neural network in which
a local stochastic dynamics is constantly influ-
enced by presynaptic noise. Consider a set

of N binary neurons with configurations S ≡
{si = ±1; i = 1, . . . , N} . 1 Any two neurons are
connected by synapses of intensity: 2

wij = wijxj ∀i, j. (1)

Here, wij is fixed, namely, determined in a pre-
vious learning process, and xj is a stochastic
variable. This generalizes the hypothesis in previ-
ous studies of attractor neural networks with noisy
synapses; see, for instance, [Sompolinsky, 1986,
Garrido and Marro, 1991, Marro et al., 1999].
Once W ≡{wij} is given, the state of the system
at time t is defined by setting S and X ≡ {xi}.
These evolve with time —after the learning process
which fixes W— via the familiar Master Equation,
namely,

∂Pt(S,X)

∂t
= −Pt(S,X)

∫

X′

∑

S′

c[(S,X) → (S′,X′)]

+

∫

X′

∑

S′

c[( S
′,X′) → (S,X)]Pt(S

′,X′). (2)

We further assume that the transition rate or prob-
ability per unit time of evolving from (S,X) to
(S′,X′) is

c[(S,X) → (S′, X
′)] = p cX[S → S

′]δ(X − X
′)

+(1 − p) cS[X → X
′]δS,S′ . (3)

This choice [Garrido and Marro, 1994,
Torres et al., 1997] amounts to consider com-
peting mechanisms. That is, neurons (S) evolve
stochastically in time under a noisy dynamics
of synapses (X), the latter evolving (1 − p)/p
times faster than the former. Depending on the
value of p, three main classes may be defined
[Marro and Dickman, 1999]:

1. For p ∈ (0, 1) both the synaptic fluctua-
tion and the neuron activity occur on the
same temporal scale. This case has already

1Note that such binary neurons, although a crude sim-
plification of nature, are known to capture the essentials of
cooperative phenomena, which is the focus here. See, for
instance [Abbott and Kepler, 1990, Pantic et al., 2002].

2For simplicity, we are neglecting here postsynaptic de-
pendence of the stochastic perturbation. There is some
claim that plasticity might operate on rapid time–scales
on postsynaptic activity; see [Pitler and Alger, 1992]. How-
ever, including xij in (1) instead of xj would impede some
of the algebra in sections 3 and 4.
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been preliminary explored [Pantic et al., 2002,
Cortes et al., 2004].

2. The limiting case p → 1. This corresponds to
neurons evolving in the presence of a quenched
synaptic configuration, i.e., xi is constant
and independent of i. The Hopfield model

[Amari, 1972, Hopfield, 1982] belongs to this
class in the simple case that xj = 1, ∀j.

3. The limiting case p → 0. The rest of this paper
is devoted to this class of systems.

Our interest for the latter case is a consequence of
the following facts. Firstly, there is adiabatic elim-
ination of fast variables for p → 0 which decou-
ples the two dynamics [Garrido and Marro, 1994,
Gardiner, 2004]. Therefore, some exact analytical
treatment —though not the complete solution— is
then feasible. To be more specific, for p → 0, the
neurons evolve as in the presence of a steady distri-
bution for X. If we write P (S,X) = P (X|S)P (S),
where P (X|S) stands for the conditional probabil-
ity of X given S, one obtains from (2) and (3),
after rescaling time tp → t (technical details are
worked out in [Marro and Dickman, 1999], for in-
stance) that

∂Pt(S)

∂t
= −Pt(S)

∑

S′

c̄[S → S
′]

+
∑

S′

c̄[S′ → S]Pt(S
′). (4)

Here,

c̄[S → S
′] ≡

∫

dXP st(X|S) cX[S → S
′], (5)

and P st(X|S) is the stationary solution that satis-
fies

P st(X|S) =

∫

d X
′ cS[X′ → X] P st(X′|S)

∫

dX′ cS[X → X′]
. (6)

This formalism will allows us for modelling fast
synaptic noise which, within the appropiate con-
text, will induce sort of synaptic depression, as ex-
plained in detail in section 4.

