Prediction of protein-to-protein interactions

C. Gilissen¹, P. Groot², P. Lucas²,
J. Veltman¹, A. Geurts van Kessel¹, M. Egmont-Petersen²

¹) Department of Human Genetics - UMC St. Radboud Nijmegen
²) Faculty of Computing Sciences - Radboud University, Nijmegen

c.gilissen@antrgy.umcn.nl

We use local extrema in microarray time series data as the basis for discretisation. By comparing discretised gene expressions using similarity functions, we discover putative protein-to-protein interactions. We validate the results by use of public true positive and true negative databases for protein-to-protein interactions and demonstrate the high predictiveness of these local extrema as a time series feature.

1. Method

1.1 Smoothing

We create a smoothed version of our original signal h, which removes noise and effectively captures the properties of the signal at a higher scale (Figure 1b). We obtain such a smooth signal by convolving the original signal h with the Gaussian function:

\[ k(t) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{t^2}{2\sigma^2}} \]

where \( k(t) \) is the Gaussian function:

\[ k(t, m, s) = \frac{1}{\sqrt{4\pi s^2}} e^{-\frac{(t-m)^2}{4s^2}} \]  

By varying \( s \), we can vary the scale level and thus the smoothing of the scale-space representation.

1.2 Discretisation

We compute the regularised (smoothed) derivative of the gene expression time series signal by convolution with the first-order derivative of the Gaussian function as:

\[ D(h + k)(t) = (h + Dh)(t) - (Dh + k)(t) \]  

Figure 2: Smoothing of swi4 expression, across 19 time samples. The original signal in blue; the smooth signal in green.

1.3 Similarity function

We distinguish four kinds of possible relations and the associated relation between the discrete time patterns, as shown in Figure 5. We find putative relations by comparing discrete gene patterns using these similarity functions (Figure 1d).

1.4 Integration of data sets

Many patterns are similar by mere chance. We remove these chance findings by combining the results of two independent data sets using a logical AND (Figure 1e).

1.5 Confidence intervals

For each detected local extremum \( t \) in a gene pattern we calculate the probability of a type I error, \( P(t) \). The total confidence for a gene \( q \) with \( n \) extrema is then calculated by the geometric mean:

\[ C_Q = \left( \prod_{t=1}^{n} (1 - P(t)) \right) \]  

We rank predictions according to their confidence (Figure 1f). For any relation consisting of genes \( q_1 \) and \( q_2 \) the confidence measure becomes:

\[ C_{Q_1Q_2} = C_{Q_1} \cdot C_{Q_2} \]  

2. Results

We applied the method to two yeast datasets of Spellman et. al. and validated the resulting predictions by using a public Gold standard protein-to-protein interaction database. We compared the results to a similar approach where discretisation was based on per gene thresholding as shown in Figure 4.

3. Conclusion

Local extrema are a feature in time-series gene expression data that can be used for finding biologically relevant interactions (e.g., protein-to-protein interactions). The applied method is invariant under scaling and shifting and can be adjusted for the amount of experimental noise.

Figure 1: An overview of the applied method. a) original expression data; b) expression data after smoothing; c) data discretised based on local extrema; d) comparison of discrete patterns; e) removal of chance findings by comparing predictions of two data sets; f) ranking of predictions according to confidences of the local extrema.

Figure 2: Smoothing of swi4 expression, across 19 time samples. The original signal in blue; the smooth signal in green.

Figure 3: Expression of swi4 (blue), and first-order derivative of swi4 (green), where zero transitions indicate local extrema.

Figure 4: Discretisation based on thresholding for RAD51. Thresholds are drawn at \( r = 0.6 \) of the distance between the mean and maximum / minimum.

Table 1: \# pred. is the number of predictions \% TP is the percentage true-positives, \% TN is the percentage true-negatives.

<table>
<thead>
<tr>
<th>Option</th>
<th># pred.</th>
<th>% TP</th>
<th>% TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>no options</td>
<td>21</td>
<td>33%</td>
<td>14.29%</td>
</tr>
<tr>
<td>smoothing</td>
<td>43</td>
<td>11.63%</td>
<td>18.60%</td>
</tr>
<tr>
<td>lagfunction</td>
<td>146</td>
<td>8.90%</td>
<td>11.64%</td>
</tr>
<tr>
<td>no begin/end</td>
<td>118</td>
<td>13.56%</td>
<td>15.25%</td>
</tr>
<tr>
<td>smoothing</td>
<td>95</td>
<td>0.95</td>
<td>0.78%</td>
</tr>
<tr>
<td>c = 0.5</td>
<td>456</td>
<td>0.62%</td>
<td>16.87%</td>
</tr>
<tr>
<td>c = 0.8</td>
<td>98</td>
<td>0.80%</td>
<td>19.35%</td>
</tr>
</tbody>
</table>

Results are shown in Table 1. Above: the results of the method with varying options: no options; increased smoothing factor; comparison using the lagfunction; ignoring extrema at the first and last samples of the series. Below: results from discretisation based on thresholding.