NCR-days 2005

Research on river dynamics from geological to operational time scales

November 3 – 5

H.J.T. Weerts
I.L. Ritsema
A.G. van Os (eds.)

October 2006

Publication of the Netherlands Centre for River Studies
NCR publication 29-2005
ISSN 1568-234X
Preface

The Netherlands Centre of River studies (NCR) successfully organised the NCR days for the 7th consecutive year in a row. During the NCR-days mainly young scientists presented their ongoing research. This led to lively discussions amongst the researchers themselves and persons responsible in river management in The Netherlands. This year the conference was located at the ARA Hotel in Zwijndrecht on the bank of one of the Rhine branches, the “Oude Maas”.

Two key note speakers, Henk Weerts from TNO and and Wilfried ten Brinke from RWS-RIZA, kicked off these NCR-days by presenting an overview of the theme River Dynamics from Geological to Operational Time Scales.

Henk Weerts illustrated that knowledge of water and sediment transport in river systems in the geological past is very important for functions in the subsurface in the Netherlands, such as the production of water, sand, gravel and clay or the construction of infrastructure on unstable subsiding ground. The reprocesses determine the distribution and the properties of the fluvial deposits in the subsurface.

Wilfried ten Brinke showed that knowledge of water and sediment transport in today’s river systems is very important for flood safety and water transport. In natural river systems sediment transport consists of relative longer periods of relatively slow, low volume and small particle transport interchanged with regular high discharge and irregular floods and branching being the periods where most of the larger size sediments are transported. In engineered river systems the sediment transport process has been altered severely: course sediments are captured upstream behind dams, huge quantities of sand and gravel are taken out of the river system as a resource for construction materials. Only suspended load fractions reach the sea nowadays.

With these inspiring notions the conference started.

The programme consisted of 42 selected presentations, 15 interesting contributions in the form of oral presentations falling under the three themes Sedimentation and Morphology, Water Quantity and Quality and River Basin Management and 27 poster presentations.

All presenters were invited to submit a short paper on their presentation for publication in the proceedings of the NCR-days 2005. The papers were reviewed by the NCR Programming Committee and Henk Weerts. This has resulted in 34 accepted papers in this NCR-publication, grouped into the sections: Sediments and Morphology (13), Water Quantity and Quality (10) and River Basin Management (11). The proceedings were finalised at TNO by Henk Weerts with the appreciated help of Ada van Schaik and Anja Livestro.

At the NCR-days two lively workshops took place respectively on downstream river systems and the reconstruction works in the river Maas. In these workshops water policy issues and technical problems were presented by people from the field and discussed with all participants in order to pinpoint topics for a research agenda for the future. We are convinced that some of the topics will re-appear in the future NCR-days.

Many of the issues raised were illustrated during the field trip on Saturday: river bank sedimentation in a nature reserve at the Rhoonse Grienden along the “Oude Maas” and a sand production pit of Boskalis at Zevenhuizerplas. Pictures of the field trip included in this volume give an impression of the visited sites.

We would like to thank Hans Hooghart of TNO, Jolien Mans of the NCR secretariat and Tine Verheij of Conference agency Routine for their work in organising the NCR-days 2005. They all have contributed to the success of the meeting, especially concerning the logistics. The continued financial support by NWO/ALW is gratefully acknowledged.

Finally, we are looking back at a very inspiring conference with many lively discussions and a joyful fieldtrip. We are confident that like the previous years, the network of mainly young researchers in river sciences has strengthened through the participation in the NCR-days offering them the opportunity for communication with fellow scientists and staff of water institutes in the Netherlands.

Henk Weerts, Ipo Ritsema and Ad van Os
Contents

Preface .. i
Abstract... 3
Samenvatting.. 4

NCR-days; introduction .. 5

Sedimentation and morphology (sedimentary systems, bifurcations, dunes, grain size distribution)
Calculating sedimentation quantities of the Rhine and meuse in the dutch delta region for the last 10,000 years ... 7
J.F. de Jong, M.J. Baptist & H. Middelkoop
Modelling the morphodynamics of a free meandering river.. 10
P. Jesse & L.J. Bolwidt
Morphological behaviour of the IJsselkop bifurcation. Impact on river management.. 13
Recent avulsions on the Taquari megafan, Pantanal, south-western Brazil; natural or human causes?........ 16
A. Blom
Irregular dunes, sediment sorting, and river morphodynamics .. 19
Modelling river dune development .. 21
C.F. van der Mark, A. Blom, S.J.M.H. Hulscher, S.F. Leclaire & D. Mohrig
Stochastics of bedform dimensions .. 23
I.J. Bos, H.J.A. Berendsen & H.J.T. Weerts
Alluvial architecture of fine-grained deposits .. 25
J. Wallinga, M. Ballarini, E. Jansma, P.C. Vos & C. Johns
Age control on fluvial deposits through optical dating of channel sands – Validation using a Roman barge for age control ... 26
M.A.J. Bakker, D. Majers & H.J.T. Weerts
GPR profiling in recent fluvial records - embanked floodplains .. 28
W. de Jong
Prediction of uncertainties in the morphological behaviour of a graded sediment river............................. 30
R.M. Frings & M.G. Kleinhans
Sediment distribution at the Merwedekop .. 32
J. Thonon, H. Middelkoop & M. van der Perk
The impact of ‘Room for the River’, climate and land-use on deposition of sediment and heavy metals on Dutch floodplains .. 34