The superposition (5) reflects the fact that ac-
tivity is the result of competition between differ-
ent elementary mechanisms. That is, different un-
derlying dynamics, each associated to a different

realization of the stochasticity X, compete and,
in the limit p → 0, an effective rate results from
combining cX[S → S

′] with probability P st(X|S)
for varying X. Each of the elementary dynamics
tends to drive the system to a well-defined equi-
librium state. The competition will, however, im-
pede equilibrium and, in general, the system will
asymptotically go towards a nonequilibrium steady
state [Marro and Dickman, 1999]. The question is
if such a competition between synaptic noise and
neural activity, which induces nonequilibrium, is at
the origin of some of the computational strategies
in neurobiological systems. Our study below seems
to indicate that this is a sensible issue. As a matter
of fact, we shall argue below that p → 0 may be re-
alistic a priori for appropriate choices of P st(X|S).

For the sake of simplicity, we shall be concerned
in this paper with sequential updating by means
of single neuron or “spin–flip” dynamics. That is,
the elementary dynamic step will simply consist of
local inversions si → −si induced by a bath at tem-
perature T. The elementary rate cX[S → S

′] then
reduces to a single site rate that one may write as
Ψ[u X(S, i)]. Here, uX(S, i) ≡ 2T−1sih

X
i (S), where

hX

i (S) =
∑

j 6=i wijxjsj is the net presynaptic cur-
rent arriving to —or local field acting on— the
(postsynaptic) neuron i. The function Ψ(u) is ar-
bitrary except that, for simplicity, we shall assume
Ψ(u) = exp(−u)Ψ(−u), Ψ(0) = 1 and Ψ(∞) = 0
[Marro and Dickman, 1999]. We shall report on
the consequences of more complex dynamics in a
forthcomming paper [Cortes et al., 2005].

3 Effective local fields

Let us define a function Heff(S) through the con-
dition of detailed balance, namely,

c̄[S → S
i]

c̄[Si → S]
= exp

{

−
[

Heff(Si) − Heff(S)
]

T−1
}

.

(7)
Here, S

i stands for S after flipping at i, si → −si.
We further define the “effective local fields” heff

i (S)
by means of

Heff(S) = −1

2

∑

i

heff
i (S) si. (8)

Nothing guaranties that Heff(S) and heff
i (S) have

a simple expression and are therefore analytically
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useful. This is because the superposition (5), un-
like its elements Ψ(u X), does not satisfy detailed
balance, in general. In other words, our system has
an essential nonequilibrium character that prevents
one from using Gibbs’s statistical mechanics, which
requires a unique Hamiltonian. Instead, there is
here one energy associated with each realization of
X ={xi}. This is in addition to the fact that the
synaptic weights wij in (1) may not be symmetric.

For some choices of both the rate Ψ and
the noise distribution P st(X|S), the function
Heff(S) may be considered as a true effec-
tive Hamiltonian [Garrido and Marro, 1989,
Marro and Dickman, 1999]. This means that
Heff(S) then generates the same nonequilibrium
steady state than the stochastic time–evolution
equation which defines the system, i.e., equation
(4), and that its coefficients have the proper
symmetry of interactions. To be more explicit,
assume that P st(X|S) factorizes according to

P
st (X|S) =

∏

j

P (xj |sj) , (9)

and that one also has the factorization

c̄[S → S
i] =

∏

j 6=i

∫

dxj P (xj |sj)Ψ(2T−1siwijxjsj).

(10)
The former amounts to neglect some global de-
pendence of the factors on S = {si} (see below),
and the latter restricts the possible choices for
the rate function. Some familiar choices for this
function that satisfy detailed balance are: the
one corresponding to the Metropolis algorithm,
i.e., Ψ(u) = min[1, exp(−u)]; the Glauber case
Ψ(u) = [1 + exp(u)]−1; and Ψ(u) = exp(−u/2)
[Marro and Dickman, 1999]. The latter fulfills
Ψ(u + v) = Ψ(u)Ψ(v) which is required by (10)
3. It then ensues after some algebra that

heff
i = −T

∑

j 6=i

[

α+
ijsj + α−

ij

]

, (11)

3In any case, the rate needs to be properly normalized.
In computer simulations, it is customary to divide Ψ(u) by
its maximum value. Therefore, the normalization happens
to depend on temperature and on the number of stored pat-
terns. It follows that this normalization is irrelevant for the
properties of the steady state, namely, it just rescales the
time scale.

with

α±
ij ≡ 1

4
ln

c̄(βij ; +) c̄(±βij ;−)

c̄(−βij ;∓) c̄(∓βij ;±)
, (12)

where βij ≡ 2T−1wij , and

c̄(βij ; sj) =

∫

dxj P (xj |sj)Ψ(βijxj). (13)

This generalizes a case in the litera-
ture for random S –independent fluc-
tuations [Garrido and Munoz, 1993,
Lacomba and Marro, 1994,
Marro and Dickman, 1999]. In this case, one
has c̄(±κ; +) = c̄(±κ;−) and, consequently,
α−

ij = 0 ∀i, j. However, we here are concerned with
the case of S–dependent disorder, which results in
a non–zero threshold, θi ≡

∑

j 6=i α−
ij 6= 0.

In order to obtain a true effective Hamiltonian,
the coefficients α±

ij in (11) need to be symmetric.
Once Ψ(u) is fixed, this depends on the choice for
P (xj |sj), i.e., on the fast noise details. This is stud-
ied in the next section. Meanwhile, we remark that
the effective local fields heff

i defined above are very
useful in practice. That is, they may be computed
—at least numerically— for any rate and noise dis-
tribution. As far as Ψ(u + v) = Ψ(u)Ψ(v) and
P

st (X|S) factorizes,4 it follows an effective transi-
tion rate as

c̄[S → S
i] = exp

(

−sih
eff
i /T

)

. (14)

This effective rate may then be used in computer
simulation, and it may also serve to be substituted
in the relevant equations. Consider, for instance,
the overlaps defined as the product of the current
state with one of the stored patterns:

mν(S) ≡ 1

N

∑

i

siξ
ν
i . (15)

Here, ξν = {ξν
i = ±1, i = 1, . . . , N} are M

random patterns previously stored in the system,
ν = 1, . . . , M. After using standard techniques
[Hertz et al., 1991, Marro and Dickman, 1999]; see

4The factorization here does not need to be in
products P (xj |sj) as in (9). The same result (14)
holds for the choice that we shall introduce in the
next section, for instance.
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also [Amit et al., 1987], it follows from (4) that

∂tm
ν = 2N−1

∑

i

ξν
i sinh

(

heff
i /T

)

−si cosh
(

heff
i /T

)

.

(16)
which is to be averaged over both thermal noise and
pattern realizations. Alternatively, one might per-
haps obtain dynamic equations of type (16) by us-
ing Fokker-Planck like formalisms as, for instance,
in [Brunel and Hakim, 1999].

4 Types of synaptic noise

The above discussion and, in particular, equations
(11) and (12), suggest that the system emergent
properties will importantly depend on the details of
the synaptic noise X. We now work out the equa-
tions in section 3 for different hypothesis concerning
the stationary distribution (6).

Consider first (9) with the following specific
choice:

P (xj |sj) =
1 + sjFj

2
δ(xj +Φ)+

1 − sjFj

2
δ(xj −1).

(17)
This corresponds to a simplification of the stochas-
tic variable xj . That is, for Fj = 1 ∀j, the noise
modifies wij by a factor −Φ when the presynaptic
neuron is firing, sj = 1, while the learned synap-
tic intensity remains unchanged when the neuron
is silent. In general, wij = −wijΦ with probability
1
2

(1 + sjFj) . Here, Fj stands for some informa-
tion concerning the presynaptic site j such as, for
instance, a local threshold or Fj = M−1

∑

ν ξν
j .