Basin management (catchment area, water allocation, flood control, water infrastructures)
N. Slootjes & P.T.G.A. Jacobs
Robust water management in the Dutch Delta: at present and in future ... 37
T. Raadgever
Adaptive management in transboundary river basins .. 40
R.M. Bijlsma
Decision making in flood situations for boezem systems: GDH boezem ... 42
L. Rongchao, P. Gijsbers & E. van Beek
Integrated Water Allocation for the Yellow River Basin in China ... 44
A. Overeem, P.J.J.F. Torfs & E. Sprokkereef
Forecasting levels and their uncertainties for the River Rhine at Lobith ... 46
A.J. Nienhuis, M. Muller & B. Stalenberg
Time scales: key role in flood control and development of the urban river landscape 48
D. Douma & E. Mosselman
Field application of bottom Vanes in the Elanjani River, Tangail, Bangladesh ... 50
H. Talstra, W.S.J. Uijttewaal & G.S. Stelling
Emergence of large-scale coherent structures in a shallow separating flow ... 52
M. F.M. Yossef
Lowering the groynes; will it reduce the flood level after all! ... 54
F.A. Buschman, K. Blanckaert, J.H.A. Wijbenga & R.M.J. Schielen
Bubble screen and bend scour .. 56

Water quantity and quality (water and sediment transport, chemical and ecological quality)
K.M. Cohen
Generic estimates of palaeo peak discharge for series of nested channel belts .. 59
A. Doomen, E. Wijma, Zwolsman & H. Middelkoop
Modelling suspended sediment concentration in the River Meuse .. 61
F. Huthoff, D. C.M. Augustijn, J.H.A. Wijbenga & S.J.M.H. Hulscher
Hydraulic resistance of submerged cylindrical elements. A two-layer scaling approach 63
D. Noordam, H. van der Klis & S.J.M.H. Hulscher
Expert opinion: uncertainties in hydraulic roughness .. 65
M. Straatsma
Floodplain roughness mapping synergy: lidar and spectral remote sensing ... 67
A. Tuijnder, J. Ribberink & S. Hulscher
Modelling transport of graded sediment under partial transport conditions ... 69
P. Solomatine & G. Corzo
A modular model approach in flow forecasting by neural networks .. 70
S. Loos & H. Middelkoop
Nutrient load estimates in the Rhine River Basin; Exploring appropriate modelling concepts 72
J.J.G. Zwolsman & A. Doomen
Water quality of the Rhine and Meuse rivers during the summer drought of 2003 - Preview of climate change? ... 74
R.J.W. de Nooij, R.S.E.W. Leuven, W.C.E.P. Verberk, H.J.R. Lenders & P.H. Nienhuis
The importance of hydrodynamics for biodiversity: combining safety and nature 76
Modelling ecological risks of soil contamination in river floodplains ... 78
Modelling ecological risks of soil contamination in river floodplains

Radboud University Nijmegen, Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, A.Schipper@science.ru.nl

Introduction
Within the framework of the NWO-LOICZ project ‘Bio-geomorphological interactions in river floodplains’, the ecological risks of heavy metal contamination in floodplains will be assessed for both current and future boundary conditions. It is generally acknowledged that risk assessments are strongly influenced by the spatial positions of both receptors and stressors (e.g. Hope, 2000). This is especially relevant for the exposure of floodplain organisms to heavy metal contamination, because heavy metal concentrations in floodplain soils show large spatial variability (Middelkoop, 2000). The present PhD study aims a.o. at incorporating the spatial positions of both floodplain organisms and (bio-available) contaminant concentrations in the risk assessment procedure. A spatially explicit individual-based exposure model has been developed (Fig.1), which is applied to assess the exposure of terrestrial floodplain species to cadmium contamination in the embanked floodplain ‘Afferdensche en Deestsche Waarden’. This paper aims at providing insight in the modelling procedure and the characteristics of the model.