Our interest for case (17) is two fold, namely,
it corresponds to an exceptionally simple situation
and it reduces our model to two known cases. This
becomes evident by looking at the resulting local
fields:

heff
i =

1

2

∑

j 6=i

[(1 − Φ) sj − (1 + Φ) Fj ] wij . (18)

That is, exceptionally, symmetries here are such
that the system is described by a true effective
Hamiltonian. Furthermore, this corresponds to the
Hopfield model, except for a rescaling of temper-
ature and for the emergence of a threshold θi ≡
∑

j wijFj [Hertz et al., 1991]. On the other hand,
it also follows that, concerning stationary prop-
erties, the resulting effective Hamiltonian (8) re-
produces the model as in [Bibitchkov et al., 2002].

In fact, this would correspond in our notation to
heff

i = 1
2

∑

j 6=i wijsjx
∞
j , where x∞

j stands for the
stationary solution of certain dynamic equation for
xj . The conclusion is that (except perhaps concern-
ing dynamics, which is something worth to be in-
vestigated) the fast noise according to (9) with (17)
does not imply any surprising behavior. In any
case, this choice of noise illustrates the utility of
the effective–field concept as defined above.

Our interest here is in modeling the noise consis-
tent with the observation of short-time synaptic de-
pression [Tsodyks et al., 1998, Pantic et al., 2002].
In fact, the case (17) in some way mimics that in-
creasing the mean firing rate results in decreasing
the synaptic weight. With the same motivation, a
more intriguing behavior ensues by assuming, in-
stead of (9), the factorization

P st(X|S) =
∏

j

P (xj |S) (19)

with

P (xj |S) = ζ ( ~m) δ(xj +Φ)+ [1 − ζ ( ~m)] δ(xj −1).
(20)

Here, ~m = ~m(S) ≡
(

m1(S), . . . , mM (S)
)

is the
M -dimensional overlap vector, and ζ ( ~m) stands
for a function of ~m to be determined. The de-
pression effect here depends on the overlap vec-
tor which measures the net current arriving to
postsynaptic neurons. The non–local choice (19)–
(20) thus introduces non–trivial correlations be-
tween synaptic noise and neural activity, which
is not considered in (17). Note that, therefore,
we are not modelling here the synaptic depres-
sion dynamics in an explicity way as, for instance,
in [Tsodyks et al., 1998]. Instead, equation (20)
amounts to consider fast synaptic noise which nat-
urally depresses the strengh of the synapses after
repeated activity, namely, for a high value of ζ (~m) .

Several further comments on the significance of
(19)-(20), which is here a main hypothesis together
with p → 0, are in order. We first mention that
the system time relaxation is typically orders of
magnitude larger than the time scale for the var-
ious synaptic fluctuations reported to account for
the observed high variability in the postsynaptic
response of central neurons [Zador, 1998]. On the
other hand, these fluctuations seem to have differ-
ent sources such as, for instance, the stochasticity
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of the opening and closing of the vesicles (S. Kil-
fiker, private communication), the stochasticity of
the postsynaptic receptor, which has its own several
causes, variations of the glutamate concentration in
the synaptic cleft, and differences in the potency re-
leased from different locations on the active zone of
the synapses [Franks et al., 2003]. Is this complex
situation the one that we try to capture by intro-
ducing the stochastic variable x in (1) and subse-
quent equations. It may be further noticed that
the nature of this variable, which is ”microscopic”
here, differs from the one in the case of familiar
phenomenological models. These often involve a
”mesoscopic” variable, such as the mean fraction
of neurotransmitter, which results in a determinis-
tic situation, as in [Tsodyks et al., 1998]. The de-
pression in our model rather naturally follows from
the coupling between the synaptic ”noise” and the
neurons dynamics via the overlap functions. The
final result is also deterministic for p → 0 but only,
as one should perhaps expect, on the time scale
for the neurons. Finally, concerning also the real-
ity of the model, it should be clear that we are
restricting ourselves here to fully connected net-
works just for simplicity. However, we already stud-
ied similar systems with more realistic topologies
such as scale-free, small-world and diluted networks
[Torres et al., 2004], which suggests one to general-
ize the present study in this sense.

It is to be remarked that our case (19)-(20) also
reduces to the Hopfield model but only in the limit
Φ → −1 for any ζ ( ~m) . Otherwise, the competition
results in a rather complex behavior. In particular,
the noise distribution P st(X|S) lacks with (20) the
factorization property which is required to have an
effective Hamiltonian with proper symmetry. Nev-
ertheless, we may still write

c̄[S → S
i]

c̄[Si → S]
=

∏

j 6=i

∫

dxj P (xj |S)Ψ(sixjsjβij)
∫

dxj P (xj |Si)Ψ(−sixjsjβij)
.

(21)
Then, using (20), we linearize around wij = 0,
i.e., βij = 0 for T > 0. This is a good approxi-
mation for the Hebbian learning rule [Hebb, 1949]
wij = N−1

∑

ν ξν
i ξν

j , which is the one we use here-
after, as far as this rule only stores completely un-
correlated, random patterns. In fact, fluctuations
in this case are of order

√
M/N for finite M (or

order 1/
√

N for finite α) which tends to vanish for
a sufficiently large system, e.g., in the macroscopic

 0

 0.5

 1

 0.4  0.8  1.2

m

T

Figure 1: The steady overlap m(T ), as predicted by equa-

tion (25), for different values of the noise parameter, namely,

Φ = −2.0, −1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5, 2.0, from top

to bottom, respectively. (Φ = −1 corresponds to the Hop-

field case, as explained in the main text.) The graphs depict

second order phase transitions (solid curves) and, for the

most negative values of Φ, first order phase transitions (the

discontinuities in these cases are indicated by dashed lines).

The symbols stand for Monte Carlo data corresponding to a

network with N = 1600 neurons for Φ = −0.5 (filled squares)

and −2.0 (filled circles).

(thermodynamic) limit N → ∞. It then follows the
effective weights:

weff
ij =

{

1 − 1 + Φ

2

[

ζ ( ~m) + ζ
(

~mi
)]

}

wij , (22)

where ~m = ~m(S), ~mi ≡ ~m(Si) = ~m−2si
~ξi/N, and

~ξi =
(

ξ1
i , ξ2

i , ..., ξM
i

)

is the binary M–dimensional
stored pattern. This shows how the noise modifies
synaptic intensities. The associated effective local
fields are

heff
i =

∑

j 6=i

weff
ij sj . (23)

The condition to obtain a true effective Hamilto-
nian, i.e., proper symmetry of (22) from this, is

that ~mi = ~m − 2si
~ξi/N ≃ ~m. This is a good ap-

proximation in the thermodynamic limit, N → ∞.
Otherwise, one may proceed with the dynamic

equation (16) after substituting (23), even though
this is not then a true effective Hamiltonian. One
may follow the same procedure for the Hopfield case
with asymmetric synapses [Hertz et al., 1991], for
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-3

-2.5

-2

-1.5

-1

 0.8  1.2  1.6  2

Φ

T

F

P

Figure 2: Phase diagram depicting the transition temper-

ature Tc as a function of T and Φ. The solid (dashed) curve

corresponds to a second (first) order phase transition. The

tricritical point is at (Tc, Φc) = (1,−4/3). F and P stand

for the ferromagnetic–like and paramagnetic–like phases, re-

spectively. The best retrieval properties of our model system

occur close to the left–lower quarter of the graph.

instance. Further interest on the concept of local
effective fields as defined in section 3 follows from
the fact that one may use quantities such as (23)
to importantly simplify a computer simulation, as
it is made below.

To proceed further, we need to determine the
probability ζ in (20). In order to model activity–
dependent mechanisms acting on the synapses,
ζ should be an increasing function of the net presy-
naptic current or field. In fact, ζ ( ~m) simply needs
to depend on the overlaps, besides to preserve the
±1 symmetry. A simple choice with these require-
ments is

ζ ( ~m) =
1

1 + α

∑

ν

[mν (S)]
2
, (24)

where α = M/N. We describe next the behavior
that ensues from (22)–(24) as implied by the noise
distribution (20).