Spatially explicit exposure modeling
During model development a food web approach was followed, taking into account feeding relationships between species. Four top-predator species were selected, subsequently inferring the composition of lower food web levels according to diet preferences (Schipper et al., 2006). Selected top-predator species are Little Owl (Athene noctua), Kestrel (Falco tinnunculus), Weasel (Mustela nivalis), and Badger (Meles meles). Of these, Weasel and Kestrel are currently present in the study area. Badger, Kestrel and Little Owl are so-called target species for river floodplains according to national Dutch policy. Spatially explicit model input consists of cadmium concentrations in soil or sediment, data on the distribution of ecotopes, and floodplain inundation characteristics. The grid based model (cell size 5x5 m) is implemented in MS Excel with MS Visual Basic Application and it has a modular structure.

Figure 1. Model approach.

- = spatially explicit input data
C = contaminant concentration

```
C soil
  |__________________________|
  | ecotopes                |
  |__________________________|
    | inundation             |
    |__________________________|
      | potential habitat      |
      |__________________________|
        | actual habitat         |
        | foraging behaviour     |
          |__________________________|
```

FOOD WEB LEVEL 1

FOOD WEB LEVEL 2

FOOD WEB LEVEL 3
One of the modules simulates spatially explicit foraging behavior. This applies to 2nd and 3rd level species only, as 1st level species (terrestrial invertebrates and vegetation) are assumed to be sessile with respect to the spatial model resolution. The foraging behavior module involves the selection of a starting cell, representing the nest of a specific organism, based on habitat requirements and inundation characteristics. Subsequently, cells foraged during the organism’s life time are selected within its home range, according to habitat requirements and a random element.

A second module calculates exposure concentrations. Internal cadmium concentrations for 1st level species are derived directly from soil concentrations by means of bio-accumulation factors or regression equations. For 2nd and 3rd level organisms, exposure concentrations are first calculated for each model cell that is foraged (equation 1). These cell-specific exposure concentrations are determined by adding up the contaminant concentrations of all diet items present in the cells, weighted according to the fractions of the items in the diet of the receptor. Because many predators consume the whole carcass of a prey, the contaminant load of the prey’s gut and its contents influences the final exposure estimates (Walker et al., 2002). Therefore a prey-specific gut content correction factor (GCC) is incorporated.

\[
P_E = \sum_{i=1}^{n} f_{i,j} \cdot C_{i,j} \cdot GCC_j
\]

(1)

where \(C_i \) = exposure concentration cell \(i \) (mg kg\(^{-1}\)); \(f_{i,j} \) = fraction of diet item \(j \) in cell \(i \) (dimensionless); \(C_{i,j} \) = internal contaminant concentration in diet item \(j \) in cell \(i \) (mg kg\(^{-1}\)); \(GCC_j \) = gut content correction factor for diet item \(j \) (dimensionless)

Subsequently, exposure estimates are calculated by summing up the exposure concentrations of all cells visited, weighted according to the relative amount of time that the receptor has spent per cell, which is assumed to be proportionally related to the receptor-specific habitat quality HQ, (equation 2). Finally, exposure estimates are compared to toxicity reference values in order to determine whether organisms are at risk (Schipper et al., 2006).

\[
PEC = \frac{\sum_{i=1}^{n} HQ_i \cdot C_i}{\sum_{i=1}^{n} HQ_i}
\]

(2)

where \(PEC \) = predicted exposure concentration (mg kg\(^{-1}\)); \(HQ \) = habitat quality of model cell \(i \) (dimensionless)

Further developments

Model performance will be tested for the case study area ‘Afferdensche en Deestsche Waarden’ and evaluated through comparison of measured and predicted internal cadmium concentrations for several mammal species. Subsequently, individual-based risk estimates will be translated to population-level effects, as populations are considered more relevant assessment endpoints than individual organisms. Finally, the consequences of climate change and/or floodplain rehabilitation measures for exposure and risk estimates will be investigated. The model developed can thus facilitate river and nature managers in the delineation of high- and low-risk areas, enabling them to optimise cost-effectiveness of soil and sediment sanitation for sustainable flood defence measures and environmental rehabilitation.

References

Water quantity and quality (water and sediment transport, chemical and ecological quality)
NCR Supervisory Board

December 2005

prof. dr. H.J. de Vriend, chairman
WL | Delft Hydraulics
email: Huib.devriend@wldelft.nl