5 Noise induced phase transi-

tions

Let us first study the retrieval process in a sys-
tem with a single stored pattern, M = 1, when the
neurons are acted on by the local fields (23). One

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1

F
(m

,Φ
,δ

)

m

Figure 3: The function F as defined in (28) for δ = 0 and,

from top to bottom, Φ = −2,−1, 0, 1 and 2. The solution of

(27) becomes unstable so that the activity will escape the

attractor (m = 1) for F < 0, which occurs for Φ > 0 in this

case.

obtains from (14)–(16), after using the simplifying
(mean-field) assumption 〈si〉 ≈ si that the steady
solution corresponds to the overlap:

m = tanh
{

T−1m
[

1 − (m)2 (1 + Φ)
]}

, (25)

m ≡ mν=1, which preserves the symmetry ±1. Lo-
cal stability of the solutions of this equation re-
quires that

|m| > mc(T ) =
1√
3

(

Tc − T

Φ − Φc

)
1

2

. (26)

The behavior (25) is illustrated in figure 1 for sev-
eral values of Φ. This indicates a transition from a
ferromagnetic–like phase, i.e., solutions m 6= 0 with
associative memory, to a paramagnetic–like phase,
m = 0. The transition is continuous or second or-
der only for Φ > Φc = −4/3, and it then follows
a critical temperature Tc = 1. Figure 2 shows the
tricritical point at (Tc, Φc) and the general depen-
dence of the transition temperature with Φ.

It is to be remarked that a discontinuous phase
transition allows for a much better performance of
the retrieval process than a continuous one. This is
because the behavior is sharp just below the transi-
tion temperature in the former case. Consequently,
the above indicates that our model performs better
for large negative Φ, Φ < −4/3.

We also performed Monte Carlo simulations.
These concern a network of N = 1600 neurons
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Figure 4: Time evolution of the overlap, as defined in (15),

between the current state and the stored pattern in Monte

Carlo simulations with 3600 neurons at T = 0.1. Each graph,

for a given set of values for (δ, Φ) shows different curves cor-

responding to evolutions starting with different initial states.

The two top graphs are for δ = 0.3 and Φ = 1 (graphs A and

C) and Φ = −1 (graphs B and D), the latter corresponding

to the Hopfield case lacking the fast noise. This shows the

important effect noise has on the network sensitivity to ex-

ternal stimuli. The two bottom graphs illustrate the same

for a fixed initial distance from the attractor as one varies

the external stimulation, namely, for δ = 0.1, 0.2, 0.3, 0.4 and

0.5 from top to bottom.

acted on by the local fields (23) and evolving by
sequential updating via the effective rate (14). Ex-
cept for some finite–size effects, figure 1 shows a
good agreement between our simulations and the
equations here; in fact, the computer simulations
also correspond to a mean–field description given
that the fields (23) assume fully connected neurons.

6 Sensitivity to the stimulus

As shown above, a noise distribution such as (20)
may model activity-dependent processes reminis-
cent of short-time synaptic depression. In this sec-
tion, we study the consequences of this type of
fast noise on the retrieval dynamics under exter-
nal stimulation. More specifically, our aim is to
check the resulting sensitivity of the network to ex-
ternal inputs. A high degree of sensibility will fa-
cilitate the response to changing stimuli. This is an

1

0

-1

 160  180  200  220  240

m
1

Fast Noise

Hopfield

P1 P2 P3 P1 P2 P3 P1 P2 P3      δ=0 Input

time (103 MCS)

Figure 5: Time evolution during a Monte Carlo simulation

with N = 400 neurons, M = 3 correlated patterns (as de-

fined in the main text), and T = 0.1. The system in this case

was let to relaxe to the steady sate, and then perturbed by

the stimulus −δξν , δ = 0.3, with ν = 1 for a short time in-

terval, and then with ν = 2, and so on. After suppresing the

stimulus, the system is again allowed to relaxe. The graphs

show as a function of time, from top to bottom, (i) the num-

ber of the pattern which is used as the stimulus at each time

interval; (ii) the resulting response of the network, measured

as the overlap of the current state with pattern ν = 1, in the

absence of noise, i.e., the Hopfield case Φ = −1; (iii) the

same for the relevant noisy case Φ = 1.

important feature of neurobiological systems which
continuously adapt and quickly respond to varying
stimuli from the environment.