A.G. van Os, secretary
programming secretary NCR
email: Ad.vanos@wldelft.nl

A.R. van Bennekom
DG Rijkswaterstaat/RIZA
email: a.r.vBennekom@riza.rws.minvenw.nl

prof. dr. E.A. Koster
Utrecht University
email: E.Koster@geog.uu.nl

prof. dr. H.H.G. Savenije
Delft University of Technology
email: H.H.G.Savenije@tudelft.nl

prof. dr. A.J. Hendriks
University Nijmegen
email: a.j.hendriks@science.ru.nl

prof. dr. A.Y. Hoekstra
University Twente
email: A.Y.Hoekstra@ctw.utwente.nl

M.W. Blokland
UNESCO-IHE Institute for Water Education
email: m.blokland@unesco-ihe.org

dr. M.J. van Bracht
TNO-NITG
email: mart.vanbracht@tno.nl

prof. dr. W.P. Cofino
ALTERRA
email: Wim.Cofino@wur.nl

dr. H.A.J. van Lanen
University Wageningen
email:Henny.vanLanen@wur.nl

NCR Programme Committee

December 2005

G. Blom, chairman
DG Rijkswaterstaat/RIZA
email: g.blom@riza.rws.minvenw.nl

A.G. van Os, secretary
programming secretary NCR
email: Ad.vanos@wldelft.nl

F.C.M. van der Knaap
WL | Delft Hydraulics
email: Frans.vdKnaap@wldelft.nl

dr. H. Middelkoop
Utrecht University
email: H.Middelkoop@geog.uu.nl.

prof. N.C. van de Giesen
Delft University of Technology
email: N.C.vandeGiesen@tudelft.nl

dr. R. Leuven
University Nijmegen
email: r.leuven@science.ru.nl

dr. J.S. Ribberink
University Twente
Email: J.S.Ribberink@ctw.utwente.nl

ir. J.L.G. de Schutter
UNESCO-IHE Institute for Water Education
email: j.deschutter@unesco-ihe.org

drs. I.L. Ritsema
TNO-NITG
email: ipo.ritsema@tno.nl

prof. dr. H.P. Wolfert
ALTERRA
email: Henk.Wolfert@wur.nl

dr. R. Uijlenhoet
University Wageningen
email: Remko.Uijlenhoet@wur.nl
NCR Publications series

In this series the following publications were printed:

NCR-publication n°:
00-2000 "Delfstoffenwinning als motor voor rivierverruiming; kansen en bedreigingen", editors A.J.M. Smits & G.W. Geerling
(out of stock, but can be downloaded from the NCR Internet site)
02-2000 “NCR workshop, de weg van maatschappelijke vraag naar onderzoek”, editors A.F. Wolters & E.C.L. Marteijn (in Dutch)
04-2001 “Umbrella Program IRMA-SPONGE, Background, Scope and Methodology”, editors A. Hooijer & A.G. van Os
(also downloadable from the NCR Internet site)
06-2001 “The Netherlands Centre for River studies, a co-operation of the major developers and users of expertise in the area of rivers”, editors A.G. van Os & H. Middelkoop
07-2001 “NCR-days 2001, from sediment transport, morphology and ecology to river basin management”, editors E. Stouthamer & A.G. van Os
08-2001 “Land van levende rivieren: De Gelderse Poort”, Stichting Ark, ISSN 90 5011 150 5; € 27,50
09-2001 “Guidelines for rehabilitation and management of floodplains, ecology and safety combined”, editors H.A.Wolters, M. Platteeuw & M.M.Schoor
10-2001 “Living with floods: resilience strategies for flood management and multiple land use in the river Rhine basin”, editors M. Vis, F. Klijn & M. van Buuren
12-2001 “Extension of the Flood Forecasting Model FloRIJN”, authors E. Sprokkereef, H. Buiteveld, M. Eberle & J. Kwadijk
14-2001 “Cyclic floodplain rejuvenation: a new strategy based on floodplain measures for both flood risk management and enhancement of the biodiversity of the river Rhine”, editor H. Duel
15-2001 “Intermeuse: the Meuse reconnected”, authors N. Geilen, B. Pedrotli, K. van Looij & L.Krebs, H. Jochems, S. van Rooij & Th. van der Sluis
18-2002 IRMA-SPONGE, “Towards Sustainable Flood Risk Management in the Rhine and Meuse River Basins”, (incl. main results of the research project), editors A. Hooijer & A.G. van Os

23-2004 “Om de toekomst van het rivierengebied”, gelegenheidsredactie N. Geilen, F. Klijn, S.A.M. van Rooij, C. Stegewerns & C.C. Vos; thema nummer tijdschrift ‘Landschap’ n.a.v. een studiedag georganiseerd door WLO en NCR. WLO-secretariaat, Postbus 80123, 3508 TC Utrecht, email wlo@knag.nl

24-2004 “NCR days 2003, Dealing with Floods within Constraints”, editors N. Douben, A.G. van Os

27-2005 “Large European river system responses to global change and human activities - The Volga and Rhine Rivers, Department Physical Geography, Utrecht University / Faculty of Geography - Moscow State University / RIZA, Utrecht / Moscow / Arnhem, editor H. Middelkoop