Consider first the case of one stored pattern,
M = 1. A simple external input may be simu-
lated by adding to each local field a driving term
−δξi, ∀i, with 0 < δ ≪ 1 [Bibitchkov et al., 2002].
A negative drive in this case of a single pattern as-
sures that the network activity may go from the
attractor, ξ, to the “antipattern”, −ξ. It then fol-
lows the stationary overlap:

m = tanh[T−1F (m, Φ, δ)] (27)

with

F (m, Φ, δ) ≡ m[1 − (m)2(1 + Φ) − δ]. (28)

Figure 3 shows this function for δ = 0 and vary-
ing Φ. This illustrates two different types of behav-
ior, namely, (local) stability (F > 0) and instabil-
ity (F < 0) of the attractor, which corresponds to
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m = 1. That is, the noise induces instability, result-
ing in this case in switching between the pattern
and the antipattern. This is confirmed in figure 4
by Monte Carlo simulations.

The simulations corresponds to a network of N =
3600 neurons with one stored pattern, M = 1. This
evolves from different initial states, corresponding
to different distances to the attractor, under an ex-
ternal stimulus −δξ1 for different values of δ. The
two left graphs in figure 4 show several indepen-
dent time evolutions for the model with fast noise,
namely, for Φ = 1; the two graphs to the right are
for the Hopfield case lacking the noise (Φ = −1).
These, and similar graphs one may obtain for other
parameter values, clearly demonstrate how the net-
work sensitivity to a simple external stimulus is
qualitatively enhanced by adding presynaptic noise
to the system.

Figures 5 and 6 illustrate a similar behavior in
Monte Carlo simulations with several stored pat-
terns. Figure 5 is for M = 3 correlated patterns
with mutual overlaps |mν,µ| ≡ |1/N

∑

i ξν
i ξµ

i | =
1/3 and |〈ξν

i 〉| = 1/3. More specifically, each pat-
tern consits of three equal initially white (silent
neurons) horizontal stripes, with one of them black
colored (firing neurons) located in a different posi-
tion for each pattern. The system in this case be-
gins with the first pattern as initial condition and,
to avoid dependence on this choice, it is let to re-
lax for 3x104 Monte Carlo steps (MCS). It is then
perturbed by a drive −δξν , where the stimulus ν
changes (ν = 1, 2, 3, 1, ...) every 6x103 MCS. The
top graph shows the network response in the Hop-
field case. There is no visible structure of this signal
in the absence of fast noise as far as δ ≪ 1. As a
matter of fact, the depth of the basins of attraction
are large enough in the Hopfield model, to prevent
any move for small δ, except when approaching a
critical point (Tc = 1), where fluctuations diverge.
The bottom graph depicts a qualitatively different
situation for Φ = 1. That is, adding fast noise in
general destabilizes the fixed point for the interest-
ing case of small δ far from criticality.

Figure 6 confirms the above for uncorrelated pat-
terns, e.g. mν,µ ≈ δν,µ and 〈ξν

i 〉 ≈ 0. That is, this
shows the response of the network in a similar sim-
ulation with 400 neurons at T = 0.1 for M = 3
random, othogonal patterns. The initial condition
is again ν = 1, and the stimulus is here +δξν with
ν changing every 1, 5x105 MCS. Thus, we conclude

1

0

-1

 0  5  10  15

m
µ

Time (105 MCS)

δ=0 P1 P2 P3 P1 P2 P3 P1 δ=0

Figure 6: The same as in figure 5 but for three stored

patterns that are orthogonal (instead of correlated). The

stimulus is +δξν , δ = 0.1, with ν = ν (t) , as indicated at

the top. The time evolution of the overlap mν is drawn

with a different color (black, dark-grey and light-grey, re-

spectively) for each value of ν to illustrate that the system

keeps jumping between the patterns in this case.

that the switching phenomena is robust with re-
spect to the type of pattern stored.

7 Conclusion

The set of equations (4)–(6) provides a general
framework to model activity–dependent processes.
Motivated by the behavior of neurobiological sys-
tems, we adapted this to study the consequences
of fast noise acting on the synapses of an attrac-
tor neural network with a finite number of stored
patterns. We present in this paper two differ-
ent scenarios corresponding to noise distributions
fulfilling (9) and (19), respectively. In particu-
lar, assuming a local dependence on activity as
in (17), one obtains the local fields (18), while a
global dependence as in (20) leads to (23). Un-
der certain assumptions, the system in the first of
these cases is described by the effective Hamilto-
nian (8). This reduces to a Hopfield system —i.e.,
the familiar attractor neural network without any
synaptic noise— with rescaled temperature and a
threshold. This was already studied for a Gaus-
sian distribution of thresholds [Hertz et al., 1991,
Horn and Usher, 1989, Litinskii, 2002]. Concern-
ing stationary properties, this case is also similar to
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the one in [Bibitchkov et al., 2002]. A more intrigu-
ing behavior ensues when the noise depends on the
total presynaptic current arriving to the postsynap-
tic neuron. We studied this case both analytically,
by using a mean–field hypothesis, and numerically
by a series of Monte Carlo simulations using single-
neuron dynamics. The two approaches are fully
consistent with and complement each other.

Our model involves two main parameters. One
is the temperature T which controls the stochastic
evolution of the network activity. The other pa-
rameter, Φ, controls the depressing noise intensity.
Varying this, the system describes from normal op-
eration to depression phenomena. A main result is
that the presynaptic noise induces the occurrence of
a tricritical point for certain values of these param-
eters, (Tc, Φc) = (1,−4/3). This separates (in the
limit α → 0) first from second order phase transi-
tions between a retrieval phase and a non–retrieval
phase.

The principal conclusion in this paper is that
fast presynaptic noise may induce a nonequilib-
rium condition which results in an important in-
tensification of the network sensitivity to exter-
nal stimulation. We explicitly show that the noise
may turn unstable the attractor or fixed point
solution of the retrieval process, and the system
then seeks for another attractor. In particular,
one observes switching from the stored pattern to
the corresponding antipattern for M = 1, and
switching between patterns for a larger number
of stored patterns, M. This behavior is most in-
teresting because it improves the network ability
to detect changing stimuli from the environment.
We observe the switching to be very sensitive to
the forcing stimulus, but rather independent of
the network initial state or the thermal noise. It
seems sensible to argue that, besides recognition,
the processes of class identification and catego-
rization in nature might follow a similar strategy.
That is, different attractors may correspond to dif-
ferent objects, and a dynamics conveniently per-
turbed by fast noise may keep visiting the attrac-
tors belonging to a class which is characterized by
a certain degree of correlation between its elements
[Cortes et al., 2005]. In fact, a similar mechanism
seems at the basis of early olfactory processing
of insects [Laurent et al., 2001], and instabilities of
the same sort have been described in the cortical
activity of monkeys [Abeles et al., 1995] and other

cases [Miller and Schreiner, 2000].
Finally, we mention that the above complex

behavior seems confirmed by preliminary Monte
Carlo simulations for a macroscopic number of
stored patterns, i.e., a finite loading parameter α =
M/N 6= 0. On the other hand, a mean–field approx-
imation (see below) shows that the storage capacity
of the network is αc = 0.138, as in the Hopfield case
[Amit et al., 1987], for any Φ < 0, while it is always
smaller for Φ > 0. This is in agreement with previ-
ous results concerning the effect of synaptic depres-
sion in Hopfield–like systems [Torres et al., 2002,
Bibitchkov et al., 2002]. The fact that a positive
value of Φ tends to shallow the basin thus destabi-
lizing the attractor may be understood by a sim-
ple (mean–field) argument which is confirmed by
Monte Carlo simulations [Cortes et al., 2005]. As-
sume that the stationary activity shows just one
overlap of order unity. This corresponds to the con-

densed pattern; the overlaps with the rest, M − 1
stored patterns is of order of 1/

√
N (non–condensed

patterns) [Hertz et al., 1991]. The resulting prob-
ability of change of the synaptic intensity, namely,
(1 + α)

∑P

ν=1(m
ν)2 is of order unity, and the local

fields (23) follow as heff
i ∼ −ΦhHopfield

i . Therefore,
the storage capacity, which is computed at T = 0,
is the same as in the Hopfield case for any Φ < 0,
and always lower otherwise.
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